summaryrefslogtreecommitdiffstats
path: root/Source/WebCore/platform/graphics/texmap/TextureMapperShaderManager.cpp
blob: 27e7867130fff82cfc7572c5af6c4bd727fd7046 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/*
 Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies)
 Copyright (C) 2012 Igalia S.L.
 Copyright (C) 2011 Google Inc. All rights reserved.

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Library General Public
 License as published by the Free Software Foundation; either
 version 2 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 Library General Public License for more details.

 You should have received a copy of the GNU Library General Public License
 along with this library; see the file COPYING.LIB.  If not, write to
 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 Boston, MA 02110-1301, USA.
 */

#include "config.h"
#include "TextureMapperShaderManager.h"

#if USE(ACCELERATED_COMPOSITING) && USE(TEXTURE_MAPPER)

#include "LengthFunctions.h"
#include "Logging.h"
#include "TextureMapperGL.h"

#define STRINGIFY(...) #__VA_ARGS__

namespace WebCore {


static inline bool compositingLogEnabled()
{
#if !LOG_DISABLED
    return LogCompositing.state == WTFLogChannelOn;
#else
    return false;
#endif
}

TextureMapperShaderProgram::TextureMapperShaderProgram(PassRefPtr<GraphicsContext3D> context, const String& vertex, const String& fragment)
    : m_context(context)
{
    m_vertexShader = m_context->createShader(GraphicsContext3D::VERTEX_SHADER);
    m_fragmentShader = m_context->createShader(GraphicsContext3D::FRAGMENT_SHADER);
    m_context->shaderSource(m_vertexShader, vertex);
    m_context->shaderSource(m_fragmentShader, fragment);
    m_id = m_context->createProgram();
    m_context->compileShader(m_vertexShader);
    m_context->compileShader(m_fragmentShader);
    m_context->attachShader(m_id, m_vertexShader);
    m_context->attachShader(m_id, m_fragmentShader);
    m_context->linkProgram(m_id);

    if (!compositingLogEnabled())
        return;

    if (m_context->getError() == GraphicsContext3D::NO_ERROR)
        return;

    String log = m_context->getShaderInfoLog(m_vertexShader);
    LOG(Compositing, "Vertex shader log: %s\n", log.utf8().data());
    log = m_context->getShaderInfoLog(m_fragmentShader);
    LOG(Compositing, "Fragment shader log: %s\n", log.utf8().data());
    log = m_context->getProgramInfoLog(m_id);
    LOG(Compositing, "Program log: %s\n", log.utf8().data());
}

GC3Duint TextureMapperShaderProgram::getLocation(const AtomicString& name, VariableType type)
{
    HashMap<AtomicString, GC3Duint>::iterator it = m_variables.find(name);
    if (it != m_variables.end())
        return it->value;

    GC3Duint location = 0;
    switch (type) {
    case UniformVariable:
        location = m_context->getUniformLocation(m_id, name);
        break;
    case AttribVariable:
        location = m_context->getAttribLocation(m_id, name);
        break;
    default:
        ASSERT_NOT_REACHED();
        break;
    }

    m_variables.add(name, location);
    return location;
}

TextureMapperShaderProgram::~TextureMapperShaderProgram()
{
    Platform3DObject programID = m_id;
    if (!programID)
        return;

    m_context->detachShader(programID, m_vertexShader);
    m_context->deleteShader(m_vertexShader);
    m_context->detachShader(programID, m_fragmentShader);
    m_context->deleteShader(m_fragmentShader);
    m_context->deleteProgram(programID);
}

struct ShaderSpec {
    String vertexShader;
    String fragmentShader;
    ShaderSpec(const char* vertex = 0, const char* fragment = 0)
        : vertexShader(vertex ? String(ASCIILiteral(vertex)) : String())
        , fragmentShader(fragment ? String(ASCIILiteral(fragment)) : String())
    {
    }
};

static void getShaderSpec(TextureMapperShaderManager::ShaderKey key, String& vertexSource, String& fragmentSource)
{
    static Vector<ShaderSpec> specs = Vector<ShaderSpec>();
    static const char* fragmentOpacityAndMask =
        STRINGIFY(
            precision mediump float;
            uniform sampler2D s_sampler;
            uniform sampler2D s_mask;
            uniform lowp float u_opacity;
            varying highp vec2 v_sourceTexCoord;
            varying highp vec2 v_maskTexCoord;
            void main(void)
            {
                lowp vec4 color = texture2D(s_sampler, v_sourceTexCoord);
                lowp vec4 maskColor = texture2D(s_mask, v_maskTexCoord);
                lowp float fragmentAlpha = u_opacity * maskColor.a;
                gl_FragColor = vec4(color.rgb * fragmentAlpha, color.a * fragmentAlpha);
            }
        );

