summaryrefslogtreecommitdiffstats
path: root/clang/lib/Interpreter/Interpreter.cpp
blob: 7fa52f2f15fc4951da35e5700deb54ecc4e6b64d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
//===------ Interpreter.cpp - Incremental Compilation and Execution -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the component which performs incremental code
// compilation and execution.
//
//===----------------------------------------------------------------------===//

#include "DeviceOffload.h"
#include "IncrementalExecutor.h"
#include "IncrementalParser.h"
#include "InterpreterUtils.h"

#include "clang/AST/ASTContext.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/TypeVisitor.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/CodeGen/ObjectFilePCHContainerOperations.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/Tool.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Interpreter/Interpreter.h"
#include "clang/Interpreter/Value.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/Lookup.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Host.h"
using namespace clang;

// FIXME: Figure out how to unify with namespace init_convenience from
//        tools/clang-import-test/clang-import-test.cpp
namespace {
/// Retrieves the clang CC1 specific flags out of the compilation's jobs.
/// \returns NULL on error.
static llvm::Expected<const llvm::opt::ArgStringList *>
GetCC1Arguments(DiagnosticsEngine *Diagnostics,
                driver::Compilation *Compilation) {
  // We expect to get back exactly one Command job, if we didn't something
  // failed. Extract that job from the Compilation.
  const driver::JobList &Jobs = Compilation->getJobs();
  if (!Jobs.size() || !isa<driver::Command>(*Jobs.begin()))
    return llvm::createStringError(llvm::errc::not_supported,
                                   "Driver initialization failed. "
                                   "Unable to create a driver job");

  // The one job we find should be to invoke clang again.
  const driver::Command *Cmd = cast<driver::Command>(&(*Jobs.begin()));
  if (llvm::StringRef(Cmd->getCreator().getName()) != "clang")
    return llvm::createStringError(llvm::errc::not_supported,
                                   "Driver initialization failed");

  return &Cmd->getArguments();
}

static llvm::Expected<std::unique_ptr<CompilerInstance>>
CreateCI(const llvm::opt::ArgStringList &Argv) {
  std::unique_ptr<CompilerInstance> Clang(new CompilerInstance());
  IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());

  // Register the support for object-file-wrapped Clang modules.
  // FIXME: Clang should register these container operations automatically.
  auto PCHOps = Clang->getPCHContainerOperations();
  PCHOps->registerWriter(std::make_unique<ObjectFilePCHContainerWriter>());
  PCHOps->registerReader(std::make_unique<ObjectFilePCHContainerReader>());

  // Buffer diagnostics from argument parsing so that we can output them using
  // a well formed diagnostic object.
  IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions();
  TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
  DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);
  bool Success = CompilerInvocation::CreateFromArgs(
      Clang->getInvocation(), llvm::ArrayRef(Argv.begin(), Argv.size()), Diags);

  // Infer the builtin include path if unspecified.
  if (Clang->getHeaderSearchOpts().UseBuiltinIncludes &&
      Clang->getHeaderSearchOpts().ResourceDir.empty())
    Clang->getHeaderSearchOpts().ResourceDir =
        CompilerInvocation::GetResourcesPath(Argv[0], nullptr);

  // Create the actual diagnostics engine.
  Clang->createDiagnostics();
  if (!Clang->hasDiagnostics())
    return llvm::createStringError(llvm::errc::not_supported,
                                   "Initialization failed. "
                                   "Unable to create diagnostics engine");

  DiagsBuffer->FlushDiagnostics(Clang->getDiagnostics());
  if (!Success)
    return llvm::createStringError(llvm::errc::not_supported,
                                   "Initialization failed. "
                                   "Unable to flush diagnostics");

  // FIXME: Merge with CompilerInstance::ExecuteAction.
  llvm::MemoryBuffer *MB = llvm::MemoryBuffer::getMemBuffer("").release();
  Clang->getPreprocessorOpts().addRemappedFile("<<< inputs >>>", MB);

