summaryrefslogtreecommitdiffstats
path: root/flang/include/flang/Optimizer/Builder/IntrinsicCall.h
blob: 7cb99d61a686edfdf231f6ee8f323e85af9462c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
//===-- Builder/IntrinsicCall.h -- lowering of intrinsics -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef FORTRAN_LOWER_INTRINSICCALL_H
#define FORTRAN_LOWER_INTRINSICCALL_H

#include "flang/Lower/AbstractConverter.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Runtime/Character.h"
#include "flang/Optimizer/Builder/Runtime/Numeric.h"
#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
#include "flang/Runtime/entry-names.h"
#include "flang/Runtime/iostat.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include <optional>

namespace fir {

class StatementContext;

// TODO: Error handling interface ?
// TODO: Implementation is incomplete. Many intrinsics to tbd.

/// Same as the other genIntrinsicCall version above, except that the result
/// deallocation, if required, is not added to a StatementContext. Instead, an
/// extra boolean result indicates if the result must be freed after use.
std::pair<fir::ExtendedValue, bool>
genIntrinsicCall(fir::FirOpBuilder &, mlir::Location, llvm::StringRef name,
                 std::optional<mlir::Type> resultType,
                 llvm::ArrayRef<fir::ExtendedValue> args,
                 Fortran::lower::AbstractConverter *converter = nullptr);

/// Enums used to templatize and share lowering of MIN and MAX.
enum class Extremum { Min, Max };

// There are different ways to deal with NaNs in MIN and MAX.
// Known existing behaviors are listed below and can be selected for
// f18 MIN/MAX implementation.
enum class ExtremumBehavior {
  // Note: the Signaling/quiet aspect of NaNs in the behaviors below are
  // not described because there is no way to control/observe such aspect in
  // MLIR/LLVM yet. The IEEE behaviors come with requirements regarding this
  // aspect that are therefore currently not enforced. In the descriptions
  // below, NaNs can be signaling or quite. Returned NaNs may be signaling
  // if one of the input NaN was signaling but it cannot be guaranteed either.
  // Existing compilers using an IEEE behavior (gfortran) also do not fulfill
  // signaling/quiet requirements.
  IeeeMinMaximumNumber,
  // IEEE minimumNumber/maximumNumber behavior (754-2019, section 9.6):
  // If one of the argument is and number and the other is NaN, return the
  // number. If both arguements are NaN, return NaN.
  // Compilers: gfortran.
  IeeeMinMaximum,
  // IEEE minimum/maximum behavior (754-2019, section 9.6):
  // If one of the argument is NaN, return NaN.
  MinMaxss,
  // x86 minss/maxss behavior:
  // If the second argument is a number and the other is NaN, return the number.
  // In all other cases where at least one operand is NaN, return NaN.
  // Compilers: xlf (only for MAX), ifort, pgfortran -nollvm, and nagfor.
  PgfortranLlvm,
  // "Opposite of" x86 minss/maxss behavior:
  // If the first argument is a number and the other is NaN, return the
  // number.
  // In all other cases where at least one operand is NaN, return NaN.
  // Compilers: xlf (only for MIN), and pgfortran (with llvm).
  IeeeMinMaxNum
  // IEEE minNum/maxNum behavior (754-2008, section 5.3.1):
  // TODO: Not implemented.
  // It is the only behavior where the signaling/quiet aspect of a NaN argument
  // impacts if the result should be NaN or the argument that is a number.
  // LLVM/MLIR do not provide ways to observe this aspect, so it is not
  // possible to implement it without some target dependent runtime.
};

/// Enum specifying how intrinsic argument evaluate::Expr should be
/// lowered to fir::ExtendedValue to be passed to genIntrinsicCall.
enum class LowerIntrinsicArgAs {
  /// Lower argument to a value. Mainly intended for scalar arguments.
  Value,
  /// Lower argument to an address. Only valid when the argument properties are
  /// fully defined (e.g. allocatable is allocated...).
  Addr,
  /// Lower argument to a box.
  Box,
  /// Lower argument without assuming that the argument is fully defined.
  /// It can be used on unallocated allocatable, disassociated pointer,
  /// or absent optional. This is meant for inquiry intrinsic arguments.
  Inquired
};

