summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Analysis/LoopAccessAnalysis.cpp
blob: c25eede96a18598b79db8f6a764ed1a0366295f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The implementation for the loop memory dependence that was originally
// developed for the loop vectorizer.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
#include <variant>
#include <vector>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "loop-accesses"

static cl::opt<unsigned, true>
VectorizationFactor("force-vector-width", cl::Hidden,
                    cl::desc("Sets the SIMD width. Zero is autoselect."),
                    cl::location(VectorizerParams::VectorizationFactor));
unsigned VectorizerParams::VectorizationFactor;

static cl::opt<unsigned, true>
VectorizationInterleave("force-vector-interleave", cl::Hidden,
                        cl::desc("Sets the vectorization interleave count. "
                                 "Zero is autoselect."),
                        cl::location(
                            VectorizerParams::VectorizationInterleave));
unsigned VectorizerParams::VectorizationInterleave;

static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
    "runtime-memory-check-threshold", cl::Hidden,
    cl::desc("When performing memory disambiguation checks at runtime do not "
             "generate more than this number of comparisons (default = 8)."),
    cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
unsigned VectorizerParams::RuntimeMemoryCheckThreshold;

/// The maximum iterations used to merge memory checks
static cl::opt<unsigned> MemoryCheckMergeThreshold(
    "memory-check-merge-threshold", cl::Hidden,
    cl::desc("Maximum number of comparisons done when trying to merge "
             "runtime memory checks. (default = 100)"),
    cl::init(100));

/// Maximum SIMD width.
const unsigned VectorizerParams::MaxVectorWidth = 64;

/// We collect dependences up to this threshold.
static cl::opt<unsigned>
    MaxDependences("max-dependences", cl::Hidden,
                   cl::desc("Maximum number of dependences collected by "
                            "loop-access analysis (default = 100)"),
                   cl::init(100));

/// This enables versioning on the strides of symbolically striding memory
/// accesses in code like the following.
///   for (i = 0; i < N; ++i)
///     A[i * Stride1] += B[i * Stride2] ...
///
/// Will be roughly translated to
///    if (Stride1 == 1 && Stride2 == 1) {
///      for (i = 0; i < N; i+=4)
///       A[i:i+3] += ...
///    } else
///      ...
static cl::opt<bool> EnableMemAccessVersioning(
    "enable-mem-access-versioning", cl::init(true), cl::Hidden,
    cl::desc("Enable symbolic stride memory access versioning"));

/// Enable store-to-load forwarding conflict detection. This option can
/// be disabled for correctness testing.
static cl::opt<bool> EnableForwardingConflictDetection(
    "store-to-load-forwarding-conflict-detection", cl::Hidden,
    cl::desc("Enable conflict detection in loop-access analysis"),
    cl::init(true));

static cl::opt<unsigned> MaxForkedSCEVDepth(
    "max-forked-scev-depth", cl::Hidden,
    cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
    cl::init(5));

static cl::opt<bool> SpeculateUnitStride(
    "laa-speculate-unit-stride", cl::Hidden,
    cl::desc("Speculate that non-constant strides are unit in LAA"),
    cl::init(true));

static cl::opt<bool, true> HoistRuntimeChecks(
    "hoist-runtime-checks", cl::Hidden,
    cl::desc(
        "Hoist inner loop runtime memory checks to outer loop if possible"),
    cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true));
bool VectorizerParams::HoistRuntimeChecks;

bool VectorizerParams::isInterleaveForced() {
  return ::VectorizationInterleave.getNumOccurrences() > 0;
}

const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
                                            const DenseMap<Value *, const SCEV *> &PtrToStride,
                                            Value *Ptr) {
  const SCEV *OrigSCEV = PSE.getSCEV(Ptr);

  // If there is an entry in the map return the SCEV of the pointer with the
  // symbolic stride replaced by one.
  DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr);
  if (SI == PtrToStride.end())
    // For a non-symbolic stride, just return the original expression.
    return OrigSCEV;

  const SCEV *StrideSCEV = SI->second;
  // Note: This assert is both overly strong and overly weak.  The actual
  // invariant here is that StrideSCEV should be loop invariant.  The only
  // such invariant strides we happen to speculate right now are unknowns
  // and thus this is a reasonable proxy of the actual invariant.
  assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");