  Clang->setTarget(TargetInfo::CreateTargetInfo(
      Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
  if (!Clang->hasTarget())
    return llvm::createStringError(llvm::errc::not_supported,
                                   "Initialization failed. "
                                   "Target is missing");

  Clang->getTarget().adjust(Clang->getDiagnostics(), Clang->getLangOpts());

  // Don't clear the AST before backend codegen since we do codegen multiple
  // times, reusing the same AST.
  Clang->getCodeGenOpts().ClearASTBeforeBackend = false;

  Clang->getFrontendOpts().DisableFree = false;
  Clang->getCodeGenOpts().DisableFree = false;
  return std::move(Clang);
}

} // anonymous namespace

llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::create(std::string TT,
                                   std::vector<const char *> &ClangArgv) {

  // If we don't know ClangArgv0 or the address of main() at this point, try
  // to guess it anyway (it's possible on some platforms).
  std::string MainExecutableName =
      llvm::sys::fs::getMainExecutable(nullptr, nullptr);

  ClangArgv.insert(ClangArgv.begin(), MainExecutableName.c_str());

  // Prepending -c to force the driver to do something if no action was
  // specified. By prepending we allow users to override the default
  // action and use other actions in incremental mode.
  // FIXME: Print proper driver diagnostics if the driver flags are wrong.
  // We do C++ by default; append right after argv[0] if no "-x" given
  ClangArgv.insert(ClangArgv.end(), "-Xclang");
  ClangArgv.insert(ClangArgv.end(), "-fincremental-extensions");
  ClangArgv.insert(ClangArgv.end(), "-c");

  // Put a dummy C++ file on to ensure there's at least one compile job for the
  // driver to construct.
  ClangArgv.push_back("<<< inputs >>>");

  // Buffer diagnostics from argument parsing so that we can output them using a
  // well formed diagnostic object.
  IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
  IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts =
      CreateAndPopulateDiagOpts(ClangArgv);
  TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
  DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);

  driver::Driver Driver(/*MainBinaryName=*/ClangArgv[0], TT, Diags);
  Driver.setCheckInputsExist(false); // the input comes from mem buffers
  llvm::ArrayRef<const char *> RF = llvm::ArrayRef(ClangArgv);
  std::unique_ptr<driver::Compilation> Compilation(Driver.BuildCompilation(RF));

  if (Compilation->getArgs().hasArg(driver::options::OPT_v))
    Compilation->getJobs().Print(llvm::errs(), "\n", /*Quote=*/false);

  auto ErrOrCC1Args = GetCC1Arguments(&Diags, Compilation.get());
  if (auto Err = ErrOrCC1Args.takeError())
    return std::move(Err);

  return CreateCI(**ErrOrCC1Args);
}

llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCpp() {
  std::vector<const char *> Argv;
  Argv.reserve(5 + 1 + UserArgs.size());
  Argv.push_back("-xc++");
  Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end());

  std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple();
  return IncrementalCompilerBuilder::create(TT, Argv);
}

llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::createCuda(bool device) {
  std::vector<const char *> Argv;
  Argv.reserve(5 + 4 + UserArgs.size());

  Argv.push_back("-xcuda");
  if (device)
    Argv.push_back("--cuda-device-only");
  else
    Argv.push_back("--cuda-host-only");

  std::string SDKPathArg = "--cuda-path=";
  if (!CudaSDKPath.empty()) {
    SDKPathArg += CudaSDKPath;
    Argv.push_back(SDKPathArg.c_str());
  }

  std::string ArchArg = "--offload-arch=";
  if (!OffloadArch.empty()) {
    ArchArg += OffloadArch;
    Argv.push_back(ArchArg.c_str());
  }

  Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end());

  std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple();
  return IncrementalCompilerBuilder::create(TT, Argv);
}

llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCudaDevice() {
  return IncrementalCompilerBuilder::createCuda(true);
}

llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCudaHost() {
  return IncrementalCompilerBuilder::createCuda(false);
}

