summaryrefslogtreecommitdiffstats
path: root/bolt/lib/Rewrite/LinuxKernelRewriter.cpp
blob: 331a61e7c3c2cdc0f344adc12f10be5fed6cea29 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
//===- bolt/Rewrite/LinuxKernelRewriter.cpp -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Support for updating Linux Kernel metadata.
//
//===----------------------------------------------------------------------===//

#include "bolt/Core/BinaryFunction.h"
#include "bolt/Rewrite/MetadataRewriter.h"
#include "bolt/Rewrite/MetadataRewriters.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"

#define DEBUG_TYPE "bolt-linux"

using namespace llvm;
using namespace bolt;

namespace opts {

static cl::opt<bool>
    AltInstHasPadLen("alt-inst-has-padlen",
                     cl::desc("specify that .altinstructions has padlen field"),
                     cl::init(false), cl::Hidden, cl::cat(BoltCategory));

static cl::opt<uint32_t>
    AltInstFeatureSize("alt-inst-feature-size",
                       cl::desc("size of feature field in .altinstructions"),
                       cl::init(2), cl::Hidden, cl::cat(BoltCategory));

static cl::opt<bool>
    DumpAltInstructions("dump-alt-instructions",
                        cl::desc("dump Linux alternative instructions info"),
                        cl::init(false), cl::Hidden, cl::cat(BoltCategory));

static cl::opt<bool>
    DumpExceptions("dump-linux-exceptions",
                   cl::desc("dump Linux kernel exception table"),
                   cl::init(false), cl::Hidden, cl::cat(BoltCategory));

static cl::opt<bool>
    DumpORC("dump-orc", cl::desc("dump raw ORC unwind information (sorted)"),
            cl::init(false), cl::Hidden, cl::cat(BoltCategory));

static cl::opt<bool> DumpParavirtualPatchSites(
    "dump-para-sites", cl::desc("dump Linux kernel paravitual patch sites"),
    cl::init(false), cl::Hidden, cl::cat(BoltCategory));

static cl::opt<bool> DumpStaticCalls("dump-static-calls",
                                     cl::desc("dump Linux kernel static calls"),
                                     cl::init(false), cl::Hidden,
                                     cl::cat(BoltCategory));

static cl::opt<bool>
    PrintORC("print-orc",
             cl::desc("print ORC unwind information for instructions"),
             cl::init(true), cl::Hidden, cl::cat(BoltCategory));

} // namespace opts

/// Linux Kernel supports stack unwinding using ORC (oops rewind capability).
/// ORC state at every IP can be described by the following data structure.
struct ORCState {
  int16_t SPOffset;
  int16_t BPOffset;
  int16_t Info;

  bool operator==(const ORCState &Other) const {
    return SPOffset == Other.SPOffset && BPOffset == Other.BPOffset &&
           Info == Other.Info;
  }

  bool operator!=(const ORCState &Other) const { return !(*this == Other); }
};

/// Section terminator ORC entry.
static ORCState NullORC = {0, 0, 0};

/// Basic printer for ORC entry. It does not provide the same level of
/// information as objtool (for now).
inline raw_ostream &operator<<(raw_ostream &OS, const ORCState &E) {
  if (!opts::PrintORC)
    return OS;
  if (E != NullORC)
    OS << format("{sp: %d, bp: %d, info: 0x%x}", E.SPOffset, E.BPOffset,
                 E.Info);
  else
    OS << "{terminator}";

  return OS;
}

namespace {

class LinuxKernelRewriter final : public MetadataRewriter {
  /// Linux Kernel special sections point to a specific instruction in many
  /// cases. Unlike SDTMarkerInfo, these markers can come from different
  /// sections.
  struct LKInstructionMarkerInfo {
    uint64_t SectionOffset;
    int32_t PCRelativeOffset;
    bool IsPCRelative;
    StringRef SectionName;
  };

  /// Map linux kernel program locations/instructions to their pointers in
  /// special linux kernel sections
  std::unordered_map<uint64_t, std::vector<LKInstructionMarkerInfo>> LKMarkers;

  /// Linux ORC sections.
  ErrorOr<BinarySection &> ORCUnwindSection = std::errc::bad_address;
  ErrorOr<BinarySection &> ORCUnwindIPSection = std::errc::bad_address;

  /// Size of entries in ORC sections.
  static constexpr size_t ORC_UNWIND_ENTRY_SIZE = 6;
  static constexpr size_t ORC_UNWIND_IP_ENTRY_SIZE = 4;

  struct ORCListEntry {
    uint64_t IP;        /// Instruction address.
    BinaryFunction *BF; /// Binary function corresponding to the entry.
    ORCState ORC;       /// Stack unwind info in ORC format.

    /// ORC entries are sorted by their IPs. Terminator entries (NullORC)
    /// should precede other entries with the same address.
    bool operator<(const ORCListEntry &Other) const {
      if (IP < Other.IP)
        return 1;
      if (IP > Other.IP)
        return 0;
      return ORC == NullORC && Other.ORC != NullORC;
    }
  };

  using ORCListType = std::vector<ORCListEntry>;
  ORCListType ORCEntries;

  /// Number of entries in the input file ORC sections.
  uint64_t NumORCEntries = 0;

  /// Section containing static call table.
  ErrorOr<BinarySection &> StaticCallSection = std::errc::bad_address;
  uint64_t StaticCallTableAddress = 0;
  static constexpr size_t STATIC_CALL_ENTRY_SIZE = 8;

  struct StaticCallInfo {
    uint32_t ID;              /// Identifier of the entry in the table.
    BinaryFunction *Function; /// Function containing associated call.
    MCSymbol *Label;          /// Label attached to the call.
  };
  using StaticCallListType = std::vector<StaticCallInfo>;
  StaticCallListType StaticCallEntries;

  /// Section containing the Linux exception table.
  ErrorOr<BinarySection &> ExceptionsSection = std::errc::bad_address;
  static constexpr size_t EXCEPTION_TABLE_ENTRY_SIZE = 12;

  /// Functions with exception handling code.
  DenseSet<BinaryFunction *> FunctionsWithExceptions;