  ScalarEvolution *SE = PSE.getSE();
  const auto *CT = SE->getOne(StrideSCEV->getType());
  PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
  auto *Expr = PSE.getSCEV(Ptr);

  LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
	     << " by: " << *Expr << "\n");
  return Expr;
}

RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
    unsigned Index, RuntimePointerChecking &RtCheck)
    : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
      AddressSpace(RtCheck.Pointers[Index]
                       .PointerValue->getType()
                       ->getPointerAddressSpace()),
      NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
  Members.push_back(Index);
}

/// Calculate Start and End points of memory access.
/// Let's assume A is the first access and B is a memory access on N-th loop
/// iteration. Then B is calculated as:
///   B = A + Step*N .
/// Step value may be positive or negative.
/// N is a calculated back-edge taken count:
///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
/// Start and End points are calculated in the following way:
/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
/// where SizeOfElt is the size of single memory access in bytes.
///
/// There is no conflict when the intervals are disjoint:
/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
                                    Type *AccessTy, bool WritePtr,
                                    unsigned DepSetId, unsigned ASId,
                                    PredicatedScalarEvolution &PSE,
                                    bool NeedsFreeze) {
  ScalarEvolution *SE = PSE.getSE();

  const SCEV *ScStart;
  const SCEV *ScEnd;

  if (SE->isLoopInvariant(PtrExpr, Lp)) {
    ScStart = ScEnd = PtrExpr;
  } else {
    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr);
    assert(AR && "Invalid addrec expression");
    const SCEV *Ex = PSE.getBackedgeTakenCount();

    ScStart = AR->getStart();
    ScEnd = AR->evaluateAtIteration(Ex, *SE);
    const SCEV *Step = AR->getStepRecurrence(*SE);

    // For expressions with negative step, the upper bound is ScStart and the
    // lower bound is ScEnd.
    if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
      if (CStep->getValue()->isNegative())
        std::swap(ScStart, ScEnd);
    } else {
      // Fallback case: the step is not constant, but we can still
      // get the upper and lower bounds of the interval by using min/max
      // expressions.
      ScStart = SE->getUMinExpr(ScStart, ScEnd);
      ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
    }
  }
  assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
  assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant");

  // Add the size of the pointed element to ScEnd.
  auto &DL = Lp->getHeader()->getModule()->getDataLayout();
  Type *IdxTy = DL.getIndexType(Ptr->getType());
  const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
  ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);

  Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
                        NeedsFreeze);
}

void RuntimePointerChecking::tryToCreateDiffCheck(
    const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
  if (!CanUseDiffCheck)
    return;

  // If either group contains multiple different pointers, bail out.
  // TODO: Support multiple pointers by using the minimum or maximum pointer,
  // depending on src & sink.
  if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) {
    CanUseDiffCheck = false;
    return;
  }

  PointerInfo *Src = &Pointers[CGI.Members[0]];
  PointerInfo *Sink = &Pointers[CGJ.Members[0]];

  // If either pointer is read and written, multiple checks may be needed. Bail
  // out.
  if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
      !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) {
    CanUseDiffCheck = false;
    return;
  }

  ArrayRef<unsigned> AccSrc =
      DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
  ArrayRef<unsigned> AccSink =
      DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
  // If either pointer is accessed multiple times, there may not be a clear
  // src/sink relation. Bail out for now.
  if (AccSrc.size() != 1 || AccSink.size() != 1) {
    CanUseDiffCheck = false;
    return;
  }
  // If the sink is accessed before src, swap src/sink.
  if (AccSink[0] < AccSrc[0])
    std::swap(Src, Sink);

  auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
  auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
  if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
      SinkAR->getLoop() != DC.getInnermostLoop()) {
    CanUseDiffCheck = false;
    return;
  }

  SmallVector<Instruction *, 4> SrcInsts =
      DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
  SmallVector<Instruction *, 4> SinkInsts =
      DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
  Type *SrcTy = getLoadStoreType(SrcInsts[0]);
  Type *DstTy = getLoadStoreType(SinkInsts[0]);
  if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) {
    CanUseDiffCheck = false;
    return;
  }
  const DataLayout &DL =
      SinkAR->getLoop()->getHeader()->getModule()->getDataLayout();
  unsigned AllocSize =
      std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));

  // Only matching constant steps matching the AllocSize are supported at the
  // moment. This simplifies the difference computation. Can be extended in the
  // future.
  auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
  if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
      Step->getAPInt().abs() != AllocSize) {
    CanUseDiffCheck = false;
    return;
  }