/// Define how a given intrinsic argument must be lowered.
struct ArgLoweringRule {
  LowerIntrinsicArgAs lowerAs;
  /// Value:
  //    - Numerical: 0
  //    - Logical : false
  //    - Derived/character: not possible. Need custom intrinsic lowering.
  //  Addr:
  //    - nullptr
  //  Box:
  //    - absent box
  //  AsInquired:
  //    - no-op
  bool handleDynamicOptional;
};

constexpr auto asValue = fir::LowerIntrinsicArgAs::Value;
constexpr auto asAddr = fir::LowerIntrinsicArgAs::Addr;
constexpr auto asBox = fir::LowerIntrinsicArgAs::Box;
constexpr auto asInquired = fir::LowerIntrinsicArgAs::Inquired;

/// Opaque class defining the argument lowering rules for all the argument of
/// an intrinsic.
struct IntrinsicArgumentLoweringRules;

// TODO error handling -> return a code or directly emit messages ?
struct IntrinsicLibrary {

  // Constructors.
  explicit IntrinsicLibrary(
      fir::FirOpBuilder &builder, mlir::Location loc,
      Fortran::lower::AbstractConverter *converter = nullptr)
      : builder{builder}, loc{loc}, converter{converter} {}
  IntrinsicLibrary() = delete;
  IntrinsicLibrary(const IntrinsicLibrary &) = delete;

  /// Generate FIR for call to Fortran intrinsic \p name with arguments \p arg
  /// and expected result type \p resultType. Return the result and a boolean
  /// that, if true, indicates that the result must be freed after use.
  std::pair<fir::ExtendedValue, bool>
  genIntrinsicCall(llvm::StringRef name, std::optional<mlir::Type> resultType,
                   llvm::ArrayRef<fir::ExtendedValue> arg);

  /// Search a runtime function that is associated to the generic intrinsic name
  /// and whose signature matches the intrinsic arguments and result types.
  /// If no such runtime function is found but a runtime function associated
  /// with the Fortran generic exists and has the same number of arguments,
  /// conversions will be inserted before and/or after the call. This is to
  /// mainly to allow 16 bits float support even-though little or no math
  /// runtime is currently available for it.
  mlir::Value genRuntimeCall(llvm::StringRef name, mlir::Type,
                             llvm::ArrayRef<mlir::Value>);

  using RuntimeCallGenerator = std::function<mlir::Value(
      fir::FirOpBuilder &, mlir::Location, llvm::ArrayRef<mlir::Value>)>;
  RuntimeCallGenerator
  getRuntimeCallGenerator(llvm::StringRef name,
                          mlir::FunctionType soughtFuncType);

  void genAbort(llvm::ArrayRef<fir::ExtendedValue>);
  /// Lowering for the ABS intrinsic. The ABS intrinsic expects one argument in
  /// the llvm::ArrayRef. The ABS intrinsic is lowered into MLIR/FIR operation
  /// if the argument is an integer, into llvm intrinsics if the argument is
  /// real and to the `hypot` math routine if the argument is of complex type.
  mlir::Value genAbs(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genAcosd(mlir::Type, llvm::ArrayRef<mlir::Value>);
  template <void (*CallRuntime)(fir::FirOpBuilder &, mlir::Location loc,
                                mlir::Value, mlir::Value)>
  fir::ExtendedValue genAdjustRtCall(mlir::Type,
                                     llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genAimag(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genAint(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genAll(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genAllocated(mlir::Type,
                                  llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genAnint(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genAny(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genAtanpi(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue
      genCommandArgumentCount(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genAsind(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genAssociated(mlir::Type,
                                   llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genAtand(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genBesselJn(mlir::Type,
                                 llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genBesselYn(mlir::Type,
                                 llvm::ArrayRef<fir::ExtendedValue>);
  template <mlir::arith::CmpIPredicate pred>
  mlir::Value genBitwiseCompare(mlir::Type resultType,
                                llvm::ArrayRef<mlir::Value> args);