    static const char* fragmentRectOpacityAndMask =
        STRINGIFY(
            precision mediump float;
            uniform sampler2DRect s_sampler;
            uniform sampler2DRect s_mask;
            uniform lowp float u_opacity;
            varying highp vec2 v_sourceTexCoord;
            varying highp vec2 v_maskTexCoord;
            void main(void)
            {
                lowp vec4 color = texture2DRect(s_sampler, v_sourceTexCoord);
                lowp vec4 maskColor = texture2DRect(s_mask, v_maskTexCoord);
                lowp float fragmentAlpha = u_opacity * maskColor.a;
                gl_FragColor = vec4(color.rgb * fragmentAlpha, color.a * fragmentAlpha);
            }
        );

    static const char* vertexOpacityAndMask =
        STRINGIFY(
            uniform mat4 u_matrix;
            uniform lowp float u_flip;
            attribute vec4 a_vertex;
            varying highp vec2 v_sourceTexCoord;
            varying highp vec2 v_maskTexCoord;
            void main(void)
            {
                v_sourceTexCoord = vec2(a_vertex.x, mix(a_vertex.y, 1. - a_vertex.y, u_flip));
                v_maskTexCoord = vec2(a_vertex);
                gl_Position = u_matrix * a_vertex;
            }
        );

    static const char* fragmentSimple =
        STRINGIFY(
            precision mediump float;
            uniform sampler2D s_sampler;
            uniform lowp float u_opacity;
            varying highp vec2 v_sourceTexCoord;
            void main(void)
            {
                lowp vec4 color = texture2D(s_sampler, v_sourceTexCoord);
                gl_FragColor = vec4(color.rgb * u_opacity, color.a * u_opacity);
            }
        );

    static const char* fragmentAntialiasingNoMask =
        STRINGIFY(
            precision mediump float;
            uniform sampler2D s_sampler;
            varying highp vec2 v_sourceTexCoord;
            uniform lowp float u_opacity;
            uniform vec3 u_expandedQuadEdgesInScreenSpace[8];
            void main()
            {
                vec4 sampledColor = texture2D(s_sampler, clamp(v_sourceTexCoord, 0.0, 1.0));
                vec3 pos = vec3(gl_FragCoord.xy, 1);

                // The data passed in u_expandedQuadEdgesInScreenSpace is merely the
                // pre-scaled coeffecients of the line equations describing the four edges
                // of the expanded quad in screen space and the rectangular bounding box
                // of the expanded quad.
                //
                // We are doing a simple distance calculation here according to the formula:
                // (A*p.x + B*p.y + C) / sqrt(A^2 + B^2) = distance from line to p
                // Note that A, B and C have already been scaled by 1 / sqrt(A^2 + B^2).
                float a0 = clamp(dot(u_expandedQuadEdgesInScreenSpace[0], pos), 0.0, 1.0);
                float a1 = clamp(dot(u_expandedQuadEdgesInScreenSpace[1], pos), 0.0, 1.0);
                float a2 = clamp(dot(u_expandedQuadEdgesInScreenSpace[2], pos), 0.0, 1.0);
                float a3 = clamp(dot(u_expandedQuadEdgesInScreenSpace[3], pos), 0.0, 1.0);
                float a4 = clamp(dot(u_expandedQuadEdgesInScreenSpace[4], pos), 0.0, 1.0);
                float a5 = clamp(dot(u_expandedQuadEdgesInScreenSpace[5], pos), 0.0, 1.0);
                float a6 = clamp(dot(u_expandedQuadEdgesInScreenSpace[6], pos), 0.0, 1.0);
                float a7 = clamp(dot(u_expandedQuadEdgesInScreenSpace[7], pos), 0.0, 1.0);

                // Now we want to reduce the alpha value of the fragment if it is close to the
                // edges of the expanded quad (or rectangular bounding box -- which seems to be
                // important for backfacing quads). Note that we are combining the contribution
                // from the (top || bottom) and (left || right) edge by simply multiplying. This follows
                // the approach described at: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter22.html,
                // in this case without using Gaussian weights.
                gl_FragColor = sampledColor * u_opacity * min(min(a0, a2) * min(a1, a3), min(a4, a6) * min(a5, a7));
            }
        );

