summaryrefslogtreecommitdiffstats
path: root/flang/runtime/temporary-stack.cpp
blob: b4d7c6064457f2aba2233338da4b43c490481663 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//===-- runtime/temporary-stack.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// Implements std::vector like storage for a dynamically resizable number of
// temporaries. For use in HLFIR lowering.

#include "flang/Runtime/temporary-stack.h"
#include "terminator.h"
#include "flang/ISO_Fortran_binding_wrapper.h"
#include "flang/Runtime/assign.h"
#include "flang/Runtime/descriptor.h"
#include "flang/Runtime/memory.h"

namespace {

using namespace Fortran::runtime;

// the number of elements to allocate when first creating the vector
constexpr size_t INITIAL_ALLOC = 8;

/// To store C style data. Does not run constructors/destructors.
/// Not using std::vector to avoid linking the runtime library to stdc++
template <bool COPY_VALUES> class DescriptorStorage final {
  using size_type = uint64_t; // see checkedMultiply()

  size_type capacity_{0};
  size_type size_{0};
  Descriptor **data_{nullptr};
  Terminator terminator_;

  // return true on overflow
  static bool checkedMultiply(size_type x, size_type y, size_type &res);

  void resize(size_type newCapacity);

  Descriptor *cloneDescriptor(const Descriptor &source);

public:
  DescriptorStorage(const char *sourceFile, int line);
  ~DescriptorStorage();

  // `new` but using the runtime allocation API
  static inline DescriptorStorage *allocate(const char *sourceFile, int line) {
    Terminator term{sourceFile, line};
    void *ptr = AllocateMemoryOrCrash(term, sizeof(DescriptorStorage));
    return new (ptr) DescriptorStorage{sourceFile, line};
  }

  // `delete` but using the runtime allocation API
  static inline void destroy(DescriptorStorage *instance) {
    instance->~DescriptorStorage();
    FreeMemory(instance);
  }

  // clones a descriptor into this storage
  void push(const Descriptor &source);

  // out must be big enough to hold a descriptor of the right rank and addendum
  void pop(Descriptor &out);

  // out must be big enough to hold a descriptor of the right rank and addendum
  void at(size_type i, Descriptor &out);
};

using ValueStack = DescriptorStorage</*COPY_VALUES=*/true>;
using DescriptorStack = DescriptorStorage</*COPY_VALUES=*/false>;
} // namespace

template <bool COPY_VALUES>
bool DescriptorStorage<COPY_VALUES>::checkedMultiply(
    size_type x, size_type y, size_type &res) {
  // TODO: c++20 [[unlikely]]
  if (x > UINT64_MAX / y) {
    return true;
  }
  res = x * y;
  return false;
}

template <bool COPY_VALUES>
void DescriptorStorage<COPY_VALUES>::resize(size_type newCapacity) {
  if (newCapacity <= capacity_) {
    return;
  }
  size_type bytes;
  if (checkedMultiply(newCapacity, sizeof(Descriptor *), bytes)) {
    terminator_.Crash("temporary-stack: out of memory");
  }
  Descriptor **newData =
      static_cast<Descriptor **>(AllocateMemoryOrCrash(terminator_, bytes));
  memcpy(newData, data_, capacity_ * sizeof(Descriptor *));
  FreeMemory(data_);
  data_ = newData;
  capacity_ = newCapacity;
}

template <bool COPY_VALUES>
Descriptor *DescriptorStorage<COPY_VALUES>::cloneDescriptor(
    const Descriptor &source) {
  const std::size_t bytes = source.SizeInBytes();
  void *memory = AllocateMemoryOrCrash(terminator_, bytes);
  Descriptor *desc = new (memory) Descriptor{source};
  return desc;
}

template <bool COPY_VALUES>
DescriptorStorage<COPY_VALUES>::DescriptorStorage(
    const char *sourceFile, int line)
    : terminator_{sourceFile, line} {
  resize(INITIAL_ALLOC);
}

template <bool COPY_VALUES>
DescriptorStorage<COPY_VALUES>::~DescriptorStorage() {
  for (size_type i = 0; i < size_; ++i) {
    Descriptor *element = data_[i];
    if constexpr (COPY_VALUES) {
      element->Destroy(false, true);
    }
    FreeMemory(element);
  }
  FreeMemory(data_);
}

template <bool COPY_VALUES>
void DescriptorStorage<COPY_VALUES>::push(const Descriptor &source) {
  if (size_ == capacity_) {
    size_type newSize;
    if (checkedMultiply(capacity_, 2, newSize)) {
      terminator_.Crash("temporary-stack: out of address space");
    }
    resize(newSize);
  }
  data_[size_] = cloneDescriptor(source);
  Descriptor &box = *data_[size_];
  size_ += 1;

  if constexpr (COPY_VALUES) {
    // copy the data pointed to by the box
    box.set_base_addr(nullptr);
    box.Allocate();
    RTNAME(AssignTemporary)
    (box, source, terminator_.sourceFileName(), terminator_.sourceLine());
  }
}

template <bool COPY_VALUES>
void DescriptorStorage<COPY_VALUES>::pop(Descriptor &out) {
  if (size_ == 0) {
    terminator_.Crash("temporary-stack: pop empty storage");
  }
  size_ -= 1;
  Descriptor *ptr = data_[size_];
  out = *ptr; // Descriptor::operator= handles the different sizes
  FreeMemory(ptr);
}

template <bool COPY_VALUES>
void DescriptorStorage<COPY_VALUES>::at(size_type i, Descriptor &out) {
  if (i >= size_) {
    terminator_.Crash("temporary-stack: out of bounds access");
  }
  Descriptor *ptr = data_[i];
  out = *ptr; // Descriptor::operator= handles the different sizes
}

inline static ValueStack *getValueStorage(void *opaquePtr) {
  return static_cast<ValueStack *>(opaquePtr);
}
inline static DescriptorStack *getDescriptorStorage(void *opaquePtr) {
  return static_cast<DescriptorStack *>(opaquePtr);
}

namespace Fortran::runtime {
extern "C" {
void *RTNAME(CreateValueStack)(const char *sourceFile, int line) {
  return ValueStack::allocate(sourceFile, line);
}

void RTNAME(PushValue)(void *opaquePtr, const Descriptor &value) {
  getValueStorage(opaquePtr)->push(value);
}

void RTNAME(PopValue)(void *opaquePtr, Descriptor &value) {
  getValueStorage(opaquePtr)->pop(value);
}

void RTNAME(ValueAt)(void *opaquePtr, uint64_t i, Descriptor &value) {
  getValueStorage(opaquePtr)->at(i, value);
}

void RTNAME(DestroyValueStack)(void *opaquePtr) {
  ValueStack::destroy(getValueStorage(opaquePtr));
}

void *RTNAME(CreateDescriptorStack)(const char *sourceFile, int line) {
  return DescriptorStack::allocate(sourceFile, line);
}

void RTNAME(PushDescriptor)(void *opaquePtr, const Descriptor &value) {
  getDescriptorStorage(opaquePtr)->push(value);
}

void RTNAME(PopDescriptor)(void *opaquePtr, Descriptor &value) {
  getDescriptorStorage(opaquePtr)->pop(value);
}

void RTNAME(DescriptorAt)(void *opaquePtr, uint64_t i, Descriptor &value) {
  getValueStorage(opaquePtr)->at(i, value);
}

void RTNAME(DestroyDescriptorStack)(void *opaquePtr) {
  DescriptorStack::destroy(getDescriptorStorage(opaquePtr));
}

} // extern "C"
} // namespace Fortran::runtime