Interpreter::Interpreter(std::unique_ptr<CompilerInstance> CI,
                         llvm::Error &Err) {
  llvm::ErrorAsOutParameter EAO(&Err);
  auto LLVMCtx = std::make_unique<llvm::LLVMContext>();
  TSCtx = std::make_unique<llvm::orc::ThreadSafeContext>(std::move(LLVMCtx));
  IncrParser = std::make_unique<IncrementalParser>(*this, std::move(CI),
                                                   *TSCtx->getContext(), Err);
}

Interpreter::~Interpreter() {
  if (IncrExecutor) {
    if (llvm::Error Err = IncrExecutor->cleanUp())
      llvm::report_fatal_error(
          llvm::Twine("Failed to clean up IncrementalExecutor: ") +
          toString(std::move(Err)));
  }
}

// These better to put in a runtime header but we can't. This is because we
// can't find the precise resource directory in unittests so we have to hard
// code them.
const char *const Runtimes = R"(
#ifdef __cplusplus
    void *__clang_Interpreter_SetValueWithAlloc(void*, void*, void*);
    void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*);
    void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, void*);
    void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, float);
    void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, double);
    void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, long double);
    void __clang_Interpreter_SetValueNoAlloc(void*,void*,void*,unsigned long long);
    struct __clang_Interpreter_NewTag{} __ci_newtag;
    void* operator new(__SIZE_TYPE__, void* __p, __clang_Interpreter_NewTag) noexcept;
    template <class T, class = T (*)() /*disable for arrays*/>
    void __clang_Interpreter_SetValueCopyArr(T* Src, void* Placement, unsigned long Size) {
      for (auto Idx = 0; Idx < Size; ++Idx)
        new ((void*)(((T*)Placement) + Idx), __ci_newtag) T(Src[Idx]);
    }
    template <class T, unsigned long N>
    void __clang_Interpreter_SetValueCopyArr(const T (*Src)[N], void* Placement, unsigned long Size) {
      __clang_Interpreter_SetValueCopyArr(Src[0], Placement, Size);
    }
#endif // __cplusplus
)";

llvm::Expected<std::unique_ptr<Interpreter>>
Interpreter::create(std::unique_ptr<CompilerInstance> CI) {
  llvm::Error Err = llvm::Error::success();
  auto Interp =
      std::unique_ptr<Interpreter>(new Interpreter(std::move(CI), Err));
  if (Err)
    return std::move(Err);

  // Add runtime code and set a marker to hide it from user code. Undo will not
  // go through that.
  auto PTU = Interp->Parse(Runtimes);
  if (!PTU)
    return PTU.takeError();
  Interp->markUserCodeStart();

  Interp->ValuePrintingInfo.resize(4);
  return std::move(Interp);
}

llvm::Expected<std::unique_ptr<Interpreter>>
Interpreter::createWithCUDA(std::unique_ptr<CompilerInstance> CI,
                            std::unique_ptr<CompilerInstance> DCI) {
  // avoid writing fat binary to disk using an in-memory virtual file system
  llvm::IntrusiveRefCntPtr<llvm::vfs::InMemoryFileSystem> IMVFS =
      std::make_unique<llvm::vfs::InMemoryFileSystem>();
  llvm::IntrusiveRefCntPtr<llvm::vfs::OverlayFileSystem> OverlayVFS =
      std::make_unique<llvm::vfs::OverlayFileSystem>(
          llvm::vfs::getRealFileSystem());
  OverlayVFS->pushOverlay(IMVFS);
  CI->createFileManager(OverlayVFS);

  auto Interp = Interpreter::create(std::move(CI));
  if (auto E = Interp.takeError())
    return std::move(E);

  llvm::Error Err = llvm::Error::success();
  auto DeviceParser = std::make_unique<IncrementalCUDADeviceParser>(
      **Interp, std::move(DCI), *(*Interp)->IncrParser.get(),
      *(*Interp)->TSCtx->getContext(), IMVFS, Err);
  if (Err)
    return std::move(Err);

  (*Interp)->DeviceParser = std::move(DeviceParser);

  return Interp;
}

const CompilerInstance *Interpreter::getCompilerInstance() const {
  return IncrParser->getCI();
}