  IntegerType *IntTy =
      IntegerType::get(Src->PointerValue->getContext(),
                       DL.getPointerSizeInBits(CGI.AddressSpace));

  // When counting down, the dependence distance needs to be swapped.
  if (Step->getValue()->isNegative())
    std::swap(SinkAR, SrcAR);

  const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
  const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
  if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
      isa<SCEVCouldNotCompute>(SrcStartInt)) {
    CanUseDiffCheck = false;
    return;
  }

  const Loop *InnerLoop = SrcAR->getLoop();
  // If the start values for both Src and Sink also vary according to an outer
  // loop, then it's probably better to avoid creating diff checks because
  // they may not be hoisted. We should instead let llvm::addRuntimeChecks
  // do the expanded full range overlap checks, which can be hoisted.
  if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
      isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
    auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
    auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
    const Loop *StartARLoop = SrcStartAR->getLoop();
    if (StartARLoop == SinkStartAR->getLoop() &&
        StartARLoop == InnerLoop->getParentLoop() &&
        // If the diff check would already be loop invariant (due to the
        // recurrences being the same), then we prefer to keep the diff checks
        // because they are cheaper.
        SrcStartAR->getStepRecurrence(*SE) !=
            SinkStartAR->getStepRecurrence(*SE)) {
      LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
                           "cannot be hoisted out of the outer loop\n");
      CanUseDiffCheck = false;
      return;
    }
  }

  LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
                    << "SrcStart: " << *SrcStartInt << '\n'
                    << "SinkStartInt: " << *SinkStartInt << '\n');
  DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
                          Src->NeedsFreeze || Sink->NeedsFreeze);
}

SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
  SmallVector<RuntimePointerCheck, 4> Checks;

  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
    for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
      const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
      const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];

      if (needsChecking(CGI, CGJ)) {
        tryToCreateDiffCheck(CGI, CGJ);
        Checks.push_back(std::make_pair(&CGI, &CGJ));
      }
    }
  }
  return Checks;
}

void RuntimePointerChecking::generateChecks(
    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
  assert(Checks.empty() && "Checks is not empty");
  groupChecks(DepCands, UseDependencies);
  Checks = generateChecks();
}

bool RuntimePointerChecking::needsChecking(
    const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
  for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
    for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
      if (needsChecking(M.Members[I], N.Members[J]))
        return true;
  return false;
}

/// Compare \p I and \p J and return the minimum.
/// Return nullptr in case we couldn't find an answer.
static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
                                   ScalarEvolution *SE) {
  const SCEV *Diff = SE->getMinusSCEV(J, I);
  const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);

  if (!C)
    return nullptr;
  if (C->getValue()->isNegative())
    return J;
  return I;
}

bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
                                         RuntimePointerChecking &RtCheck) {
  return addPointer(
      Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
      RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
      RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
}

bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
                                         const SCEV *End, unsigned AS,
                                         bool NeedsFreeze,
                                         ScalarEvolution &SE) {
  assert(AddressSpace == AS &&
         "all pointers in a checking group must be in the same address space");

  // Compare the starts and ends with the known minimum and maximum
  // of this set. We need to know how we compare against the min/max
  // of the set in order to be able to emit memchecks.
  const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
  if (!Min0)
    return false;

  const SCEV *Min1 = getMinFromExprs(End, High, &SE);
  if (!Min1)
    return false;

  // Update the low bound  expression if we've found a new min value.
  if (Min0 == Start)
    Low = Start;

  // Update the high bound expression if we've found a new max value.
  if (Min1 != End)
    High = End;

  Members.push_back(Index);
  this->NeedsFreeze |= NeedsFreeze;
  return true;
}

void RuntimePointerChecking::groupChecks(
    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
  // We build the groups from dependency candidates equivalence classes
  // because:
  //    - We know that pointers in the same equivalence class share
  //      the same underlying object and therefore there is a chance
  //      that we can compare pointers
  //    - We wouldn't be able to merge two pointers for which we need
  //      to emit a memcheck. The classes in DepCands are already
  //      conveniently built such that no two pointers in the same
  //      class need checking against each other.

