summaryrefslogtreecommitdiffstats
path: root/Source/WebCore/platform/graphics/filters/FETurbulence.cpp
blob: 17688746f6f9e446271a41fcb1e25111ead1c5a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*
 * Copyright (C) 2004, 2005, 2006, 2007 Nikolas Zimmermann <zimmermann@kde.org>
 * Copyright (C) 2004, 2005 Rob Buis <buis@kde.org>
 * Copyright (C) 2005 Eric Seidel <eric@webkit.org>
 * Copyright (C) 2009 Dirk Schulze <krit@webkit.org>
 * Copyright (C) 2010 Renata Hodovan <reni@inf.u-szeged.hu>
 * Copyright (C) 2011 Gabor Loki <loki@webkit.org>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 */

#include "config.h"

#if ENABLE(FILTERS)
#include "FETurbulence.h"

#include "Filter.h"
#include "RenderTreeAsText.h"
#include "TextStream.h"

#include <wtf/MathExtras.h>
#include <wtf/ParallelJobs.h>
#include <wtf/Uint8ClampedArray.h>

namespace WebCore {

/*
    Produces results in the range [1, 2**31 - 2]. Algorithm is:
    r = (a * r) mod m where a = randAmplitude = 16807 and
    m = randMaximum = 2**31 - 1 = 2147483647, r = seed.
    See [Park & Miller], CACM vol. 31 no. 10 p. 1195, Oct. 1988
    To test: the algorithm should produce the result 1043618065
    as the 10,000th generated number if the original seed is 1.
*/
static const int s_perlinNoise = 4096;
static const long s_randMaximum = 2147483647; // 2**31 - 1
static const int s_randAmplitude = 16807; // 7**5; primitive root of m
static const int s_randQ = 127773; // m / a
static const int s_randR = 2836; // m % a

FETurbulence::FETurbulence(Filter* filter, TurbulenceType type, float baseFrequencyX, float baseFrequencyY, int numOctaves, float seed, bool stitchTiles)
    : FilterEffect(filter)
    , m_type(type)
    , m_baseFrequencyX(baseFrequencyX)
    , m_baseFrequencyY(baseFrequencyY)
    , m_numOctaves(numOctaves)
    , m_seed(seed)
    , m_stitchTiles(stitchTiles)
{
}

PassRefPtr<FETurbulence> FETurbulence::create(Filter* filter, TurbulenceType type, float baseFrequencyX, float baseFrequencyY, int numOctaves, float seed, bool stitchTiles)
{
    return adoptRef(new FETurbulence(filter, type, baseFrequencyX, baseFrequencyY, numOctaves, seed, stitchTiles));
}

TurbulenceType FETurbulence::type() const
{
    return m_type;
}

bool FETurbulence::setType(TurbulenceType type)
{
    if (m_type == type)
        return false;
    m_type = type;
    return true;
}

float FETurbulence::baseFrequencyY() const
{
    return m_baseFrequencyY;
}

bool FETurbulence::setBaseFrequencyY(float baseFrequencyY)
{
    if (m_baseFrequencyY == baseFrequencyY)
        return false;
    m_baseFrequencyY = baseFrequencyY;
    return true;
}

float FETurbulence::baseFrequencyX() const
{
    return m_baseFrequencyX;
}

bool FETurbulence::setBaseFrequencyX(float baseFrequencyX)
{
    if (m_baseFrequencyX == baseFrequencyX)
        return false;
    m_baseFrequencyX = baseFrequencyX;
    return true;
}

float FETurbulence::seed() const
{
    return m_seed; 
}

bool FETurbulence::setSeed(float seed)
{
    if (m_seed == seed)
        return false;
    m_seed = seed;
    return true;
}

int FETurbulence::numOctaves() const
{
    return m_numOctaves;
}

bool FETurbulence::setNumOctaves(int numOctaves)
{
    if (m_numOctaves == numOctaves)
        return false;
    m_numOctaves = numOctaves;
    return true;
}

bool FETurbulence::stitchTiles() const
{
    return m_stitchTiles;
}

bool FETurbulence::setStitchTiles(bool stitch)
{
    if (m_stitchTiles == stitch)
        return false;
    m_stitchTiles = stitch;
    return true;
}

// The turbulence calculation code is an adapted version of what appears in the SVG 1.1 specification:
// http://www.w3.org/TR/SVG11/filters.html#feTurbulence