CompilerInstance *Interpreter::getCompilerInstance() {
  return IncrParser->getCI();
}

llvm::Expected<llvm::orc::LLJIT &> Interpreter::getExecutionEngine() {
  if (!IncrExecutor) {
    if (auto Err = CreateExecutor())
      return std::move(Err);
  }

  return IncrExecutor->GetExecutionEngine();
}

ASTContext &Interpreter::getASTContext() {
  return getCompilerInstance()->getASTContext();
}

const ASTContext &Interpreter::getASTContext() const {
  return getCompilerInstance()->getASTContext();
}

void Interpreter::markUserCodeStart() {
  assert(!InitPTUSize && "We only do this once");
  InitPTUSize = IncrParser->getPTUs().size();
}

size_t Interpreter::getEffectivePTUSize() const {
  std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs();
  assert(PTUs.size() >= InitPTUSize && "empty PTU list?");
  return PTUs.size() - InitPTUSize;
}

llvm::Expected<PartialTranslationUnit &>
Interpreter::Parse(llvm::StringRef Code) {
  // If we have a device parser, parse it first.
  // The generated code will be included in the host compilation
  if (DeviceParser) {
    auto DevicePTU = DeviceParser->Parse(Code);
    if (auto E = DevicePTU.takeError())
      return std::move(E);
  }

  // Tell the interpreter sliently ignore unused expressions since value
  // printing could cause it.
  getCompilerInstance()->getDiagnostics().setSeverity(
      clang::diag::warn_unused_expr, diag::Severity::Ignored, SourceLocation());
  return IncrParser->Parse(Code);
}

llvm::Error Interpreter::CreateExecutor() {
  const clang::TargetInfo &TI =
      getCompilerInstance()->getASTContext().getTargetInfo();
  if (IncrExecutor)
    return llvm::make_error<llvm::StringError>("Operation failed. "
                                               "Execution engine exists",
                                               std::error_code());
  llvm::Error Err = llvm::Error::success();
  auto Executor = std::make_unique<IncrementalExecutor>(*TSCtx, Err, TI);
  if (!Err)
    IncrExecutor = std::move(Executor);

  return Err;
}

void Interpreter::ResetExecutor() { IncrExecutor.reset(); }

llvm::Error Interpreter::Execute(PartialTranslationUnit &T) {
  assert(T.TheModule);
  if (!IncrExecutor) {
    auto Err = CreateExecutor();
    if (Err)
      return Err;
  }
  // FIXME: Add a callback to retain the llvm::Module once the JIT is done.
  if (auto Err = IncrExecutor->addModule(T))
    return Err;

  if (auto Err = IncrExecutor->runCtors())
    return Err;

  return llvm::Error::success();
}

llvm::Error Interpreter::ParseAndExecute(llvm::StringRef Code, Value *V) {

  auto PTU = Parse(Code);
  if (!PTU)
    return PTU.takeError();
  if (PTU->TheModule)
    if (llvm::Error Err = Execute(*PTU))
      return Err;

  if (LastValue.isValid()) {
    if (!V) {
      LastValue.dump();
      LastValue.clear();
    } else
      *V = std::move(LastValue);
  }
  return llvm::Error::success();
}

llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddress(GlobalDecl GD) const {
  if (!IncrExecutor)
    return llvm::make_error<llvm::StringError>("Operation failed. "
                                               "No execution engine",
                                               std::error_code());
  llvm::StringRef MangledName = IncrParser->GetMangledName(GD);
  return getSymbolAddress(MangledName);
}

llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddress(llvm::StringRef IRName) const {
  if (!IncrExecutor)
    return llvm::make_error<llvm::StringError>("Operation failed. "
                                               "No execution engine",
                                               std::error_code());

  return IncrExecutor->getSymbolAddress(IRName, IncrementalExecutor::IRName);
}

llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddressFromLinkerName(llvm::StringRef Name) const {
  if (!IncrExecutor)
    return llvm::make_error<llvm::StringError>("Operation failed. "
                                               "No execution engine",
                                               std::error_code());

  return IncrExecutor->getSymbolAddress(Name, IncrementalExecutor::LinkerName);
}

llvm::Error Interpreter::Undo(unsigned N) {

  std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs();
  if (N > getEffectivePTUSize())
    return llvm::make_error<llvm::StringError>("Operation failed. "
                                               "Too many undos",
                                               std::error_code());
  for (unsigned I = 0; I < N; I++) {
    if (IncrExecutor) {
      if (llvm::Error Err = IncrExecutor->removeModule(PTUs.back()))
        return Err;
    }