  mlir::Value genBtest(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genCeiling(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genChar(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  template <mlir::arith::CmpIPredicate pred>
  fir::ExtendedValue genCharacterCompare(mlir::Type,
                                         llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genCmplx(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genConjg(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genCount(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  void genCpuTime(llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genCshift(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genCAssociatedCFunPtr(mlir::Type,
                                           llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genCAssociatedCPtr(mlir::Type,
                                        llvm::ArrayRef<fir::ExtendedValue>);
  void genCFPointer(llvm::ArrayRef<fir::ExtendedValue>);
  void genCFProcPointer(llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genCFunLoc(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genCLoc(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genCosd(mlir::Type, llvm::ArrayRef<mlir::Value>);
  void genDateAndTime(llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genDim(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genDotProduct(mlir::Type,
                                   llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genDprod(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genDshiftl(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genDshiftr(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genEoshift(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  void genExit(llvm::ArrayRef<fir::ExtendedValue>);
  void genExecuteCommandLine(mlir::ArrayRef<fir::ExtendedValue> args);
  mlir::Value genExponent(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genExtendsTypeOf(mlir::Type,
                                      llvm::ArrayRef<fir::ExtendedValue>);
  template <Extremum, ExtremumBehavior>
  mlir::Value genExtremum(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genFloor(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genFraction(mlir::Type resultType,
                          mlir::ArrayRef<mlir::Value> args);
  void genGetCommand(mlir::ArrayRef<fir::ExtendedValue> args);
  mlir::Value genGetPID(mlir::Type resultType,
                        llvm::ArrayRef<mlir::Value> args);
  void genGetCommandArgument(mlir::ArrayRef<fir::ExtendedValue> args);
  void genGetEnvironmentVariable(llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genIall(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genIand(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genIany(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genIbclr(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIbits(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIbset(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genIchar(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genFindloc(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genIeeeClass(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIeeeCopySign(mlir::Type, llvm::ArrayRef<mlir::Value>);
  void genIeeeGetFlag(llvm::ArrayRef<fir::ExtendedValue>);
  void genIeeeGetHaltingMode(llvm::ArrayRef<fir::ExtendedValue>);
  template <bool isGet>
  void genIeeeGetOrSetModes(llvm::ArrayRef<fir::ExtendedValue>);
  template <bool isGet>
  void genIeeeGetOrSetStatus(llvm::ArrayRef<fir::ExtendedValue>);
  void genIeeeGetRoundingMode(llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genIeeeIsFinite(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIeeeIsNan(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIeeeIsNegative(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIeeeIsNormal(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIeeeLogb(mlir::Type, mlir::ArrayRef<mlir::Value>);
  template <bool isMax, bool isNum, bool isMag>
  mlir::Value genIeeeMaxMin(mlir::Type, llvm::ArrayRef<mlir::Value>);
  template <mlir::arith::CmpFPredicate pred>
  mlir::Value genIeeeQuietCompare(mlir::Type resultType,
                                  llvm::ArrayRef<mlir::Value>);
  template <bool isFlag>
  void genIeeeSetFlagOrHaltingMode(llvm::ArrayRef<fir::ExtendedValue>);
  void genIeeeSetRoundingMode(llvm::ArrayRef<fir::ExtendedValue>);
  template <mlir::arith::CmpFPredicate pred>
  mlir::Value genIeeeSignalingCompare(mlir::Type resultType,
                                      llvm::ArrayRef<mlir::Value>);
  mlir::Value genIeeeSignbit(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIeeeSupportFlagOrHalting(mlir::Type,
                                          llvm::ArrayRef<mlir::Value>);
  mlir::Value genIeeeSupportRounding(mlir::Type, llvm::ArrayRef<mlir::Value>);
  template <mlir::arith::CmpIPredicate pred>
  mlir::Value genIeeeTypeCompare(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIeeeUnordered(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIeeeValue(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIeor(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genIndex(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genIor(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genIparity(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genIsContiguous(mlir::Type,