  /// Section with paravirtual patch sites.
  ErrorOr<BinarySection &> ParavirtualPatchSection = std::errc::bad_address;

  /// Alignment of paravirtual patch structures.
  static constexpr size_t PARA_PATCH_ALIGN = 8;

  /// .altinstructions section.
  ErrorOr<BinarySection &> AltInstrSection = std::errc::bad_address;

  /// Section containing Linux bug table.
  ErrorOr<BinarySection &> BugTableSection = std::errc::bad_address;

  /// Size of bug_entry struct.
  static constexpr size_t BUG_TABLE_ENTRY_SIZE = 12;

  /// Insert an LKMarker for a given code pointer \p PC from a non-code section
  /// \p SectionName.
  void insertLKMarker(uint64_t PC, uint64_t SectionOffset,
                      int32_t PCRelativeOffset, bool IsPCRelative,
                      StringRef SectionName);

  /// Process linux kernel special sections and their relocations.
  void processLKSections();

  /// Process special linux kernel section, .pci_fixup.
  void processLKPCIFixup();

  /// Process __ksymtab and __ksymtab_gpl.
  void processLKKSymtab(bool IsGPL = false);

  /// Process special linux kernel section, .smp_locks.
  void processLKSMPLocks();

  /// Update LKMarkers' locations for the output binary.
  void updateLKMarkers();

  /// Read ORC unwind information and annotate instructions.
  Error readORCTables();

  /// Update ORC for functions once CFG is constructed.
  Error processORCPostCFG();

  /// Update ORC data in the binary.
  Error rewriteORCTables();

  /// Static call table handling.
  Error readStaticCalls();
  Error rewriteStaticCalls();

  Error readExceptionTable();
  Error rewriteExceptionTable();

  /// Paravirtual instruction patch sites.
  Error readParaInstructions();

  Error readBugTable();

  /// Read alternative instruction info from .altinstructions.
  Error readAltInstructions();

  /// Mark instructions referenced by kernel metadata.
  Error markInstructions();

public:
  LinuxKernelRewriter(BinaryContext &BC)
      : MetadataRewriter("linux-kernel-rewriter", BC) {}

  Error preCFGInitializer() override {
    processLKSections();
    if (Error E = markInstructions())
      return E;

    if (Error E = readORCTables())
      return E;

    if (Error E = readStaticCalls())
      return E;

    if (Error E = readExceptionTable())
      return E;

    if (Error E = readParaInstructions())
      return E;

    if (Error E = readBugTable())
      return E;

    if (Error E = readAltInstructions())
      return E;

    return Error::success();
  }

  Error postCFGInitializer() override {
    if (Error E = processORCPostCFG())
      return E;

    return Error::success();
  }

  Error preEmitFinalizer() override {
    // Since rewriteExceptionTable() can mark functions as non-simple, run it
    // before other rewriters that depend on simple/emit status.
    if (Error E = rewriteExceptionTable())
      return E;

    if (Error E = rewriteORCTables())
      return E;

    if (Error E = rewriteStaticCalls())
      return E;

    return Error::success();
  }

  Error postEmitFinalizer() override {
    updateLKMarkers();

    return Error::success();
  }
};

Error LinuxKernelRewriter::markInstructions() {
  for (const uint64_t PC : llvm::make_first_range(LKMarkers)) {
    BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(PC);

    if (!BF || !BC.shouldEmit(*BF))
      continue;

    const uint64_t Offset = PC - BF->getAddress();
    MCInst *Inst = BF->getInstructionAtOffset(Offset);
    if (!Inst)
      return createStringError(errc::executable_format_error,
                               "no instruction matches kernel marker offset");

    BC.MIB->setOffset(*Inst, static_cast<uint32_t>(Offset));

    BF->setHasSDTMarker(true);
  }

  return Error::success();
}

void LinuxKernelRewriter::insertLKMarker(uint64_t PC, uint64_t SectionOffset,
                                         int32_t PCRelativeOffset,
                                         bool IsPCRelative,
                                         StringRef SectionName) {
  LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{
      SectionOffset, PCRelativeOffset, IsPCRelative, SectionName});
}

void LinuxKernelRewriter::processLKSections() {
  processLKPCIFixup();
  processLKKSymtab();
  processLKKSymtab(true);
  processLKSMPLocks();
}

/// Process .pci_fixup section of Linux Kernel.
/// This section contains a list of entries for different PCI devices and their
/// corresponding hook handler (code pointer where the fixup
/// code resides, usually on x86_64 it is an entry PC relative 32 bit offset).
/// Documentation is in include/linux/pci.h.
void LinuxKernelRewriter::processLKPCIFixup() {
  ErrorOr<BinarySection &> SectionOrError =
      BC.getUniqueSectionByName(".pci_fixup");
  if (!SectionOrError)
    return;

  const uint64_t SectionSize = SectionOrError->getSize();
  const uint64_t SectionAddress = SectionOrError->getAddress();
  assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16");

  for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) {
    const uint64_t PC = SectionAddress + I;
    ErrorOr<uint64_t> Offset = BC.getSignedValueAtAddress(PC, 4);
    assert(Offset && "cannot read value from .pci_fixup");
    const int32_t SignedOffset = *Offset;
    const uint64_t HookupAddress = PC + SignedOffset;
    BinaryFunction *HookupFunction =
        BC.getBinaryFunctionAtAddress(HookupAddress);
    assert(HookupFunction && "expected function for entry in .pci_fixup");
    BC.addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0,
                     *Offset);
  }
}