    IncrParser->CleanUpPTU(PTUs.back());
    PTUs.pop_back();
  }
  return llvm::Error::success();
}

llvm::Error Interpreter::LoadDynamicLibrary(const char *name) {
  auto EE = getExecutionEngine();
  if (!EE)
    return EE.takeError();

  auto &DL = EE->getDataLayout();

  if (auto DLSG = llvm::orc::DynamicLibrarySearchGenerator::Load(
          name, DL.getGlobalPrefix()))
    EE->getMainJITDylib().addGenerator(std::move(*DLSG));
  else
    return DLSG.takeError();

  return llvm::Error::success();
}

llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::CompileDtorCall(CXXRecordDecl *CXXRD) {
  assert(CXXRD && "Cannot compile a destructor for a nullptr");
  if (auto Dtor = Dtors.find(CXXRD); Dtor != Dtors.end())
    return Dtor->getSecond();

  if (CXXRD->hasIrrelevantDestructor())
    return llvm::orc::ExecutorAddr{};

  CXXDestructorDecl *DtorRD =
      getCompilerInstance()->getSema().LookupDestructor(CXXRD);

  llvm::StringRef Name =
      IncrParser->GetMangledName(GlobalDecl(DtorRD, Dtor_Base));
  auto AddrOrErr = getSymbolAddress(Name);
  if (!AddrOrErr)
    return AddrOrErr.takeError();

  Dtors[CXXRD] = *AddrOrErr;
  return AddrOrErr;
}

static constexpr llvm::StringRef MagicRuntimeInterface[] = {
    "__clang_Interpreter_SetValueNoAlloc",
    "__clang_Interpreter_SetValueWithAlloc",
    "__clang_Interpreter_SetValueCopyArr", "__ci_newtag"};

static std::unique_ptr<RuntimeInterfaceBuilder>
createInProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &Ctx,
                                       Sema &S);

std::unique_ptr<RuntimeInterfaceBuilder> Interpreter::FindRuntimeInterface() {
  if (llvm::all_of(ValuePrintingInfo, [](Expr *E) { return E != nullptr; }))
    return nullptr;

  Sema &S = getCompilerInstance()->getSema();
  ASTContext &Ctx = S.getASTContext();

  auto LookupInterface = [&](Expr *&Interface, llvm::StringRef Name) {
    LookupResult R(S, &Ctx.Idents.get(Name), SourceLocation(),
                   Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
    S.LookupQualifiedName(R, Ctx.getTranslationUnitDecl());
    if (R.empty())
      return false;

    CXXScopeSpec CSS;
    Interface = S.BuildDeclarationNameExpr(CSS, R, /*ADL=*/false).get();
    return true;
  };

  if (!LookupInterface(ValuePrintingInfo[NoAlloc],
                       MagicRuntimeInterface[NoAlloc]))
    return nullptr;
  if (!LookupInterface(ValuePrintingInfo[WithAlloc],
                       MagicRuntimeInterface[WithAlloc]))
    return nullptr;
  if (!LookupInterface(ValuePrintingInfo[CopyArray],
                       MagicRuntimeInterface[CopyArray]))
    return nullptr;
  if (!LookupInterface(ValuePrintingInfo[NewTag],
                       MagicRuntimeInterface[NewTag]))
    return nullptr;

  return createInProcessRuntimeInterfaceBuilder(*this, Ctx, S);
}

namespace {

class InterfaceKindVisitor
    : public TypeVisitor<InterfaceKindVisitor, Interpreter::InterfaceKind> {
  friend class InProcessRuntimeInterfaceBuilder;