                                     llvm::ArrayRef<fir::ExtendedValue>);
  template <Fortran::runtime::io::Iostat value>
  mlir::Value genIsIostatValue(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIsFPClass(mlir::Type, llvm::ArrayRef<mlir::Value>,
                           int fpclass);
  mlir::Value genIshft(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genIshftc(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genLbound(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genLeadz(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genLen(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genLenTrim(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genLoc(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  template <typename Shift>
  mlir::Value genMask(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genMatmul(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genMatmulTranspose(mlir::Type,
                                        llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genMaxloc(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genMaxval(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genMerge(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genMergeBits(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genMinloc(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genMinval(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genMod(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genModulo(mlir::Type, llvm::ArrayRef<mlir::Value>);
  void genMoveAlloc(llvm::ArrayRef<fir::ExtendedValue>);
  void genMvbits(llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genNearest(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genNint(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genNorm2(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genNot(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genNull(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genPack(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genParity(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genPopcnt(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genPoppar(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genPresent(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genProduct(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  void genRandomInit(llvm::ArrayRef<fir::ExtendedValue>);
  void genRandomNumber(llvm::ArrayRef<fir::ExtendedValue>);
  void genRandomSeed(llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genReduce(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genRepeat(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genReshape(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genRRSpacing(mlir::Type resultType,
                           llvm::ArrayRef<mlir::Value> args);
  fir::ExtendedValue genSameTypeAs(mlir::Type,
                                   llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genScale(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genScan(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genSelectedIntKind(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genSelectedRealKind(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genSetExponent(mlir::Type resultType,
                             llvm::ArrayRef<mlir::Value> args);
  template <typename Shift>
  mlir::Value genShift(mlir::Type resultType, llvm::ArrayRef<mlir::Value>);
  mlir::Value genShiftA(mlir::Type resultType, llvm::ArrayRef<mlir::Value>);
  mlir::Value genSign(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genSind(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genSize(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genSpacing(mlir::Type resultType,
                         llvm::ArrayRef<mlir::Value> args);
  fir::ExtendedValue genSpread(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genStorageSize(mlir::Type,
                                    llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genSum(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  void genSignalSubroutine(llvm::ArrayRef<fir::ExtendedValue>);
  void genSleep(llvm::ArrayRef<fir::ExtendedValue>);
  void genSystem(mlir::ArrayRef<fir::ExtendedValue> args);
  void genSystemClock(llvm::ArrayRef<fir::ExtendedValue>);
  mlir::Value genTand(mlir::Type, llvm::ArrayRef<mlir::Value>);
  mlir::Value genTrailz(mlir::Type, llvm::ArrayRef<mlir::Value>);
  fir::ExtendedValue genTransfer(mlir::Type,
                                 llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genTranspose(mlir::Type,
                                  llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genTrim(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genUbound(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genUnpack(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);
  fir::ExtendedValue genVerify(mlir::Type, llvm::ArrayRef<fir::ExtendedValue>);