  // We use the following (greedy) algorithm to construct the groups
  // For every pointer in the equivalence class:
  //   For each existing group:
  //   - if the difference between this pointer and the min/max bounds
  //     of the group is a constant, then make the pointer part of the
  //     group and update the min/max bounds of that group as required.

  CheckingGroups.clear();

  // If we need to check two pointers to the same underlying object
  // with a non-constant difference, we shouldn't perform any pointer
  // grouping with those pointers. This is because we can easily get
  // into cases where the resulting check would return false, even when
  // the accesses are safe.
  //
  // The following example shows this:
  // for (i = 0; i < 1000; ++i)
  //   a[5000 + i * m] = a[i] + a[i + 9000]
  //
  // Here grouping gives a check of (5000, 5000 + 1000 * m) against
  // (0, 10000) which is always false. However, if m is 1, there is no
  // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
  // us to perform an accurate check in this case.
  //
  // The above case requires that we have an UnknownDependence between
  // accesses to the same underlying object. This cannot happen unless
  // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
  // is also false. In this case we will use the fallback path and create
  // separate checking groups for all pointers.

  // If we don't have the dependency partitions, construct a new
  // checking pointer group for each pointer. This is also required
  // for correctness, because in this case we can have checking between
  // pointers to the same underlying object.
  if (!UseDependencies) {
    for (unsigned I = 0; I < Pointers.size(); ++I)
      CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
    return;
  }

  unsigned TotalComparisons = 0;

  DenseMap<Value *, SmallVector<unsigned>> PositionMap;
  for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
    auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}});
    Iter.first->second.push_back(Index);
  }

  // We need to keep track of what pointers we've already seen so we
  // don't process them twice.
  SmallSet<unsigned, 2> Seen;

  // Go through all equivalence classes, get the "pointer check groups"
  // and add them to the overall solution. We use the order in which accesses
  // appear in 'Pointers' to enforce determinism.
  for (unsigned I = 0; I < Pointers.size(); ++I) {
    // We've seen this pointer before, and therefore already processed
    // its equivalence class.
    if (Seen.count(I))
      continue;

    MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
                                           Pointers[I].IsWritePtr);

    SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
    auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));

    // Because DepCands is constructed by visiting accesses in the order in
    // which they appear in alias sets (which is deterministic) and the
    // iteration order within an equivalence class member is only dependent on
    // the order in which unions and insertions are performed on the
    // equivalence class, the iteration order is deterministic.
    for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
         MI != ME; ++MI) {
      auto PointerI = PositionMap.find(MI->getPointer());
      assert(PointerI != PositionMap.end() &&
             "pointer in equivalence class not found in PositionMap");
      for (unsigned Pointer : PointerI->second) {
        bool Merged = false;
        // Mark this pointer as seen.
        Seen.insert(Pointer);

        // Go through all the existing sets and see if we can find one
        // which can include this pointer.
        for (RuntimeCheckingPtrGroup &Group : Groups) {
          // Don't perform more than a certain amount of comparisons.
          // This should limit the cost of grouping the pointers to something
          // reasonable.  If we do end up hitting this threshold, the algorithm
          // will create separate groups for all remaining pointers.
          if (TotalComparisons > MemoryCheckMergeThreshold)
            break;

          TotalComparisons++;

          if (Group.addPointer(Pointer, *this)) {
            Merged = true;
            break;
          }
        }

        if (!Merged)
          // We couldn't add this pointer to any existing set or the threshold
          // for the number of comparisons has been reached. Create a new group
          // to hold the current pointer.
          Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
      }
    }

    // We've computed the grouped checks for this partition.
    // Save the results and continue with the next one.
    llvm::copy(Groups, std::back_inserter(CheckingGroups));
  }
}

bool RuntimePointerChecking::arePointersInSamePartition(
    const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
    unsigned PtrIdx2) {
  return (PtrToPartition[PtrIdx1] != -1 &&
          PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
}

bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
  const PointerInfo &PointerI = Pointers[I];
  const PointerInfo &PointerJ = Pointers[J];

  // No need to check if two readonly pointers intersect.
  if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
    return false;

  // Only need to check pointers between two different dependency sets.
  if (PointerI.DependencySetId == PointerJ.DependencySetId)
    return false;

  // Only need to check pointers in the same alias set.
  if (PointerI.AliasSetId != PointerJ.AliasSetId)
    return false;

  return true;
}

void RuntimePointerChecking::printChecks(
    raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
    unsigned Depth) const {
  unsigned N = 0;
  for (const auto &Check : Checks) {
    const auto &First = Check.first->Members, &Second = Check.second->Members;