/// Process __ksymtab[_gpl] sections of Linux Kernel.
/// This section lists all the vmlinux symbols that kernel modules can access.
///
/// All the entries are 4 bytes each and hence we can read them by one by one
/// and ignore the ones that are not pointing to the .text section. All pointers
/// are PC relative offsets. Always, points to the beginning of the function.
void LinuxKernelRewriter::processLKKSymtab(bool IsGPL) {
  StringRef SectionName = "__ksymtab";
  if (IsGPL)
    SectionName = "__ksymtab_gpl";
  ErrorOr<BinarySection &> SectionOrError =
      BC.getUniqueSectionByName(SectionName);
  assert(SectionOrError &&
         "__ksymtab[_gpl] section not found in Linux Kernel binary");
  const uint64_t SectionSize = SectionOrError->getSize();
  const uint64_t SectionAddress = SectionOrError->getAddress();
  assert((SectionSize % 4) == 0 &&
         "The size of the __ksymtab[_gpl] section should be a multiple of 4");

  for (uint64_t I = 0; I < SectionSize; I += 4) {
    const uint64_t EntryAddress = SectionAddress + I;
    ErrorOr<uint64_t> Offset = BC.getSignedValueAtAddress(EntryAddress, 4);
    assert(Offset && "Reading valid PC-relative offset for a ksymtab entry");
    const int32_t SignedOffset = *Offset;
    const uint64_t RefAddress = EntryAddress + SignedOffset;
    BinaryFunction *BF = BC.getBinaryFunctionAtAddress(RefAddress);
    if (!BF)
      continue;

    BC.addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0,
                     *Offset);
  }
}

/// .smp_locks section contains PC-relative references to instructions with LOCK
/// prefix. The prefix can be converted to NOP at boot time on non-SMP systems.
void LinuxKernelRewriter::processLKSMPLocks() {
  ErrorOr<BinarySection &> SectionOrError =
      BC.getUniqueSectionByName(".smp_locks");
  if (!SectionOrError)
    return;

  uint64_t SectionSize = SectionOrError->getSize();
  const uint64_t SectionAddress = SectionOrError->getAddress();
  assert((SectionSize % 4) == 0 &&
         "The size of the .smp_locks section should be a multiple of 4");

  for (uint64_t I = 0; I < SectionSize; I += 4) {
    const uint64_t EntryAddress = SectionAddress + I;
    ErrorOr<uint64_t> Offset = BC.getSignedValueAtAddress(EntryAddress, 4);
    assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry");
    int32_t SignedOffset = *Offset;
    uint64_t RefAddress = EntryAddress + SignedOffset;

    BinaryFunction *ContainingBF =
        BC.getBinaryFunctionContainingAddress(RefAddress);
    if (!ContainingBF)
      continue;

    insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks");
  }
}

void LinuxKernelRewriter::updateLKMarkers() {
  if (LKMarkers.size() == 0)
    return;

  std::unordered_map<std::string, uint64_t> PatchCounts;
  for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>>
           &LKMarkerInfoKV : LKMarkers) {
    const uint64_t OriginalAddress = LKMarkerInfoKV.first;
    const BinaryFunction *BF =
        BC.getBinaryFunctionContainingAddress(OriginalAddress, false, true);
    if (!BF)
      continue;

    uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress);
    if (NewAddress == 0)
      continue;

    // Apply base address.
    if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff)
      NewAddress = NewAddress + 0xffffffff00000000;

    if (OriginalAddress == NewAddress)
      continue;

    for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) {
      StringRef SectionName = LKMarkerInfo.SectionName;
      SimpleBinaryPatcher *LKPatcher;
      ErrorOr<BinarySection &> BSec = BC.getUniqueSectionByName(SectionName);
      assert(BSec && "missing section info for kernel section");
      if (!BSec->getPatcher())
        BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>());
      LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher());
      PatchCounts[std::string(SectionName)]++;
      if (LKMarkerInfo.IsPCRelative)
        LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset,
                                NewAddress - OriginalAddress +
                                    LKMarkerInfo.PCRelativeOffset);
      else
        LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress);
    }
  }
  BC.outs() << "BOLT-INFO: patching linux kernel sections. Total patches per "
               "section are as follows:\n";
  for (const std::pair<const std::string, uint64_t> &KV : PatchCounts)
    BC.outs() << "  Section: " << KV.first << ", patch-counts: " << KV.second
              << '\n';
}

Error LinuxKernelRewriter::readORCTables() {
  // NOTE: we should ignore relocations for orc tables as the tables are sorted
  // post-link time and relocations are not updated.
  ORCUnwindSection = BC.getUniqueSectionByName(".orc_unwind");
  ORCUnwindIPSection = BC.getUniqueSectionByName(".orc_unwind_ip");

  if (!ORCUnwindSection && !ORCUnwindIPSection)
    return Error::success();

  if (!ORCUnwindSection || !ORCUnwindIPSection)
    return createStringError(errc::executable_format_error,
                             "missing ORC section");

  NumORCEntries = ORCUnwindIPSection->getSize() / ORC_UNWIND_IP_ENTRY_SIZE;
  if (ORCUnwindSection->getSize() != NumORCEntries * ORC_UNWIND_ENTRY_SIZE ||
      ORCUnwindIPSection->getSize() != NumORCEntries * ORC_UNWIND_IP_ENTRY_SIZE)
    return createStringError(errc::executable_format_error,
                             "ORC entries number mismatch detected");

  const uint64_t IPSectionAddress = ORCUnwindIPSection->getAddress();
  DataExtractor OrcDE = DataExtractor(ORCUnwindSection->getContents(),
                                      BC.AsmInfo->isLittleEndian(),
                                      BC.AsmInfo->getCodePointerSize());
  DataExtractor IPDE = DataExtractor(ORCUnwindIPSection->getContents(),
                                     BC.AsmInfo->isLittleEndian(),
                                     BC.AsmInfo->getCodePointerSize());
  DataExtractor::Cursor ORCCursor(0);
  DataExtractor::Cursor IPCursor(0);
  uint64_t PrevIP = 0;
  for (uint32_t Index = 0; Index < NumORCEntries; ++Index) {
    const uint64_t IP =
        IPSectionAddress + IPCursor.tell() + (int32_t)IPDE.getU32(IPCursor);

    // Consume the status of the cursor.
    if (!IPCursor)
      return createStringError(errc::executable_format_error,
                               "out of bounds while reading ORC IP table: %s",
                               toString(IPCursor.takeError()).c_str());

    if (IP < PrevIP && opts::Verbosity)
      BC.errs() << "BOLT-WARNING: out of order IP 0x" << Twine::utohexstr(IP)
                << " detected while reading ORC\n";