  ASTContext &Ctx;
  Sema &S;
  Expr *E;
  llvm::SmallVector<Expr *, 3> Args;

public:
  InterfaceKindVisitor(ASTContext &Ctx, Sema &S, Expr *E)
      : Ctx(Ctx), S(S), E(E) {}

  Interpreter::InterfaceKind VisitRecordType(const RecordType *Ty) {
    return Interpreter::InterfaceKind::WithAlloc;
  }

  Interpreter::InterfaceKind
  VisitMemberPointerType(const MemberPointerType *Ty) {
    return Interpreter::InterfaceKind::WithAlloc;
  }

  Interpreter::InterfaceKind
  VisitConstantArrayType(const ConstantArrayType *Ty) {
    return Interpreter::InterfaceKind::CopyArray;
  }

  Interpreter::InterfaceKind
  VisitFunctionProtoType(const FunctionProtoType *Ty) {
    HandlePtrType(Ty);
    return Interpreter::InterfaceKind::NoAlloc;
  }

  Interpreter::InterfaceKind VisitPointerType(const PointerType *Ty) {
    HandlePtrType(Ty);
    return Interpreter::InterfaceKind::NoAlloc;
  }

  Interpreter::InterfaceKind VisitReferenceType(const ReferenceType *Ty) {
    ExprResult AddrOfE = S.CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, E);
    assert(!AddrOfE.isInvalid() && "Can not create unary expression");
    Args.push_back(AddrOfE.get());
    return Interpreter::InterfaceKind::NoAlloc;
  }

  Interpreter::InterfaceKind VisitBuiltinType(const BuiltinType *Ty) {
    if (Ty->isNullPtrType())
      Args.push_back(E);
    else if (Ty->isFloatingType())
      Args.push_back(E);
    else if (Ty->isIntegralOrEnumerationType())
      HandleIntegralOrEnumType(Ty);
    else if (Ty->isVoidType()) {
      // Do we need to still run `E`?
    }

    return Interpreter::InterfaceKind::NoAlloc;
  }

  Interpreter::InterfaceKind VisitEnumType(const EnumType *Ty) {
    HandleIntegralOrEnumType(Ty);
    return Interpreter::InterfaceKind::NoAlloc;
  }

private:
  // Force cast these types to uint64 to reduce the number of overloads of
  // `__clang_Interpreter_SetValueNoAlloc`.
  void HandleIntegralOrEnumType(const Type *Ty) {
    TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.UnsignedLongLongTy);
    ExprResult CastedExpr =
        S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E);
    assert(!CastedExpr.isInvalid() && "Cannot create cstyle cast expr");
    Args.push_back(CastedExpr.get());
  }

  void HandlePtrType(const Type *Ty) {
    TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.VoidPtrTy);
    ExprResult CastedExpr =
        S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E);
    assert(!CastedExpr.isInvalid() && "Can not create cstyle cast expression");
    Args.push_back(CastedExpr.get());
  }
};

class InProcessRuntimeInterfaceBuilder : public RuntimeInterfaceBuilder {
  Interpreter &Interp;
  ASTContext &Ctx;
  Sema &S;

public:
  InProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &C, Sema &S)
      : Interp(Interp), Ctx(C), S(S) {}

  TransformExprFunction *getPrintValueTransformer() override {
    return &transformForValuePrinting;
  }

private:
  static ExprResult transformForValuePrinting(RuntimeInterfaceBuilder *Builder,
                                              Expr *E,
                                              ArrayRef<Expr *> FixedArgs) {
    auto *B = static_cast<InProcessRuntimeInterfaceBuilder *>(Builder);

    // Get rid of ExprWithCleanups.
    if (auto *EWC = llvm::dyn_cast_if_present<ExprWithCleanups>(E))
      E = EWC->getSubExpr();

    InterfaceKindVisitor Visitor(B->Ctx, B->S, E);

    // The Interpreter* parameter and the out parameter `OutVal`.
    for (Expr *E : FixedArgs)
      Visitor.Args.push_back(E);

    QualType Ty = E->getType();
    QualType DesugaredTy = Ty.getDesugaredType(B->Ctx);