    OS.indent(Depth) << "Check " << N++ << ":\n";

    OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
    for (unsigned K = 0; K < First.size(); ++K)
      OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";

    OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
    for (unsigned K = 0; K < Second.size(); ++K)
      OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
  }
}

void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {

  OS.indent(Depth) << "Run-time memory checks:\n";
  printChecks(OS, Checks, Depth);

  OS.indent(Depth) << "Grouped accesses:\n";
  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
    const auto &CG = CheckingGroups[I];

    OS.indent(Depth + 2) << "Group " << &CG << ":\n";
    OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
                         << ")\n";
    for (unsigned J = 0; J < CG.Members.size(); ++J) {
      OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
                           << "\n";
    }
  }
}

namespace {

/// Analyses memory accesses in a loop.
///
/// Checks whether run time pointer checks are needed and builds sets for data
/// dependence checking.
class AccessAnalysis {
public:
  /// Read or write access location.
  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;

  AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
                 MemoryDepChecker::DepCandidates &DA,
                 PredicatedScalarEvolution &PSE,
                 SmallPtrSetImpl<MDNode *> &LoopAliasScopes)
      : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
        LoopAliasScopes(LoopAliasScopes) {
    // We're analyzing dependences across loop iterations.
    BAA.enableCrossIterationMode();
  }

  /// Register a load  and whether it is only read from.
  void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
    Value *Ptr = const_cast<Value *>(Loc.Ptr);
    AST.add(adjustLoc(Loc));
    Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
    if (IsReadOnly)
      ReadOnlyPtr.insert(Ptr);
  }

  /// Register a store.
  void addStore(MemoryLocation &Loc, Type *AccessTy) {
    Value *Ptr = const_cast<Value *>(Loc.Ptr);
    AST.add(adjustLoc(Loc));
    Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
  }

  /// Check if we can emit a run-time no-alias check for \p Access.
  ///
  /// Returns true if we can emit a run-time no alias check for \p Access.
  /// If we can check this access, this also adds it to a dependence set and
  /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
  /// we will attempt to use additional run-time checks in order to get
  /// the bounds of the pointer.
  bool createCheckForAccess(RuntimePointerChecking &RtCheck,
                            MemAccessInfo Access, Type *AccessTy,
                            const DenseMap<Value *, const SCEV *> &Strides,
                            DenseMap<Value *, unsigned> &DepSetId,
                            Loop *TheLoop, unsigned &RunningDepId,
                            unsigned ASId, bool ShouldCheckStride, bool Assume);

  /// Check whether we can check the pointers at runtime for
  /// non-intersection.
  ///
  /// Returns true if we need no check or if we do and we can generate them
  /// (i.e. the pointers have computable bounds).
  bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
                       Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides,
                       Value *&UncomputablePtr, bool ShouldCheckWrap = false);

  /// Goes over all memory accesses, checks whether a RT check is needed
  /// and builds sets of dependent accesses.
  void buildDependenceSets() {
    processMemAccesses();
  }

  /// Initial processing of memory accesses determined that we need to
  /// perform dependency checking.
  ///
  /// Note that this can later be cleared if we retry memcheck analysis without
  /// dependency checking (i.e. FoundNonConstantDistanceDependence).
  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }

  /// We decided that no dependence analysis would be used.  Reset the state.
  void resetDepChecks(MemoryDepChecker &DepChecker) {
    CheckDeps.clear();
    DepChecker.clearDependences();
  }

  MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }

  const DenseMap<Value *, SmallVector<const Value *, 16>> &
  getUnderlyingObjects() {
    return UnderlyingObjects;
  }

private:
  typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;

  /// Adjust the MemoryLocation so that it represents accesses to this
  /// location across all iterations, rather than a single one.
  MemoryLocation adjustLoc(MemoryLocation Loc) const {
    // The accessed location varies within the loop, but remains within the
    // underlying object.
    Loc.Size = LocationSize::beforeOrAfterPointer();
    Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope);
    Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias);
    return Loc;
  }

  /// Drop alias scopes that are only valid within a single loop iteration.
  MDNode *adjustAliasScopeList(MDNode *ScopeList) const {
    if (!ScopeList)
      return nullptr;