    PrevIP = IP;

    // Store all entries, includes those we are not going to update as the
    // tables need to be sorted globally before being written out.
    ORCEntries.push_back(ORCListEntry());
    ORCListEntry &Entry = ORCEntries.back();

    Entry.IP = IP;
    Entry.ORC.SPOffset = (int16_t)OrcDE.getU16(ORCCursor);
    Entry.ORC.BPOffset = (int16_t)OrcDE.getU16(ORCCursor);
    Entry.ORC.Info = (int16_t)OrcDE.getU16(ORCCursor);
    Entry.BF = nullptr;

    // Consume the status of the cursor.
    if (!ORCCursor)
      return createStringError(errc::executable_format_error,
                               "out of bounds while reading ORC: %s",
                               toString(ORCCursor.takeError()).c_str());

    if (Entry.ORC == NullORC)
      continue;

    BinaryFunction *&BF = Entry.BF;
    BF = BC.getBinaryFunctionContainingAddress(IP, /*CheckPastEnd*/ true);

    // If the entry immediately pointing past the end of the function is not
    // the terminator entry, then it does not belong to this function.
    if (BF && BF->getAddress() + BF->getSize() == IP)
      BF = 0;

    if (!BF) {
      if (opts::Verbosity)
        BC.errs() << "BOLT-WARNING: no binary function found matching ORC 0x"
                  << Twine::utohexstr(IP) << ": " << Entry.ORC << '\n';
      continue;
    }

    BF->setHasORC(true);

    if (!BF->hasInstructions())
      continue;

    MCInst *Inst = BF->getInstructionAtOffset(IP - BF->getAddress());
    if (!Inst)
      return createStringError(
          errc::executable_format_error,
          "no instruction at address 0x%" PRIx64 " in .orc_unwind_ip", IP);

    // Some addresses will have two entries associated with them. The first
    // one being a "weak" section terminator. Since we ignore the terminator,
    // we should only assign one entry per instruction.
    if (BC.MIB->hasAnnotation(*Inst, "ORC"))
      return createStringError(
          errc::executable_format_error,
          "duplicate non-terminal ORC IP 0x%" PRIx64 " in .orc_unwind_ip", IP);

    BC.MIB->addAnnotation(*Inst, "ORC", Entry.ORC);
  }

  BC.outs() << "BOLT-INFO: parsed " << NumORCEntries << " ORC entries\n";

  if (opts::DumpORC) {
    BC.outs() << "BOLT-INFO: ORC unwind information:\n";
    for (const ORCListEntry &E : ORCEntries) {
      BC.outs() << "0x" << Twine::utohexstr(E.IP) << ": " << E.ORC;
      if (E.BF)
        BC.outs() << ": " << *E.BF;
      BC.outs() << '\n';
    }
  }

  // Add entries for functions that don't have explicit ORC info at the start.
  // We'll have the correct info for them even if ORC for the preceding function
  // changes.
  ORCListType NewEntries;
  for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) {
    auto It = llvm::partition_point(ORCEntries, [&](const ORCListEntry &E) {
      return E.IP <= BF.getAddress();
    });
    if (It != ORCEntries.begin())
      --It;

    if (It->BF == &BF)
      continue;

    if (It->ORC == NullORC && It->IP == BF.getAddress()) {
      assert(!It->BF);
      It->BF = &BF;
      continue;
    }

    NewEntries.push_back({BF.getAddress(), &BF, It->ORC});
    if (It->ORC != NullORC)
      BF.setHasORC(true);
  }

  llvm::copy(NewEntries, std::back_inserter(ORCEntries));
  llvm::sort(ORCEntries);

  if (opts::DumpORC) {
    BC.outs() << "BOLT-INFO: amended ORC unwind information:\n";
    for (const ORCListEntry &E : ORCEntries) {
      BC.outs() << "0x" << Twine::utohexstr(E.IP) << ": " << E.ORC;
      if (E.BF)
        BC.outs() << ": " << *E.BF;
      BC.outs() << '\n';
    }
  }

  return Error::success();
}

Error LinuxKernelRewriter::processORCPostCFG() {
  if (!NumORCEntries)
    return Error::success();

  // Propagate ORC to the rest of the function. We can annotate every
  // instruction in every function, but to minimize the overhead, we annotate
  // the first instruction in every basic block to reflect the state at the
  // entry. This way, the ORC state can be calculated based on annotations
  // regardless of the basic block layout. Note that if we insert/delete
  // instructions, we must take care to attach ORC info to the new/deleted ones.
  for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) {

    std::optional<ORCState> CurrentState;
    for (BinaryBasicBlock &BB : BF) {
      for (MCInst &Inst : BB) {
        ErrorOr<ORCState> State =
            BC.MIB->tryGetAnnotationAs<ORCState>(Inst, "ORC");

        if (State) {
          CurrentState = *State;
          continue;
        }

        // Get state for the start of the function.
        if (!CurrentState) {
          // A terminator entry (NullORC) can match the function address. If
          // there's also a non-terminator entry, it will be placed after the
          // terminator. Hence, we are looking for the last ORC entry that
          // matches the address.
          auto It =
              llvm::partition_point(ORCEntries, [&](const ORCListEntry &E) {
                return E.IP <= BF.getAddress();
              });
          if (It != ORCEntries.begin())
            --It;

          assert(It->IP == BF.getAddress() && (!It->BF || It->BF == &BF) &&
                 "ORC info at function entry expected.");

          if (It->ORC == NullORC && BF.hasORC()) {
            BC.errs() << "BOLT-WARNING: ORC unwind info excludes prologue for "
                      << BF << '\n';
          }

          It->BF = &BF;

          CurrentState = It->ORC;
          if (It->ORC != NullORC)
            BF.setHasORC(true);
        }