  /// Implement all conversion functions like DBLE, the first argument is
  /// the value to convert. There may be an additional KIND arguments that
  /// is ignored because this is already reflected in the result type.
  mlir::Value genConversion(mlir::Type, llvm::ArrayRef<mlir::Value>);

  /// In the template helper below:
  ///  - "FN func" is a callback to generate the related intrinsic runtime call.
  ///  - "FD funcDim" is a callback to generate the "dim" runtime call.
  ///  - "FC funcChar" is a callback to generate the character runtime call.
  /// Helper for MinLoc/MaxLoc.
  template <typename FN, typename FD>
  fir::ExtendedValue genExtremumloc(FN func, FD funcDim, llvm::StringRef errMsg,
                                    mlir::Type,
                                    llvm::ArrayRef<fir::ExtendedValue>);
  template <typename FN, typename FD, typename FC>
  /// Helper for MinVal/MaxVal.
  fir::ExtendedValue genExtremumVal(FN func, FD funcDim, FC funcChar,
                                    llvm::StringRef errMsg,
                                    mlir::Type resultType,
                                    llvm::ArrayRef<fir::ExtendedValue> args);
  /// Process calls to Product, Sum, IAll, IAny, IParity intrinsic functions
  template <typename FN, typename FD>
  fir::ExtendedValue genReduction(FN func, FD funcDim, llvm::StringRef errMsg,
                                  mlir::Type resultType,
                                  llvm::ArrayRef<fir::ExtendedValue> args);

  /// Generate code to raise \p except if \p cond is absent,
  /// or present and true.
  void genRaiseExcept(int except, mlir::Value cond = {});

  /// Define the different FIR generators that can be mapped to intrinsic to
  /// generate the related code.
  using ElementalGenerator = decltype(&IntrinsicLibrary::genAbs);
  using ExtendedGenerator = decltype(&IntrinsicLibrary::genLenTrim);
  using SubroutineGenerator = decltype(&IntrinsicLibrary::genDateAndTime);
  using Generator =
      std::variant<ElementalGenerator, ExtendedGenerator, SubroutineGenerator>;

  /// All generators can be outlined. This will build a function named
  /// "fir."+ <generic name> + "." + <result type code> and generate the
  /// intrinsic implementation inside instead of at the intrinsic call sites.
  /// This can be used to keep the FIR more readable. Only one function will
  /// be generated for all the similar calls in a program.
  /// If the Generator is nullptr, the wrapper uses genRuntimeCall.
  template <typename GeneratorType>
  mlir::Value outlineInWrapper(GeneratorType, llvm::StringRef name,
                               mlir::Type resultType,
                               llvm::ArrayRef<mlir::Value> args);
  template <typename GeneratorType>
  fir::ExtendedValue
  outlineInExtendedWrapper(GeneratorType, llvm::StringRef name,
                           std::optional<mlir::Type> resultType,
                           llvm::ArrayRef<fir::ExtendedValue> args);

  template <typename GeneratorType>
  mlir::func::FuncOp getWrapper(GeneratorType, llvm::StringRef name,
                                mlir::FunctionType,
                                bool loadRefArguments = false);

  /// Generate calls to ElementalGenerator, handling the elemental aspects
  template <typename GeneratorType>
  fir::ExtendedValue
  genElementalCall(GeneratorType, llvm::StringRef name, mlir::Type resultType,
                   llvm::ArrayRef<fir::ExtendedValue> args, bool outline);

  /// Helper to invoke code generator for the intrinsics given arguments.
  mlir::Value invokeGenerator(ElementalGenerator generator,
                              mlir::Type resultType,
                              llvm::ArrayRef<mlir::Value> args);
  mlir::Value invokeGenerator(RuntimeCallGenerator generator,
                              mlir::Type resultType,
                              llvm::ArrayRef<mlir::Value> args);
  mlir::Value invokeGenerator(ExtendedGenerator generator,
                              mlir::Type resultType,
                              llvm::ArrayRef<mlir::Value> args);
  mlir::Value invokeGenerator(SubroutineGenerator generator,
                              llvm::ArrayRef<mlir::Value> args);

  /// Get pointer to unrestricted intrinsic. Generate the related unrestricted
  /// intrinsic if it is not defined yet.
  mlir::SymbolRefAttr
  getUnrestrictedIntrinsicSymbolRefAttr(llvm::StringRef name,
                                        mlir::FunctionType signature);

  /// Helper function for generating code clean-up for result descriptors
  fir::ExtendedValue readAndAddCleanUp(fir::MutableBoxValue resultMutableBox,
                                       mlir::Type resultType,
                                       llvm::StringRef errMsg);

  void setResultMustBeFreed() { resultMustBeFreed = true; }

  fir::FirOpBuilder &builder;
  mlir::Location loc;
  bool resultMustBeFreed = false;
  Fortran::lower::AbstractConverter *converter = nullptr;
};

struct IntrinsicDummyArgument {
  const char *name = nullptr;
  fir::LowerIntrinsicArgAs lowerAs = fir::LowerIntrinsicArgAs::Value;
  bool handleDynamicOptional = false;
};