    // For the sake of simplicity, drop the whole scope list if any scope is
    // iteration-local.
    if (any_of(ScopeList->operands(), [&](Metadata *Scope) {
          return LoopAliasScopes.contains(cast<MDNode>(Scope));
        }))
      return nullptr;

    return ScopeList;
  }

  /// Go over all memory access and check whether runtime pointer checks
  /// are needed and build sets of dependency check candidates.
  void processMemAccesses();

  /// Map of all accesses. Values are the types used to access memory pointed to
  /// by the pointer.
  PtrAccessMap Accesses;

  /// The loop being checked.
  const Loop *TheLoop;

  /// List of accesses that need a further dependence check.
  MemAccessInfoList CheckDeps;

  /// Set of pointers that are read only.
  SmallPtrSet<Value*, 16> ReadOnlyPtr;

  /// Batched alias analysis results.
  BatchAAResults BAA;

  /// An alias set tracker to partition the access set by underlying object and
  //intrinsic property (such as TBAA metadata).
  AliasSetTracker AST;

  LoopInfo *LI;

  /// Sets of potentially dependent accesses - members of one set share an
  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
  /// dependence check.
  MemoryDepChecker::DepCandidates &DepCands;

  /// Initial processing of memory accesses determined that we may need
  /// to add memchecks.  Perform the analysis to determine the necessary checks.
  ///
  /// Note that, this is different from isDependencyCheckNeeded.  When we retry
  /// memcheck analysis without dependency checking
  /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
  /// cleared while this remains set if we have potentially dependent accesses.
  bool IsRTCheckAnalysisNeeded = false;

  /// The SCEV predicate containing all the SCEV-related assumptions.
  PredicatedScalarEvolution &PSE;

  DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;

  /// Alias scopes that are declared inside the loop, and as such not valid
  /// across iterations.
  SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
};

} // end anonymous namespace

/// Check whether a pointer can participate in a runtime bounds check.
/// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
/// by adding run-time checks (overflow checks) if necessary.
static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
                                const SCEV *PtrScev, Loop *L, bool Assume) {
  // The bounds for loop-invariant pointer is trivial.
  if (PSE.getSE()->isLoopInvariant(PtrScev, L))
    return true;

  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);

  if (!AR && Assume)
    AR = PSE.getAsAddRec(Ptr);

  if (!AR)
    return false;

  return AR->isAffine();
}

/// Check whether a pointer address cannot wrap.
static bool isNoWrap(PredicatedScalarEvolution &PSE,
                     const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy,
                     Loop *L) {
  const SCEV *PtrScev = PSE.getSCEV(Ptr);
  if (PSE.getSE()->isLoopInvariant(PtrScev, L))
    return true;

  int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0);
  if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
    return true;

  return false;
}

static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
                          function_ref<void(Value *)> AddPointer) {
  SmallPtrSet<Value *, 8> Visited;
  SmallVector<Value *> WorkList;
  WorkList.push_back(StartPtr);

  while (!WorkList.empty()) {
    Value *Ptr = WorkList.pop_back_val();
    if (!Visited.insert(Ptr).second)
      continue;
    auto *PN = dyn_cast<PHINode>(Ptr);
    // SCEV does not look through non-header PHIs inside the loop. Such phis
    // can be analyzed by adding separate accesses for each incoming pointer
    // value.
    if (PN && InnermostLoop.contains(PN->getParent()) &&
        PN->getParent() != InnermostLoop.getHeader()) {
      for (const Use &Inc : PN->incoming_values())
        WorkList.push_back(Inc);
    } else
      AddPointer(Ptr);
  }
}

// Walk back through the IR for a pointer, looking for a select like the
// following:
//
//  %offset = select i1 %cmp, i64 %a, i64 %b
//  %addr = getelementptr double, double* %base, i64 %offset
//  %ld = load double, double* %addr, align 8
//
// We won't be able to form a single SCEVAddRecExpr from this since the
// address for each loop iteration depends on %cmp. We could potentially
// produce multiple valid SCEVAddRecExprs, though, and check all of them for
// memory safety/aliasing if needed.
//
// If we encounter some IR we don't yet handle, or something obviously fine
// like a constant, then we just add the SCEV for that term to the list passed
// in by the caller. If we have a node that may potentially yield a valid
// SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
// ourselves before adding to the list.
static void findForkedSCEVs(
    ScalarEvolution *SE, const Loop *L, Value *Ptr,
    SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
    unsigned Depth) {
  // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
  // we've exceeded our limit on recursion, just return whatever we have
  // regardless of whether it can be used for a forked pointer or not, along
  // with an indication of whether it might be a poison or undef value.
  const SCEV *Scev = SE->getSCEV(Ptr);
  if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
      !isa<Instruction>(Ptr) || Depth == 0) {
    ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
    return;
  }