        // While printing ORC, attach info to every instruction for convenience.
        if (opts::PrintORC || &Inst == &BB.front())
          BC.MIB->addAnnotation(Inst, "ORC", *CurrentState);
      }
    }
  }

  return Error::success();
}

Error LinuxKernelRewriter::rewriteORCTables() {
  if (!NumORCEntries)
    return Error::success();

  // Update ORC sections in-place. As we change the code, the number of ORC
  // entries may increase for some functions. However, as we remove terminator
  // redundancy (see below), more space is freed up and we should always be able
  // to fit new ORC tables in the reserved space.
  auto createInPlaceWriter = [&](BinarySection &Section) -> BinaryStreamWriter {
    const size_t Size = Section.getSize();
    uint8_t *NewContents = new uint8_t[Size];
    Section.updateContents(NewContents, Size);
    Section.setOutputFileOffset(Section.getInputFileOffset());
    return BinaryStreamWriter({NewContents, Size}, BC.AsmInfo->isLittleEndian()
                                                       ? endianness::little
                                                       : endianness::big);
  };
  BinaryStreamWriter UnwindWriter = createInPlaceWriter(*ORCUnwindSection);
  BinaryStreamWriter UnwindIPWriter = createInPlaceWriter(*ORCUnwindIPSection);

  uint64_t NumEmitted = 0;
  std::optional<ORCState> LastEmittedORC;
  auto emitORCEntry = [&](const uint64_t IP, const ORCState &ORC,
                          MCSymbol *Label = 0, bool Force = false) -> Error {
    if (LastEmittedORC && ORC == *LastEmittedORC && !Force)
      return Error::success();

    LastEmittedORC = ORC;

    if (++NumEmitted > NumORCEntries)
      return createStringError(errc::executable_format_error,
                               "exceeded the number of allocated ORC entries");

    if (Label)
      ORCUnwindIPSection->addRelocation(UnwindIPWriter.getOffset(), Label,
                                        Relocation::getPC32(), /*Addend*/ 0);

    const int32_t IPValue =
        IP - ORCUnwindIPSection->getAddress() - UnwindIPWriter.getOffset();
    if (Error E = UnwindIPWriter.writeInteger(IPValue))
      return E;

    if (Error E = UnwindWriter.writeInteger(ORC.SPOffset))
      return E;
    if (Error E = UnwindWriter.writeInteger(ORC.BPOffset))
      return E;
    if (Error E = UnwindWriter.writeInteger(ORC.Info))
      return E;

    return Error::success();
  };

  // Emit new ORC entries for the emitted function.
  auto emitORC = [&](const BinaryFunction &BF) -> Error {
    assert(!BF.isSplit() && "Split functions not supported by ORC writer yet.");

    ORCState CurrentState = NullORC;
    for (BinaryBasicBlock *BB : BF.getLayout().blocks()) {
      for (MCInst &Inst : *BB) {
        ErrorOr<ORCState> ErrorOrState =
            BC.MIB->tryGetAnnotationAs<ORCState>(Inst, "ORC");
        if (!ErrorOrState || *ErrorOrState == CurrentState)
          continue;

        // Issue label for the instruction.
        MCSymbol *Label =
            BC.MIB->getOrCreateInstLabel(Inst, "__ORC_", BC.Ctx.get());

        if (Error E = emitORCEntry(0, *ErrorOrState, Label))
          return E;

        CurrentState = *ErrorOrState;
      }
    }

    return Error::success();
  };

  for (ORCListEntry &Entry : ORCEntries) {
    // Emit original entries for functions that we haven't modified.
    if (!Entry.BF || !BC.shouldEmit(*Entry.BF)) {
      // Emit terminator only if it marks the start of a function.
      if (Entry.ORC == NullORC && !Entry.BF)
        continue;
      if (Error E = emitORCEntry(Entry.IP, Entry.ORC))
        return E;
      continue;
    }

    // Emit all ORC entries for a function referenced by an entry and skip over
    // the rest of entries for this function by resetting its ORC attribute.
    if (Entry.BF->hasORC()) {
      if (Error E = emitORC(*Entry.BF))
        return E;
      Entry.BF->setHasORC(false);
    }
  }

  LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted " << NumEmitted
                    << " ORC entries\n");

  // Replicate terminator entry at the end of sections to match the original
  // table sizes.
  const BinaryFunction &LastBF = BC.getBinaryFunctions().rbegin()->second;
  const uint64_t LastIP = LastBF.getAddress() + LastBF.getMaxSize();
  while (UnwindWriter.bytesRemaining()) {
    if (Error E = emitORCEntry(LastIP, NullORC, nullptr, /*Force*/ true))
      return E;
  }

  return Error::success();
}

/// The static call site table is created by objtool and contains entries in the
/// following format:
///
///    struct static_call_site {
///      s32 addr;
///      s32 key;
///    };
///
Error LinuxKernelRewriter::readStaticCalls() {
  const BinaryData *StaticCallTable =
      BC.getBinaryDataByName("__start_static_call_sites");
  if (!StaticCallTable)
    return Error::success();

  StaticCallTableAddress = StaticCallTable->getAddress();

  const BinaryData *Stop = BC.getBinaryDataByName("__stop_static_call_sites");
  if (!Stop)
    return createStringError(errc::executable_format_error,
                             "missing __stop_static_call_sites symbol");

  ErrorOr<BinarySection &> ErrorOrSection =
      BC.getSectionForAddress(StaticCallTableAddress);
  if (!ErrorOrSection)
    return createStringError(errc::executable_format_error,
                             "no section matching __start_static_call_sites");

  StaticCallSection = *ErrorOrSection;
  if (!StaticCallSection->containsAddress(Stop->getAddress() - 1))
    return createStringError(errc::executable_format_error,
                             "__stop_static_call_sites not in the same section "
                             "as __start_static_call_sites");

  if ((Stop->getAddress() - StaticCallTableAddress) % STATIC_CALL_ENTRY_SIZE)
    return createStringError(errc::executable_format_error,
                             "static call table size error");

  const uint64_t SectionAddress = StaticCallSection->getAddress();
  DataExtractor DE(StaticCallSection->getContents(),
                   BC.AsmInfo->isLittleEndian(),
                   BC.AsmInfo->getCodePointerSize());
  DataExtractor::Cursor Cursor(StaticCallTableAddress - SectionAddress);
  uint32_t EntryID = 0;
  while (Cursor && Cursor.tell() < Stop->getAddress() - SectionAddress) {
    const uint64_t CallAddress =
        SectionAddress + Cursor.tell() + (int32_t)DE.getU32(Cursor);
    const uint64_t KeyAddress =
        SectionAddress + Cursor.tell() + (int32_t)DE.getU32(Cursor);