    // For lvalue struct, we treat it as a reference.
    if (DesugaredTy->isRecordType() && E->isLValue()) {
      DesugaredTy = B->Ctx.getLValueReferenceType(DesugaredTy);
      Ty = B->Ctx.getLValueReferenceType(Ty);
    }

    Expr *TypeArg = CStyleCastPtrExpr(B->S, B->Ctx.VoidPtrTy,
                                      (uintptr_t)Ty.getAsOpaquePtr());
    // The QualType parameter `OpaqueType`, represented as `void*`.
    Visitor.Args.push_back(TypeArg);

    // We push the last parameter based on the type of the Expr. Note we need
    // special care for rvalue struct.
    Interpreter::InterfaceKind Kind = Visitor.Visit(&*DesugaredTy);
    switch (Kind) {
    case Interpreter::InterfaceKind::WithAlloc:
    case Interpreter::InterfaceKind::CopyArray: {
      // __clang_Interpreter_SetValueWithAlloc.
      ExprResult AllocCall = B->S.ActOnCallExpr(
          /*Scope=*/nullptr,
          B->Interp
              .getValuePrintingInfo()[Interpreter::InterfaceKind::WithAlloc],
          E->getBeginLoc(), Visitor.Args, E->getEndLoc());
      assert(!AllocCall.isInvalid() && "Can't create runtime interface call!");

      TypeSourceInfo *TSI =
          B->Ctx.getTrivialTypeSourceInfo(Ty, SourceLocation());

      // Force CodeGen to emit destructor.
      if (auto *RD = Ty->getAsCXXRecordDecl()) {
        auto *Dtor = B->S.LookupDestructor(RD);
        Dtor->addAttr(UsedAttr::CreateImplicit(B->Ctx));
        B->Interp.getCompilerInstance()->getASTConsumer().HandleTopLevelDecl(
            DeclGroupRef(Dtor));
      }

      // __clang_Interpreter_SetValueCopyArr.
      if (Kind == Interpreter::InterfaceKind::CopyArray) {
        const auto *ConstantArrTy =
            cast<ConstantArrayType>(DesugaredTy.getTypePtr());
        size_t ArrSize = B->Ctx.getConstantArrayElementCount(ConstantArrTy);
        Expr *ArrSizeExpr = IntegerLiteralExpr(B->Ctx, ArrSize);
        Expr *Args[] = {E, AllocCall.get(), ArrSizeExpr};
        return B->S.ActOnCallExpr(
            /*Scope *=*/nullptr,
            B->Interp
                .getValuePrintingInfo()[Interpreter::InterfaceKind::CopyArray],
            SourceLocation(), Args, SourceLocation());
      }
      Expr *Args[] = {
          AllocCall.get(),
          B->Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::NewTag]};
      ExprResult CXXNewCall = B->S.BuildCXXNew(
          E->getSourceRange(),
          /*UseGlobal=*/true, /*PlacementLParen=*/SourceLocation(), Args,
          /*PlacementRParen=*/SourceLocation(),
          /*TypeIdParens=*/SourceRange(), TSI->getType(), TSI, std::nullopt,
          E->getSourceRange(), E);

      assert(!CXXNewCall.isInvalid() &&
             "Can't create runtime placement new call!");

      return B->S.ActOnFinishFullExpr(CXXNewCall.get(),
                                      /*DiscardedValue=*/false);
    }
      // __clang_Interpreter_SetValueNoAlloc.
    case Interpreter::InterfaceKind::NoAlloc: {
      return B->S.ActOnCallExpr(
          /*Scope=*/nullptr,
          B->Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::NoAlloc],
          E->getBeginLoc(), Visitor.Args, E->getEndLoc());
    }
    default:
      llvm_unreachable("Unhandled Interpreter::InterfaceKind");
    }
  }
};
} // namespace

static std::unique_ptr<RuntimeInterfaceBuilder>
createInProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &Ctx,
                                       Sema &S) {
  return std::make_unique<InProcessRuntimeInterfaceBuilder>(Interp, Ctx, S);
}