// Compute pseudo random number.
inline long FETurbulence::PaintingData::random()
{
    long result = s_randAmplitude * (seed % s_randQ) - s_randR * (seed / s_randQ);
    if (result <= 0)
        result += s_randMaximum;
    seed = result;
    return result;
}

inline float smoothCurve(float t)
{
    return t * t * (3 - 2 * t);
}

inline float linearInterpolation(float t, float a, float b)
{
    return a + t * (b - a);
}

inline void FETurbulence::initPaint(PaintingData& paintingData)
{
    float normalizationFactor;

    // The seed value clamp to the range [1, s_randMaximum - 1].
    if (paintingData.seed <= 0)
        paintingData.seed = -(paintingData.seed % (s_randMaximum - 1)) + 1;
    if (paintingData.seed > s_randMaximum - 1)
        paintingData.seed = s_randMaximum - 1;

    float* gradient;
    for (int channel = 0; channel < 4; ++channel) {
        for (int i = 0; i < s_blockSize; ++i) {
            paintingData.latticeSelector[i] = i;
            gradient = paintingData.gradient[channel][i];
            gradient[0] = static_cast<float>((paintingData.random() % (2 * s_blockSize)) - s_blockSize) / s_blockSize;
            gradient[1] = static_cast<float>((paintingData.random() % (2 * s_blockSize)) - s_blockSize) / s_blockSize;
            normalizationFactor = sqrtf(gradient[0] * gradient[0] + gradient[1] * gradient[1]);
            gradient[0] /= normalizationFactor;
            gradient[1] /= normalizationFactor;
        }
    }
    for (int i = s_blockSize - 1; i > 0; --i) {
        int k = paintingData.latticeSelector[i];
        int j = paintingData.random() % s_blockSize;
        ASSERT(j >= 0);
        ASSERT(j < 2 * s_blockSize + 2);
        paintingData.latticeSelector[i] = paintingData.latticeSelector[j];
        paintingData.latticeSelector[j] = k;
    }
    for (int i = 0; i < s_blockSize + 2; ++i) {
        paintingData.latticeSelector[s_blockSize + i] = paintingData.latticeSelector[i];
        for (int channel = 0; channel < 4; ++channel) {
            paintingData.gradient[channel][s_blockSize + i][0] = paintingData.gradient[channel][i][0];
            paintingData.gradient[channel][s_blockSize + i][1] = paintingData.gradient[channel][i][1];
        }
    }
}

inline void checkNoise(int& noiseValue, int limitValue, int newValue)
{
    if (noiseValue >= limitValue)
        noiseValue -= newValue;
    if (noiseValue >= limitValue - 1)
        noiseValue -= newValue - 1;
}

float FETurbulence::noise2D(int channel, PaintingData& paintingData, StitchData& stitchData, const FloatPoint& noiseVector)
{
    struct Noise {
        int noisePositionIntegerValue;
        float noisePositionFractionValue;

        Noise(float component)
        {
            float position = component + s_perlinNoise;
            noisePositionIntegerValue = static_cast<int>(position);
            noisePositionFractionValue = position - noisePositionIntegerValue;
        }
    };

    Noise noiseX(noiseVector.x());
    Noise noiseY(noiseVector.y());
    float* q;
    float sx, sy, a, b, u, v;

    // If stitching, adjust lattice points accordingly.
    if (m_stitchTiles) {
        checkNoise(noiseX.noisePositionIntegerValue, stitchData.wrapX, stitchData.width);
        checkNoise(noiseY.noisePositionIntegerValue, stitchData.wrapY, stitchData.height);
    }

    noiseX.noisePositionIntegerValue &= s_blockMask;
    noiseY.noisePositionIntegerValue &= s_blockMask;
    int latticeIndex = paintingData.latticeSelector[noiseX.noisePositionIntegerValue];
    int nextLatticeIndex = paintingData.latticeSelector[(noiseX.noisePositionIntegerValue + 1) & s_blockMask];

    sx = smoothCurve(noiseX.noisePositionFractionValue);
    sy = smoothCurve(noiseY.noisePositionFractionValue);