    // Consume the status of the cursor.
    if (!Cursor)
      return createStringError(errc::executable_format_error,
                               "out of bounds while reading static calls: %s",
                               toString(Cursor.takeError()).c_str());

    ++EntryID;

    if (opts::DumpStaticCalls) {
      BC.outs() << "Static Call Site: " << EntryID << '\n';
      BC.outs() << "\tCallAddress:   0x" << Twine::utohexstr(CallAddress)
                << "\n\tKeyAddress:    0x" << Twine::utohexstr(KeyAddress)
                << '\n';
    }

    BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(CallAddress);
    if (!BF)
      continue;

    if (!BC.shouldEmit(*BF))
      continue;

    if (!BF->hasInstructions())
      continue;

    MCInst *Inst = BF->getInstructionAtOffset(CallAddress - BF->getAddress());
    if (!Inst)
      return createStringError(errc::executable_format_error,
                               "no instruction at call site address 0x%" PRIx64,
                               CallAddress);

    // Check for duplicate entries.
    if (BC.MIB->hasAnnotation(*Inst, "StaticCall"))
      return createStringError(errc::executable_format_error,
                               "duplicate static call site at 0x%" PRIx64,
                               CallAddress);

    BC.MIB->addAnnotation(*Inst, "StaticCall", EntryID);

    MCSymbol *Label =
        BC.MIB->getOrCreateInstLabel(*Inst, "__SC_", BC.Ctx.get());

    StaticCallEntries.push_back({EntryID, BF, Label});
  }

  BC.outs() << "BOLT-INFO: parsed " << StaticCallEntries.size()
            << " static call entries\n";

  return Error::success();
}

/// The static call table is sorted during boot time in
/// static_call_sort_entries(). This makes it possible to update existing
/// entries in-place ignoring their relative order.
Error LinuxKernelRewriter::rewriteStaticCalls() {
  if (!StaticCallTableAddress || !StaticCallSection)
    return Error::success();

  for (auto &Entry : StaticCallEntries) {
    if (!Entry.Function)
      continue;

    BinaryFunction &BF = *Entry.Function;
    if (!BC.shouldEmit(BF))
      continue;

    // Create a relocation against the label.
    const uint64_t EntryOffset = StaticCallTableAddress -
                                 StaticCallSection->getAddress() +
                                 (Entry.ID - 1) * STATIC_CALL_ENTRY_SIZE;
    StaticCallSection->addRelocation(EntryOffset, Entry.Label,
                                     ELF::R_X86_64_PC32, /*Addend*/ 0);
  }

  return Error::success();
}

/// Instructions that access user-space memory can cause page faults. These
/// faults will be handled by the kernel and execution will resume at the fixup
/// code location if the address was invalid. The kernel uses the exception
/// table to match the faulting instruction to its fixup. The table consists of
/// the following entries:
///
///   struct exception_table_entry {
///     int insn;
///     int fixup;
///     int data;
///   };
///
/// More info at:
/// https://www.kernel.org/doc/Documentation/x86/exception-tables.txt
Error LinuxKernelRewriter::readExceptionTable() {
  ExceptionsSection = BC.getUniqueSectionByName("__ex_table");
  if (!ExceptionsSection)
    return Error::success();

  if (ExceptionsSection->getSize() % EXCEPTION_TABLE_ENTRY_SIZE)
    return createStringError(errc::executable_format_error,
                             "exception table size error");

  const uint64_t SectionAddress = ExceptionsSection->getAddress();
  DataExtractor DE(ExceptionsSection->getContents(),
                   BC.AsmInfo->isLittleEndian(),
                   BC.AsmInfo->getCodePointerSize());
  DataExtractor::Cursor Cursor(0);
  uint32_t EntryID = 0;
  while (Cursor && Cursor.tell() < ExceptionsSection->getSize()) {
    const uint64_t InstAddress =
        SectionAddress + Cursor.tell() + (int32_t)DE.getU32(Cursor);
    const uint64_t FixupAddress =
        SectionAddress + Cursor.tell() + (int32_t)DE.getU32(Cursor);
    const uint64_t Data = DE.getU32(Cursor);

    // Consume the status of the cursor.
    if (!Cursor)
      return createStringError(
          errc::executable_format_error,
          "out of bounds while reading exception table: %s",
          toString(Cursor.takeError()).c_str());

    ++EntryID;

    if (opts::DumpExceptions) {
      BC.outs() << "Exception Entry: " << EntryID << '\n';
      BC.outs() << "\tInsn:  0x" << Twine::utohexstr(InstAddress) << '\n'
                << "\tFixup: 0x" << Twine::utohexstr(FixupAddress) << '\n'
                << "\tData:  0x" << Twine::utohexstr(Data) << '\n';
    }

    MCInst *Inst = nullptr;
    MCSymbol *FixupLabel = nullptr;

    BinaryFunction *InstBF = BC.getBinaryFunctionContainingAddress(InstAddress);
    if (InstBF && BC.shouldEmit(*InstBF)) {
      Inst = InstBF->getInstructionAtOffset(InstAddress - InstBF->getAddress());
      if (!Inst)
        return createStringError(errc::executable_format_error,
                                 "no instruction at address 0x%" PRIx64
                                 " in exception table",
                                 InstAddress);
      BC.MIB->addAnnotation(*Inst, "ExceptionEntry", EntryID);
      FunctionsWithExceptions.insert(InstBF);
    }

    if (!InstBF && opts::Verbosity) {
      BC.outs() << "BOLT-INFO: no function matches instruction at 0x"
                << Twine::utohexstr(InstAddress)
                << " referenced by Linux exception table\n";
    }