/// This is shared by intrinsics and intrinsic module procedures.
struct IntrinsicArgumentLoweringRules {
  /// There is no more than 7 non repeated arguments in Fortran intrinsics.
  IntrinsicDummyArgument args[7];
  constexpr bool hasDefaultRules() const { return args[0].name == nullptr; }
};

/// Structure describing what needs to be done to lower intrinsic or intrinsic
/// module procedure "name".
struct IntrinsicHandler {
  const char *name;
  IntrinsicLibrary::Generator generator;
  // The following may be omitted in the table below.
  fir::IntrinsicArgumentLoweringRules argLoweringRules = {};
  bool isElemental = true;
  /// Code heavy intrinsic can be outlined to make FIR
  /// more readable.
  bool outline = false;
};

struct RuntimeFunction {
  // llvm::StringRef comparison operator are not constexpr, so use string_view.
  using Key = std::string_view;
  // Needed for implicit compare with keys.
  constexpr operator Key() const { return key; }
  Key key; // intrinsic name

  // Name of a runtime function that implements the operation.
  llvm::StringRef symbol;
  fir::runtime::FuncTypeBuilderFunc typeGenerator;
};

struct MathOperation {
  // Callback type for generating lowering for a math operation.
  using MathGeneratorTy = mlir::Value (*)(fir::FirOpBuilder &, mlir::Location,
                                          const MathOperation &,
                                          mlir::FunctionType,
                                          llvm::ArrayRef<mlir::Value>);

  // Overrides fir::runtime::FuncTypeBuilderFunc to add FirOpBuilder argument.
  using FuncTypeBuilderFunc = mlir::FunctionType (*)(mlir::MLIRContext *,
                                                     fir::FirOpBuilder &);

  // llvm::StringRef comparison operator are not constexpr, so use string_view.
  using Key = std::string_view;
  // Needed for implicit compare with keys.
  constexpr operator Key() const { return key; }
  // Intrinsic name.
  Key key;

  // Name of a runtime function that implements the operation.
  llvm::StringRef runtimeFunc;
  FuncTypeBuilderFunc typeGenerator;

  // A callback to generate FIR for the intrinsic defined by 'key'.
  // A callback may generate either dedicated MLIR operation(s) or
  // a function call to a runtime function with name defined by
  // 'runtimeFunc'.
  MathGeneratorTy funcGenerator;
};

// Enum of most supported intrinsic argument or return types.
enum class ParamTypeId {
  Void,
  Address, // pointer (to an [array of] Integers of some kind)
  Integer,
  Real,
  Complex,
  IntegerVector,
  UnsignedVector,
  RealVector,
};

// Helper function to get length of a 16-byte vector of element type eleTy.
static int getVecLen(mlir::Type eleTy) {
  assert((mlir::isa<mlir::IntegerType>(eleTy) ||
          mlir::isa<mlir::FloatType>(eleTy)) &&
         "unsupported vector element type");
  return 16 / (eleTy.getIntOrFloatBitWidth() / 8);
}

template <ParamTypeId t, int k>
struct ParamType {
  // Supported kinds can be checked with static asserts at compile time.
  static_assert(t != ParamTypeId::Integer || k == 1 || k == 2 || k == 4 ||
                    k == 8,
                "Unsupported integer kind");
  static_assert(t != ParamTypeId::Real || k == 4 || k == 8 || k == 10 ||
                    k == 16,
                "Unsupported real kind");
  static_assert(t != ParamTypeId::Complex || k == 2 || k == 3 || k == 4 ||
                    k == 8 || k == 10 || k == 16,
                "Unsupported complex kind");

  static const ParamTypeId ty = t;
  static const int kind = k;
};