    static const char* fragmentRectSimple =
        STRINGIFY(
            precision mediump float;
            uniform sampler2DRect s_sampler;
            uniform lowp vec2 s_samplerSize;
            uniform lowp float u_opacity;
            varying highp vec2 v_sourceTexCoord;
            void main(void)
            {
                lowp vec4 color = texture2DRect(s_sampler, s_samplerSize * v_sourceTexCoord);
                gl_FragColor = vec4(color.rgb * u_opacity, color.a * u_opacity);
            }
        );

    static const char* vertexSimple =
        STRINGIFY(
            uniform mat4 u_matrix;
            uniform lowp float u_flip;
            attribute vec4 a_vertex;
            varying highp vec2 v_sourceTexCoord;
            void main(void)
            {
                v_sourceTexCoord = vec2(a_vertex.x, mix(a_vertex.y, 1. - a_vertex.y, u_flip));
                gl_Position = u_matrix * a_vertex;
            }
        );

    static const char* vertexSolidColor =
        STRINGIFY(
            uniform mat4 u_matrix;
            attribute vec4 a_vertex;
            void main(void)
            {
                gl_Position = u_matrix * a_vertex;
            }
        );


    static const char* fragmentSolidColor =
        STRINGIFY(
            precision mediump float;
            uniform vec4 u_color;
            void main(void)
            {
                gl_FragColor = u_color;
            }
        );

    static const char* vertexFilter =
        STRINGIFY(
            attribute vec4 a_vertex;
            attribute vec4 a_texCoord;
            varying highp vec2 v_texCoord;
            void main(void)
            {
                v_texCoord = vec2(a_texCoord);
                gl_Position = a_vertex;
            }
        );

#define STANDARD_FILTER(...) \
        "precision mediump float;\n"\
        "varying highp vec2 v_texCoord;\n"\
        "uniform highp float u_amount;\n"\
        "uniform sampler2D s_sampler;\n"#__VA_ARGS__ \
        "void main(void)\n { gl_FragColor = shade(texture2D(s_sampler, v_texCoord)); }"

    static const char* fragmentGrayscaleFilter =
        STANDARD_FILTER(
            lowp vec4 shade(lowp vec4 color)
            {
                lowp float amount = 1.0 - u_amount;
                return vec4((0.2126 + 0.7874 * amount) * color.r + (0.7152 - 0.7152 * amount) * color.g + (0.0722 - 0.0722 * amount) * color.b,
                            (0.2126 - 0.2126 * amount) * color.r + (0.7152 + 0.2848 * amount) * color.g + (0.0722 - 0.0722 * amount) * color.b,
                            (0.2126 - 0.2126 * amount) * color.r + (0.7152 - 0.7152 * amount) * color.g + (0.0722 + 0.9278 * amount) * color.b,
                            color.a);
            }
        );

    static const char* fragmentSepiaFilter =
        STANDARD_FILTER(
            lowp vec4 shade(lowp vec4 color)
            {
                lowp float amount = 1.0 - u_amount;
                return vec4((0.393 + 0.607 * amount) * color.r + (0.769 - 0.769 * amount) * color.g + (0.189 - 0.189 * amount) * color.b,
                            (0.349 - 0.349 * amount) * color.r + (0.686 + 0.314 * amount) * color.g + (0.168 - 0.168 * amount) * color.b,
                            (0.272 - 0.272 * amount) * color.r + (0.534 - 0.534 * amount) * color.g + (0.131 + 0.869 * amount) * color.b,
                            color.a);
            }
        );

    static const char* fragmentSaturateFilter =
        STANDARD_FILTER(
            lowp vec4 shade(lowp vec4 color)
            {
                return vec4((0.213 + 0.787 * u_amount) * color.r + (0.715 - 0.715 * u_amount) * color.g + (0.072 - 0.072 * u_amount) * color.b,
                            (0.213 - 0.213 * u_amount) * color.r + (0.715 + 0.285 * u_amount) * color.g + (0.072 - 0.072 * u_amount) * color.b,
                            (0.213 - 0.213 * u_amount) * color.r + (0.715 - 0.715 * u_amount) * color.g + (0.072 + 0.928 * u_amount) * color.b,
                            color.a);
            }
        );

    static const char* fragmentHueRotateFilter =
        STANDARD_FILTER(
            lowp vec4 shade(lowp vec4 color)
            {
                highp float pi = 3.14159265358979323846;
                highp float c = cos(u_amount * pi / 180.0);
                highp float s = sin(u_amount * pi / 180.0);
                return vec4(color.r * (0.213 + c * 0.787 - s * 0.213) + color.g * (0.715 - c * 0.715 - s * 0.715) + color.b * (0.072 - c * 0.072 + s * 0.928),
                            color.r * (0.213 - c * 0.213 + s * 0.143) + color.g * (0.715 + c * 0.285 + s * 0.140) + color.b * (0.072 - c * 0.072 - s * 0.283),
                            color.r * (0.213 - c * 0.213 - s * 0.787) +  color.g * (0.715 - c * 0.715 + s * 0.715) + color.b * (0.072 + c * 0.928 + s * 0.072),
                            color.a);
            }
        );