// This synthesizes a call expression to a speciall
// function that is responsible for generating the Value.
// In general, we transform:
//   clang-repl> x
// To:
//   // 1. If x is a built-in type like int, float.
//   __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, x);
//   // 2. If x is a struct, and a lvalue.
//   __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType,
//   &x);
//   // 3. If x is a struct, but a rvalue.
//   new (__clang_Interpreter_SetValueWithAlloc(ThisInterp, OpaqueValue,
//   xQualType)) (x);

Expr *Interpreter::SynthesizeExpr(Expr *E) {
  Sema &S = getCompilerInstance()->getSema();
  ASTContext &Ctx = S.getASTContext();

  if (!RuntimeIB) {
    RuntimeIB = FindRuntimeInterface();
    AddPrintValueCall = RuntimeIB->getPrintValueTransformer();
  }

  assert(AddPrintValueCall &&
         "We don't have a runtime interface for pretty print!");

  // Create parameter `ThisInterp`.
  auto *ThisInterp = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)this);

  // Create parameter `OutVal`.
  auto *OutValue = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)&LastValue);

  // Build `__clang_Interpreter_SetValue*` call.
  ExprResult Result =
      AddPrintValueCall(RuntimeIB.get(), E, {ThisInterp, OutValue});

  // It could fail, like printing an array type in C. (not supported)
  if (Result.isInvalid())
    return E;
  return Result.get();
}

// Temporary rvalue struct that need special care.
REPL_EXTERNAL_VISIBILITY void *
__clang_Interpreter_SetValueWithAlloc(void *This, void *OutVal,
                                      void *OpaqueType) {
  Value &VRef = *(Value *)OutVal;
  VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
  return VRef.getPtr();
}

// Pointers, lvalue struct that can take as a reference.
REPL_EXTERNAL_VISIBILITY void
__clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType,
                                    void *Val) {
  Value &VRef = *(Value *)OutVal;
  VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
  VRef.setPtr(Val);
}

REPL_EXTERNAL_VISIBILITY void
__clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal,
                                    void *OpaqueType) {
  Value &VRef = *(Value *)OutVal;
  VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
}

static void SetValueDataBasedOnQualType(Value &V, unsigned long long Data) {
  QualType QT = V.getType();
  if (const auto *ET = QT->getAs<EnumType>())
    QT = ET->getDecl()->getIntegerType();

  switch (QT->castAs<BuiltinType>()->getKind()) {
  default:
    llvm_unreachable("unknown type kind!");
#define X(type, name)                                                          \
  case BuiltinType::name:                                                      \
    V.set##name(Data);                                                         \
    break;
    REPL_BUILTIN_TYPES
#undef X
  }
}

REPL_EXTERNAL_VISIBILITY void
__clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType,
                                    unsigned long long Val) {
  Value &VRef = *(Value *)OutVal;
  VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
  SetValueDataBasedOnQualType(VRef, Val);
}

REPL_EXTERNAL_VISIBILITY void
__clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType,
                                    float Val) {
  Value &VRef = *(Value *)OutVal;
  VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
  VRef.setFloat(Val);
}

REPL_EXTERNAL_VISIBILITY void
__clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType,
                                    double Val) {
  Value &VRef = *(Value *)OutVal;
  VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
  VRef.setDouble(Val);
}

REPL_EXTERNAL_VISIBILITY void
__clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType,
                                    long double Val) {
  Value &VRef = *(Value *)OutVal;
  VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
  VRef.setLongDouble(Val);
}

// A trampoline to work around the fact that operator placement new cannot
// really be forward declared due to libc++ and libstdc++ declaration mismatch.
// FIXME: __clang_Interpreter_NewTag is ODR violation because we get the same
// definition in the interpreter runtime. We should move it in a runtime header
// which gets included by the interpreter and here.
struct __clang_Interpreter_NewTag {};
REPL_EXTERNAL_VISIBILITY void *
operator new(size_t __sz, void *__p, __clang_Interpreter_NewTag) noexcept {
  // Just forward to the standard operator placement new.
  return operator new(__sz, __p);
}