// Namespace encapsulating type definitions for parameter types.
namespace Ty {
using Void = ParamType<ParamTypeId::Void, 0>;
template <int k>
using Address = ParamType<ParamTypeId::Address, k>;
template <int k>
using Integer = ParamType<ParamTypeId::Integer, k>;
template <int k>
using Real = ParamType<ParamTypeId::Real, k>;
template <int k>
using Complex = ParamType<ParamTypeId::Complex, k>;
template <int k>
using IntegerVector = ParamType<ParamTypeId::IntegerVector, k>;
template <int k>
using UnsignedVector = ParamType<ParamTypeId::UnsignedVector, k>;
template <int k>
using RealVector = ParamType<ParamTypeId::RealVector, k>;
} // namespace Ty

// Helper function that generates most types that are supported for intrinsic
// arguments and return type. Used by `genFuncType` to generate function
// types for most of the intrinsics.
static inline mlir::Type getTypeHelper(mlir::MLIRContext *context,
                                       fir::FirOpBuilder &builder,
                                       ParamTypeId typeId, int kind) {
  mlir::Type r;
  unsigned bits{0};
  switch (typeId) {
  case ParamTypeId::Void:
    llvm::report_fatal_error("can not get type of void");
    break;
  case ParamTypeId::Address:
    bits = builder.getKindMap().getIntegerBitsize(kind);
    assert(bits != 0 && "failed to convert address kind to integer bitsize");
    r = fir::ReferenceType::get(mlir::IntegerType::get(context, bits));
    break;
  case ParamTypeId::Integer:
  case ParamTypeId::IntegerVector:
    bits = builder.getKindMap().getIntegerBitsize(kind);
    assert(bits != 0 && "failed to convert kind to integer bitsize");
    r = mlir::IntegerType::get(context, bits);
    break;
  case ParamTypeId::UnsignedVector:
    bits = builder.getKindMap().getIntegerBitsize(kind);
    assert(bits != 0 && "failed to convert kind to unsigned bitsize");
    r = mlir::IntegerType::get(context, bits, mlir::IntegerType::Unsigned);
    break;
  case ParamTypeId::Real:
  case ParamTypeId::RealVector:
    r = builder.getRealType(kind);
    break;
  case ParamTypeId::Complex:
    r = fir::ComplexType::get(context, kind);
    break;
  }

  switch (typeId) {
  case ParamTypeId::Void:
  case ParamTypeId::Address:
  case ParamTypeId::Integer:
  case ParamTypeId::Real:
  case ParamTypeId::Complex:
    break;
  case ParamTypeId::IntegerVector:
  case ParamTypeId::UnsignedVector:
  case ParamTypeId::RealVector:
    // convert to vector type
    r = fir::VectorType::get(getVecLen(r), r);
  }
  return r;
}

// Generic function type generator that supports most of the function types
// used by intrinsics.
template <typename TyR, typename... ArgTys>
static inline mlir::FunctionType genFuncType(mlir::MLIRContext *context,
                                             fir::FirOpBuilder &builder) {
  llvm::SmallVector<ParamTypeId> argTys = {ArgTys::ty...};
  llvm::SmallVector<int> argKinds = {ArgTys::kind...};
  llvm::SmallVector<mlir::Type> argTypes;

  for (size_t i = 0; i < argTys.size(); ++i) {
    argTypes.push_back(getTypeHelper(context, builder, argTys[i], argKinds[i]));
  }

  if (TyR::ty == ParamTypeId::Void)
    return mlir::FunctionType::get(context, argTypes, std::nullopt);

  auto resType = getTypeHelper(context, builder, TyR::ty, TyR::kind);
  return mlir::FunctionType::get(context, argTypes, {resType});
}