    static const char* fragmentInvertFilter =
        STANDARD_FILTER(
            lowp float invert(lowp float n) { return (1.0 - n) * u_amount + n * (1.0 - u_amount); }
            lowp vec4 shade(lowp vec4 color)
            {
                return vec4(invert(color.r), invert(color.g), invert(color.b), color.a);
            }
        );

    static const char* fragmentBrightnessFilter =
        STANDARD_FILTER(
            lowp vec4 shade(lowp vec4 color)
            {
                return vec4(color.rgb * (1.0 + u_amount), color.a);
            }
        );

    static const char* fragmentContrastFilter =
        STANDARD_FILTER(
            lowp float contrast(lowp float n) { return (n - 0.5) * u_amount + 0.5; }
            lowp vec4 shade(lowp vec4 color)
            {
                return vec4(contrast(color.r), contrast(color.g), contrast(color.b), color.a);
            }
        );

    static const char* fragmentOpacityFilter =
        STANDARD_FILTER(
            lowp vec4 shade(lowp vec4 color)
            {
                return vec4(color.r, color.g, color.b, color.a * u_amount);
            }
        );

#define BLUR_CONSTANTS "#define GAUSSIAN_KERNEL_HALF_WIDTH 11\n#define GAUSSIAN_KERNEL_STEP 0.2\n"

    static const char* fragmentBlurFilter =
        BLUR_CONSTANTS
        STRINGIFY(
            // Create a normal distribution of 21 values between -2 and 2.
            precision mediump float;
            varying highp vec2 v_texCoord;
            uniform lowp vec2 u_blurRadius;
            uniform sampler2D s_sampler;
            uniform float u_gaussianKernel[GAUSSIAN_KERNEL_HALF_WIDTH];

            lowp vec4 sampleColor(float radius)
            {
                vec2 coord = v_texCoord + radius * u_blurRadius;
                return texture2D(s_sampler, coord) * float(coord.x > 0. && coord.y > 0. && coord.x < 1. && coord.y < 1.);
            }

            vec4 blur()
            {
                vec4 total = sampleColor(0.) * u_gaussianKernel[0];
                for (int i = 1; i < GAUSSIAN_KERNEL_HALF_WIDTH; i++) {
                    total += sampleColor(float(i) * GAUSSIAN_KERNEL_STEP) * u_gaussianKernel[i];
                    total += sampleColor(float(-1 * i) * GAUSSIAN_KERNEL_STEP) * u_gaussianKernel[i];
                }

                return total;
            }

            void main(void)
            {
                gl_FragColor = blur();
            }
        );

    static const char* fragmentShadowFilter1 =
        BLUR_CONSTANTS
        STRINGIFY(
            precision mediump float;
            varying highp vec2 v_texCoord;
            uniform lowp float u_blurRadius;
            uniform lowp vec2 u_shadowOffset;
            uniform sampler2D s_sampler;
            uniform float u_gaussianKernel[GAUSSIAN_KERNEL_HALF_WIDTH];

            lowp float sampleAlpha(float radius)
            {
                vec2 coord = v_texCoord - u_shadowOffset + vec2(radius * u_blurRadius, 0.);
                return texture2D(s_sampler, coord).a * float(coord.x > 0. && coord.y > 0. && coord.x < 1. && coord.y < 1.);
            }

            lowp float shadowBlurHorizontal()
            {
                float total = sampleAlpha(0.) * u_gaussianKernel[0];
                for (int i = 1; i < GAUSSIAN_KERNEL_HALF_WIDTH; i++) {
                    total += sampleAlpha(float(i) * GAUSSIAN_KERNEL_STEP) * u_gaussianKernel[i];
                    total += sampleAlpha(float(-1 * i) * GAUSSIAN_KERNEL_STEP) * u_gaussianKernel[i];
                }

                return total;
            }

            void main(void)
            {
                gl_FragColor = vec4(1., 1., 1., 1.) * shadowBlurHorizontal();
            }
        );