    BinaryFunction *FixupBF =
        BC.getBinaryFunctionContainingAddress(FixupAddress);
    if (FixupBF && BC.shouldEmit(*FixupBF)) {
      const uint64_t Offset = FixupAddress - FixupBF->getAddress();
      if (!FixupBF->getInstructionAtOffset(Offset))
        return createStringError(errc::executable_format_error,
                                 "no instruction at fixup address 0x%" PRIx64
                                 " in exception table",
                                 FixupAddress);
      FixupLabel = Offset ? FixupBF->addEntryPointAtOffset(Offset)
                          : FixupBF->getSymbol();
      if (Inst)
        BC.MIB->addAnnotation(*Inst, "Fixup", FixupLabel->getName());
      FunctionsWithExceptions.insert(FixupBF);
    }

    if (!FixupBF && opts::Verbosity) {
      BC.outs() << "BOLT-INFO: no function matches fixup code at 0x"
                << Twine::utohexstr(FixupAddress)
                << " referenced by Linux exception table\n";
    }
  }

  BC.outs() << "BOLT-INFO: parsed "
            << ExceptionsSection->getSize() / EXCEPTION_TABLE_ENTRY_SIZE
            << " exception table entries\n";

  return Error::success();
}

/// Depending on the value of CONFIG_BUILDTIME_TABLE_SORT, the kernel expects
/// the exception table to be sorted. Hence we have to sort it after code
/// reordering.
Error LinuxKernelRewriter::rewriteExceptionTable() {
  // Disable output of functions with exceptions before rewrite support is
  // added.
  for (BinaryFunction *BF : FunctionsWithExceptions)
    BF->setSimple(false);

  return Error::success();
}

/// .parainsrtuctions section contains information for patching parvirtual call
/// instructions during runtime. The entries in the section are in the form:
///
///    struct paravirt_patch_site {
///      u8 *instr;    /* original instructions */
///      u8 type;      /* type of this instruction */
///      u8 len;       /* length of original instruction */
///    };
///
/// Note that the structures are aligned at 8-byte boundary.
Error LinuxKernelRewriter::readParaInstructions() {
  ParavirtualPatchSection = BC.getUniqueSectionByName(".parainstructions");
  if (!ParavirtualPatchSection)
    return Error::success();

  DataExtractor DE = DataExtractor(ParavirtualPatchSection->getContents(),
                                   BC.AsmInfo->isLittleEndian(),
                                   BC.AsmInfo->getCodePointerSize());
  uint32_t EntryID = 0;
  DataExtractor::Cursor Cursor(0);
  while (Cursor && !DE.eof(Cursor)) {
    const uint64_t NextOffset = alignTo(Cursor.tell(), Align(PARA_PATCH_ALIGN));
    if (!DE.isValidOffset(NextOffset))
      break;

    Cursor.seek(NextOffset);

    const uint64_t InstrLocation = DE.getU64(Cursor);
    const uint8_t Type = DE.getU8(Cursor);
    const uint8_t Len = DE.getU8(Cursor);

    if (!Cursor)
      return createStringError(
          errc::executable_format_error,
          "out of bounds while reading .parainstructions: %s",
          toString(Cursor.takeError()).c_str());

    ++EntryID;

    if (opts::DumpParavirtualPatchSites) {
      BC.outs() << "Paravirtual patch site: " << EntryID << '\n';
      BC.outs() << "\tInstr: 0x" << Twine::utohexstr(InstrLocation)
                << "\n\tType:  0x" << Twine::utohexstr(Type) << "\n\tLen:   0x"
                << Twine::utohexstr(Len) << '\n';
    }

    BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(InstrLocation);
    if (!BF && opts::Verbosity) {
      BC.outs() << "BOLT-INFO: no function matches address 0x"
                << Twine::utohexstr(InstrLocation)
                << " referenced by paravirutal patch site\n";
    }

    if (BF && BC.shouldEmit(*BF)) {
      MCInst *Inst =
          BF->getInstructionAtOffset(InstrLocation - BF->getAddress());
      if (!Inst)
        return createStringError(errc::executable_format_error,
                                 "no instruction at address 0x%" PRIx64
                                 " in paravirtual call site %d",
                                 InstrLocation, EntryID);
      BC.MIB->addAnnotation(*Inst, "ParaSite", EntryID);
    }
  }

  BC.outs() << "BOLT-INFO: parsed " << EntryID << " paravirtual patch sites\n";

  return Error::success();
}

/// Process __bug_table section.
/// This section contains information useful for kernel debugging.
/// Each entry in the section is a struct bug_entry that contains a pointer to
/// the ud2 instruction corresponding to the bug, corresponding file name (both
/// pointers use PC relative offset addressing), line number, and flags.
/// The definition of the struct bug_entry can be found in
/// `include/asm-generic/bug.h`
///
/// NB: find_bug() uses linear search to match an address to an entry in the bug
///     table. Hence there is no need to sort entries when rewriting the table.
Error LinuxKernelRewriter::readBugTable() {
  BugTableSection = BC.getUniqueSectionByName("__bug_table");
  if (!BugTableSection)
    return Error::success();

  if (BugTableSection->getSize() % BUG_TABLE_ENTRY_SIZE)
    return createStringError(errc::executable_format_error,
                             "bug table size error");

  const uint64_t SectionAddress = BugTableSection->getAddress();
  DataExtractor DE(BugTableSection->getContents(), BC.AsmInfo->isLittleEndian(),
                   BC.AsmInfo->getCodePointerSize());
  DataExtractor::Cursor Cursor(0);
  uint32_t EntryID = 0;
  while (Cursor && Cursor.tell() < BugTableSection->getSize()) {
    const uint64_t Pos = Cursor.tell();
    const uint64_t InstAddress =
        SectionAddress + Pos + (int32_t)DE.getU32(Cursor);
    Cursor.seek(Pos + BUG_TABLE_ENTRY_SIZE);

    if (!Cursor)
      return createStringError(errc::executable_format_error,
                               "out of bounds while reading __bug_table: %s",
                               toString(Cursor.takeError()).c_str());