    // This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement.
    int temp = paintingData.latticeSelector[latticeIndex + noiseY.noisePositionIntegerValue];
    q = paintingData.gradient[channel][temp];
    u = noiseX.noisePositionFractionValue * q[0] + noiseY.noisePositionFractionValue * q[1];
    temp = paintingData.latticeSelector[nextLatticeIndex + noiseY.noisePositionIntegerValue];
    q = paintingData.gradient[channel][temp];
    v = (noiseX.noisePositionFractionValue - 1) * q[0] + noiseY.noisePositionFractionValue * q[1];
    a = linearInterpolation(sx, u, v);
    temp = paintingData.latticeSelector[latticeIndex + noiseY.noisePositionIntegerValue + 1];
    q = paintingData.gradient[channel][temp];
    u = noiseX.noisePositionFractionValue * q[0] + (noiseY.noisePositionFractionValue - 1) * q[1];
    temp = paintingData.latticeSelector[nextLatticeIndex + noiseY.noisePositionIntegerValue + 1];
    q = paintingData.gradient[channel][temp];
    v = (noiseX.noisePositionFractionValue - 1) * q[0] + (noiseY.noisePositionFractionValue - 1) * q[1];
    b = linearInterpolation(sx, u, v);
    return linearInterpolation(sy, a, b);
}

unsigned char FETurbulence::calculateTurbulenceValueForPoint(int channel, PaintingData& paintingData, StitchData& stitchData, const FloatPoint& point)
{
    float tileWidth = paintingData.filterSize.width();
    float tileHeight = paintingData.filterSize.height();
    ASSERT(tileWidth > 0 && tileHeight > 0);
    float baseFrequencyX = m_baseFrequencyX;
    float baseFrequencyY = m_baseFrequencyY;
    // Adjust the base frequencies if necessary for stitching.
    if (m_stitchTiles) {
        // When stitching tiled turbulence, the frequencies must be adjusted
        // so that the tile borders will be continuous.
        if (baseFrequencyX) {
            float lowFrequency = floorf(tileWidth * baseFrequencyX) / tileWidth;
            float highFrequency = ceilf(tileWidth * baseFrequencyX) / tileWidth;
            // BaseFrequency should be non-negative according to the standard.
            if (baseFrequencyX / lowFrequency < highFrequency / baseFrequencyX)
                baseFrequencyX = lowFrequency;
            else
                baseFrequencyX = highFrequency;
        }
        if (baseFrequencyY) {
            float lowFrequency = floorf(tileHeight * baseFrequencyY) / tileHeight;
            float highFrequency = ceilf(tileHeight * baseFrequencyY) / tileHeight;
            if (baseFrequencyY / lowFrequency < highFrequency / baseFrequencyY)
                baseFrequencyY = lowFrequency;
            else
                baseFrequencyY = highFrequency;
        }
        // Set up TurbulenceInitial stitch values.
        stitchData.width = roundf(tileWidth * baseFrequencyX);
        stitchData.wrapX = s_perlinNoise + stitchData.width;
        stitchData.height = roundf(tileHeight * baseFrequencyY);
        stitchData.wrapY = s_perlinNoise + stitchData.height;
    }
    float turbulenceFunctionResult = 0;
    FloatPoint noiseVector(point.x() * baseFrequencyX, point.y() * baseFrequencyY);
    float ratio = 1;
    for (int octave = 0; octave < m_numOctaves; ++octave) {
        if (m_type == FETURBULENCE_TYPE_FRACTALNOISE)
            turbulenceFunctionResult += noise2D(channel, paintingData, stitchData, noiseVector) / ratio;
        else
            turbulenceFunctionResult += fabsf(noise2D(channel, paintingData, stitchData, noiseVector)) / ratio;
        noiseVector.setX(noiseVector.x() * 2);
        noiseVector.setY(noiseVector.y() * 2);
        ratio *= 2;
        if (m_stitchTiles) {
            // Update stitch values. Subtracting s_perlinNoiseoise before the multiplication and
            // adding it afterward simplifies to subtracting it once.
            stitchData.width *= 2;
            stitchData.wrapX = 2 * stitchData.wrapX - s_perlinNoise;
            stitchData.height *= 2;
            stitchData.wrapY = 2 * stitchData.wrapY - s_perlinNoise;
        }
    }

    // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult * 255) + 255) / 2 by fractalNoise
    // and (turbulenceFunctionResult * 255) by turbulence.
    if (m_type == FETURBULENCE_TYPE_FRACTALNOISE)
        turbulenceFunctionResult = turbulenceFunctionResult * 0.5f + 0.5f;
    // Clamp result
    turbulenceFunctionResult = std::max(std::min(turbulenceFunctionResult, 1.f), 0.f);
    return static_cast<unsigned char>(turbulenceFunctionResult * 255);
}

inline void FETurbulence::fillRegion(Uint8ClampedArray* pixelArray, PaintingData& paintingData, int startY, int endY)
{
    IntRect filterRegion = absolutePaintRect();
    IntPoint point(0, filterRegion.y() + startY);
    int indexOfPixelChannel = startY * (filterRegion.width() << 2);
    int channel;
    StitchData stitchData;

    for (int y = startY; y < endY; ++y) {
        point.setY(point.y() + 1);
        point.setX(filterRegion.x());
        for (int x = 0; x < filterRegion.width(); ++x) {
            point.setX(point.x() + 1);
            for (channel = 0; channel < 4; ++channel, ++indexOfPixelChannel)
                pixelArray->set(indexOfPixelChannel, calculateTurbulenceValueForPoint(channel, paintingData, stitchData, filter()->mapAbsolutePointToLocalPoint(point)));
        }
    }
}

void FETurbulence::fillRegionWorker(FillRegionParameters* parameters)
{
    parameters->filter->fillRegion(parameters->pixelArray, *parameters->paintingData, parameters->startY, parameters->endY);
}

void FETurbulence::platformApplySoftware()
{
    Uint8ClampedArray* pixelArray = createUnmultipliedImageResult();
    if (!pixelArray)
        return;

    if (absolutePaintRect().isEmpty()) {
        pixelArray->zeroFill();
        return;
    }

    PaintingData paintingData(m_seed, roundedIntSize(filterPrimitiveSubregion().size()));
    initPaint(paintingData);

    int optimalThreadNumber = (absolutePaintRect().width() * absolutePaintRect().height()) / s_minimalRectDimension;
    if (optimalThreadNumber > 1) {
        // Initialize parallel jobs
        WTF::ParallelJobs<FillRegionParameters> parallelJobs(&WebCore::FETurbulence::fillRegionWorker, optimalThreadNumber);

        // Fill the parameter array
        int i = parallelJobs.numberOfJobs();
        if (i > 1) {
            // Split the job into "stepY"-sized jobs but there a few jobs that need to be slightly larger since
            // stepY * jobs < total size. These extras are handled by the remainder "jobsWithExtra".
            const int stepY = absolutePaintRect().height() / i;
            const int jobsWithExtra = absolutePaintRect().height() % i;

            int startY = 0;
            for (; i > 0; --i) {
                FillRegionParameters& params = parallelJobs.parameter(i-1);
                params.filter = this;
                params.pixelArray = pixelArray;
                params.paintingData = &paintingData;
                params.startY = startY;
                startY += i < jobsWithExtra ? stepY + 1 : stepY;
                params.endY = startY;
            }

            // Execute parallel jobs
            parallelJobs.execute();
            return;
        }
    }

    // Fallback to single threaded mode if there is no room for a new thread or the paint area is too small.
    fillRegion(pixelArray, paintingData, 0, absolutePaintRect().height());
}

void FETurbulence::dump()
{
}

static TextStream& operator<<(TextStream& ts, const TurbulenceType& type)
{
    switch (type) {
    case FETURBULENCE_TYPE_UNKNOWN:
        ts << "UNKNOWN";
        break;
    case FETURBULENCE_TYPE_TURBULENCE:
        ts << "TURBULANCE";
        break;
    case FETURBULENCE_TYPE_FRACTALNOISE:
        ts << "NOISE";
        break;
    }
    return ts;
}

TextStream& FETurbulence::externalRepresentation(TextStream& ts, int indent) const
{
    writeIndent(ts, indent);
    ts << "[feTurbulence";
    FilterEffect::externalRepresentation(ts);
    ts << " type=\"" << type() << "\" "
       << "baseFrequency=\"" << baseFrequencyX() << ", " << baseFrequencyY() << "\" "
       << "seed=\"" << seed() << "\" "
       << "numOctaves=\"" << numOctaves() << "\" "
       << "stitchTiles=\"" << stitchTiles() << "\"]\n";
    return ts;
}

} // namespace WebCore

#endif // ENABLE(FILTERS)