    // Second pass: vertical alpha blur and composite with origin.
    static const char* fragmentShadowFilter2 =
        BLUR_CONSTANTS
        STRINGIFY(
            precision mediump float;
            varying highp vec2 v_texCoord;
            uniform lowp float u_blurRadius;
            uniform lowp vec4 u_shadowColor;
            uniform sampler2D s_sampler;
            uniform sampler2D s_contentTexture;
            uniform float u_gaussianKernel[GAUSSIAN_KERNEL_HALF_WIDTH];

            lowp float sampleAlpha(float r)
            {
                vec2 coord = v_texCoord + vec2(0., r * u_blurRadius);
                return texture2D(s_sampler, coord).a * float(coord.x > 0. && coord.y > 0. && coord.x < 1. && coord.y < 1.);
            }

            lowp float shadowBlurVertical()
            {
                float total = sampleAlpha(0.) * u_gaussianKernel[0];
                for (int i = 1; i < GAUSSIAN_KERNEL_HALF_WIDTH; i++) {
                    total += sampleAlpha(float(i) * GAUSSIAN_KERNEL_STEP) * u_gaussianKernel[i];
                    total += sampleAlpha(float(-1 * i) * GAUSSIAN_KERNEL_STEP) * u_gaussianKernel[i];
                }

                return total;
            }

            lowp vec4 sourceOver(lowp vec4 source, lowp vec4 destination)
            {
                // Composite the shadow with the original texture.
                return source + destination * (1. - source.a);
            }

            void main(void)
            {
                gl_FragColor = sourceOver(texture2D(s_contentTexture, v_texCoord), shadowBlurVertical() * u_shadowColor);
            }
        );

    if (specs.isEmpty()) {
        specs.resize(TextureMapperShaderManager::LastFilter);
        specs[TextureMapperShaderManager::Default] = ShaderSpec(vertexSimple, fragmentSimple);
        specs[TextureMapperShaderManager::SolidColor] = ShaderSpec(vertexSolidColor, fragmentSolidColor);
        specs[TextureMapperShaderManager::Rect] = ShaderSpec(vertexSimple, fragmentRectSimple);
        specs[TextureMapperShaderManager::Masked] = ShaderSpec(vertexOpacityAndMask, fragmentOpacityAndMask);
        specs[TextureMapperShaderManager::MaskedRect] = ShaderSpec(vertexOpacityAndMask, fragmentRectOpacityAndMask);
        specs[TextureMapperShaderManager::Antialiased] = ShaderSpec(vertexSimple, fragmentAntialiasingNoMask);
        specs[TextureMapperShaderManager::GrayscaleFilter] = ShaderSpec(vertexFilter, fragmentGrayscaleFilter);
        specs[TextureMapperShaderManager::SepiaFilter] = ShaderSpec(vertexFilter, fragmentSepiaFilter);
        specs[TextureMapperShaderManager::SaturateFilter] = ShaderSpec(vertexFilter, fragmentSaturateFilter);
        specs[TextureMapperShaderManager::HueRotateFilter] = ShaderSpec(vertexFilter, fragmentHueRotateFilter);
        specs[TextureMapperShaderManager::BrightnessFilter] = ShaderSpec(vertexFilter, fragmentBrightnessFilter);
        specs[TextureMapperShaderManager::ContrastFilter] = ShaderSpec(vertexFilter, fragmentContrastFilter);
        specs[TextureMapperShaderManager::InvertFilter] = ShaderSpec(vertexFilter, fragmentInvertFilter);
        specs[TextureMapperShaderManager::OpacityFilter] = ShaderSpec(vertexFilter, fragmentOpacityFilter);
        specs[TextureMapperShaderManager::BlurFilter] = ShaderSpec(vertexFilter, fragmentBlurFilter);
        specs[TextureMapperShaderManager::ShadowFilterPass1] = ShaderSpec(vertexFilter, fragmentShadowFilter1);
        specs[TextureMapperShaderManager::ShadowFilterPass2] = ShaderSpec(vertexFilter, fragmentShadowFilter2);
    }

    ASSERT(specs.size() > key);
    ShaderSpec& spec = specs[key];
    vertexSource = spec.vertexShader;
    fragmentSource = spec.fragmentShader;
}

TextureMapperShaderManager::TextureMapperShaderManager(GraphicsContext3D* context)
    : m_context(context)
{
}

TextureMapperShaderManager::~TextureMapperShaderManager()
{
}

PassRefPtr<TextureMapperShaderProgram> TextureMapperShaderManager::getShaderProgram(ShaderKey key)
{
    TextureMapperShaderProgramMap::iterator it = m_programs.find(key);
    if (it != m_programs.end())
        return it->value;

    String vertexShader;
    String fragmentShader;
    getShaderSpec(key, vertexShader, fragmentShader);
    RefPtr<TextureMapperShaderProgram> program = TextureMapperShaderProgram::create(m_context, vertexShader, fragmentShader);
    m_programs.add(key, program);
    return program;
}
};

#endif