    ++EntryID;

    BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(InstAddress);
    if (!BF && opts::Verbosity) {
      BC.outs() << "BOLT-INFO: no function matches address 0x"
                << Twine::utohexstr(InstAddress)
                << " referenced by bug table\n";
    }

    if (BF && BC.shouldEmit(*BF)) {
      MCInst *Inst = BF->getInstructionAtOffset(InstAddress - BF->getAddress());
      if (!Inst)
        return createStringError(errc::executable_format_error,
                                 "no instruction at address 0x%" PRIx64
                                 " referenced by bug table entry %d",
                                 InstAddress, EntryID);
      BC.MIB->addAnnotation(*Inst, "BugEntry", EntryID);
    }
  }

  BC.outs() << "BOLT-INFO: parsed " << EntryID << " bug table entries\n";

  return Error::success();
}

/// The kernel can replace certain instruction sequences depending on hardware
/// it is running on and features specified during boot time. The information
/// about alternative instruction sequences is stored in .altinstructions
/// section. The format of entries in this section is defined in
/// arch/x86/include/asm/alternative.h:
///
///   struct alt_instr {
///     s32 instr_offset;
///     s32 repl_offset;
///     uXX feature;
///     u8  instrlen;
///     u8  replacementlen;
///	    u8  padlen;         // present in older kernels
///   } __packed;
///
/// Note the structures is packed.
Error LinuxKernelRewriter::readAltInstructions() {
  AltInstrSection = BC.getUniqueSectionByName(".altinstructions");
  if (!AltInstrSection)
    return Error::success();

  const uint64_t Address = AltInstrSection->getAddress();
  DataExtractor DE = DataExtractor(AltInstrSection->getContents(),
                                   BC.AsmInfo->isLittleEndian(),
                                   BC.AsmInfo->getCodePointerSize());
  uint64_t EntryID = 0;
  DataExtractor::Cursor Cursor(0);
  while (Cursor && !DE.eof(Cursor)) {
    const uint64_t OrgInstAddress =
        Address + Cursor.tell() + (int32_t)DE.getU32(Cursor);
    const uint64_t AltInstAddress =
        Address + Cursor.tell() + (int32_t)DE.getU32(Cursor);
    const uint64_t Feature = DE.getUnsigned(Cursor, opts::AltInstFeatureSize);
    const uint8_t OrgSize = DE.getU8(Cursor);
    const uint8_t AltSize = DE.getU8(Cursor);

    // Older kernels may have the padlen field.
    const uint8_t PadLen = opts::AltInstHasPadLen ? DE.getU8(Cursor) : 0;

    if (!Cursor)
      return createStringError(
          errc::executable_format_error,
          "out of bounds while reading .altinstructions: %s",
          toString(Cursor.takeError()).c_str());

    ++EntryID;

    if (opts::DumpAltInstructions) {
      BC.outs() << "Alternative instruction entry: " << EntryID
                << "\n\tOrg:     0x" << Twine::utohexstr(OrgInstAddress)
                << "\n\tAlt:     0x" << Twine::utohexstr(AltInstAddress)
                << "\n\tFeature: 0x" << Twine::utohexstr(Feature)
                << "\n\tOrgSize: " << (int)OrgSize
                << "\n\tAltSize: " << (int)AltSize << '\n';
      if (opts::AltInstHasPadLen)
        BC.outs() << "\tPadLen:  " << (int)PadLen << '\n';
    }

    if (AltSize > OrgSize)
      return createStringError(errc::executable_format_error,
                               "error reading .altinstructions");

    BinaryFunction *BF = BC.getBinaryFunctionContainingAddress(OrgInstAddress);
    if (!BF && opts::Verbosity) {
      BC.outs() << "BOLT-INFO: no function matches address 0x"
                << Twine::utohexstr(OrgInstAddress)
                << " of instruction from .altinstructions\n";
    }

    BinaryFunction *AltBF =
        BC.getBinaryFunctionContainingAddress(AltInstAddress);
    if (AltBF && BC.shouldEmit(*AltBF)) {
      BC.errs()
          << "BOLT-WARNING: alternative instruction sequence found in function "
          << *AltBF << '\n';
      AltBF->setIgnored();
    }

    if (!BF || !BC.shouldEmit(*BF))
      continue;

    if (OrgInstAddress + OrgSize > BF->getAddress() + BF->getSize())
      return createStringError(errc::executable_format_error,
                               "error reading .altinstructions");

    MCInst *Inst =
        BF->getInstructionAtOffset(OrgInstAddress - BF->getAddress());
    if (!Inst)
      return createStringError(errc::executable_format_error,
                               "no instruction at address 0x%" PRIx64
                               " referenced by .altinstructions entry %d",
                               OrgInstAddress, EntryID);

    // There could be more than one alternative instruction sequences for the
    // same original instruction. Annotate each alternative separately.
    std::string AnnotationName = "AltInst";
    unsigned N = 2;
    while (BC.MIB->hasAnnotation(*Inst, AnnotationName))
      AnnotationName = "AltInst" + std::to_string(N++);

    BC.MIB->addAnnotation(*Inst, AnnotationName, EntryID);

    // Annotate all instructions from the original sequence. Note that it's not
    // the most efficient way to look for instructions in the address range,
    // but since alternative instructions are uncommon, it will do for now.
    for (uint32_t Offset = 1; Offset < OrgSize; ++Offset) {
      Inst = BF->getInstructionAtOffset(OrgInstAddress + Offset -
                                        BF->getAddress());
      if (Inst)
        BC.MIB->addAnnotation(*Inst, AnnotationName, EntryID);
    }
  }

  BC.outs() << "BOLT-INFO: parsed " << EntryID
            << " alternative instruction entries\n";

  return Error::success();
}

} // namespace

std::unique_ptr<MetadataRewriter>
llvm::bolt::createLinuxKernelRewriter(BinaryContext &BC) {
  return std::make_unique<LinuxKernelRewriter>(BC);
}