//===----------------------------------------------------------------------===//
// Helper functions for argument handling.
//===----------------------------------------------------------------------===//
static inline mlir::Type getConvertedElementType(mlir::MLIRContext *context,
                                                 mlir::Type eleTy) {
  if (eleTy.isa<mlir::IntegerType>() && !eleTy.isSignlessInteger()) {
    const auto intTy{eleTy.dyn_cast<mlir::IntegerType>()};
    auto newEleTy{mlir::IntegerType::get(context, intTy.getWidth())};
    return newEleTy;
  }
  return eleTy;
}

static inline llvm::SmallVector<mlir::Value, 4>
getBasesForArgs(llvm::ArrayRef<fir::ExtendedValue> args) {
  llvm::SmallVector<mlir::Value, 4> baseVec;
  for (auto arg : args)
    baseVec.push_back(getBase(arg));
  return baseVec;
}

static inline llvm::SmallVector<mlir::Type, 4>
getTypesForArgs(llvm::ArrayRef<mlir::Value> args) {
  llvm::SmallVector<mlir::Type, 4> typeVec;
  for (auto arg : args)
    typeVec.push_back(arg.getType());
  return typeVec;
}

mlir::Value genLibCall(fir::FirOpBuilder &builder, mlir::Location loc,
                       const MathOperation &mathOp,
                       mlir::FunctionType libFuncType,
                       llvm::ArrayRef<mlir::Value> args);

template <typename T>
mlir::Value genMathOp(fir::FirOpBuilder &builder, mlir::Location loc,
                      const MathOperation &mathOp,
                      mlir::FunctionType mathLibFuncType,
                      llvm::ArrayRef<mlir::Value> args);

template <typename T>
mlir::Value genComplexMathOp(fir::FirOpBuilder &builder, mlir::Location loc,
                             const MathOperation &mathOp,
                             mlir::FunctionType mathLibFuncType,
                             llvm::ArrayRef<mlir::Value> args);

mlir::Value genLibSplitComplexArgsCall(fir::FirOpBuilder &builder,
                                       mlir::Location loc,
                                       const MathOperation &mathOp,
                                       mlir::FunctionType libFuncType,
                                       llvm::ArrayRef<mlir::Value> args);

/// Return argument lowering rules for an intrinsic.
/// Returns a nullptr if all the intrinsic arguments should be lowered by value.
const IntrinsicArgumentLoweringRules *
getIntrinsicArgumentLowering(llvm::StringRef intrinsicName);

/// Return how argument \p argName should be lowered given the rules for the
/// intrinsic function. The argument names are the one defined by the standard.
ArgLoweringRule lowerIntrinsicArgumentAs(const IntrinsicArgumentLoweringRules &,
                                         unsigned position);

/// Return place-holder for absent intrinsic arguments.
fir::ExtendedValue getAbsentIntrinsicArgument();

/// Get SymbolRefAttr of runtime (or wrapper function containing inlined
// implementation) of an unrestricted intrinsic (defined by its signature
// and generic name)
mlir::SymbolRefAttr
getUnrestrictedIntrinsicSymbolRefAttr(fir::FirOpBuilder &, mlir::Location,
                                      llvm::StringRef name,
                                      mlir::FunctionType signature);

//===----------------------------------------------------------------------===//
// Direct access to intrinsics that may be used by lowering outside
// of intrinsic call lowering.
//===----------------------------------------------------------------------===//

/// Generate maximum. There must be at least one argument and all arguments
/// must have the same type.
mlir::Value genMax(fir::FirOpBuilder &, mlir::Location,
                   llvm::ArrayRef<mlir::Value> args);

/// Generate minimum. Same constraints as genMax.
mlir::Value genMin(fir::FirOpBuilder &, mlir::Location,
                   llvm::ArrayRef<mlir::Value> args);

/// Generate Complex divide with the given expected
/// result type.
mlir::Value genDivC(fir::FirOpBuilder &builder, mlir::Location loc,
                    mlir::Type resultType, mlir::Value x, mlir::Value y);

/// Generate power function x**y with the given expected
/// result type.
mlir::Value genPow(fir::FirOpBuilder &, mlir::Location, mlir::Type resultType,
                   mlir::Value x, mlir::Value y);

} // namespace fir

#endif // FORTRAN_LOWER_INTRINSICCALL_H