  Depth--;

  auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
    return get<1>(S);
  };

  auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
    switch (Opcode) {
    case Instruction::Add:
      return SE->getAddExpr(L, R);
    case Instruction::Sub:
      return SE->getMinusSCEV(L, R);
    default:
      llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
    }
  };

  Instruction *I = cast<Instruction>(Ptr);
  unsigned Opcode = I->getOpcode();
  switch (Opcode) {
  case Instruction::GetElementPtr: {
    GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
    Type *SourceTy = GEP->getSourceElementType();
    // We only handle base + single offset GEPs here for now.
    // Not dealing with preexisting gathers yet, so no vectors.
    if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
      ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
      break;
    }
    SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
    SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
    findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
    findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);

    // See if we need to freeze our fork...
    bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
                       any_of(OffsetScevs, UndefPoisonCheck);

    // Check that we only have a single fork, on either the base or the offset.
    // Copy the SCEV across for the one without a fork in order to generate
    // the full SCEV for both sides of the GEP.
    if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
      BaseScevs.push_back(BaseScevs[0]);
    else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
      OffsetScevs.push_back(OffsetScevs[0]);
    else {
      ScevList.emplace_back(Scev, NeedsFreeze);
      break;
    }

    // Find the pointer type we need to extend to.
    Type *IntPtrTy = SE->getEffectiveSCEVType(
        SE->getSCEV(GEP->getPointerOperand())->getType());

    // Find the size of the type being pointed to. We only have a single
    // index term (guarded above) so we don't need to index into arrays or
    // structures, just get the size of the scalar value.
    const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);

    // Scale up the offsets by the size of the type, then add to the bases.
    const SCEV *Scaled1 = SE->getMulExpr(
        Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
    const SCEV *Scaled2 = SE->getMulExpr(
        Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
    ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
                          NeedsFreeze);
    ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
                          NeedsFreeze);
    break;
  }
  case Instruction::Select: {
    SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
    // A select means we've found a forked pointer, but we currently only
    // support a single select per pointer so if there's another behind this
    // then we just bail out and return the generic SCEV.
    findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
    findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
    if (ChildScevs.size() == 2) {
      ScevList.push_back(ChildScevs[0]);
      ScevList.push_back(ChildScevs[1]);
    } else
      ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
    break;
  }
  case Instruction::PHI: {
    SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
    // A phi means we've found a forked pointer, but we currently only
    // support a single phi per pointer so if there's another behind this
    // then we just bail out and return the generic SCEV.
    if (I->getNumOperands() == 2) {
      findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
      findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
    }
    if (ChildScevs.size() == 2) {
      ScevList.push_back(ChildScevs[0]);
      ScevList.push_back(ChildScevs[1]);
    } else
      ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
    break;
  }
  case Instruction::Add:
  case Instruction::Sub: {
    SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
    SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
    findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
    findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);

    // See if we need to freeze our fork...
    bool NeedsFreeze =
        any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);

    // Check that we only have a single fork, on either the left or right side.
    // Copy the SCEV across for the one without a fork in order to generate
    // the full SCEV for both sides of the BinOp.
    if (LScevs.size() == 2 && RScevs.size() == 1)
      RScevs.push_back(RScevs[0]);
    else if (RScevs.size() == 2 && LScevs.size() == 1)
      LScevs.push_back(LScevs[0]);
    else {
      ScevList.emplace_back(Scev, NeedsFreeze);
      break;
    }

    ScevList.emplace_back(
        GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
        NeedsFreeze);
    ScevList.emplace_back(
        GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
        NeedsFreeze);
    break;
  }
  default:
    // Just return the current SCEV if we haven't handled the instruction yet.
    LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
    ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
    break;
  }
}

static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
findForkedPointer(PredicatedScalarEvolution &PSE,
                  const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr,
                  const Loop *L) {
  ScalarEvolution *SE = PSE.getSE();
  assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
  SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
  findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);

  // For now, we will only accept a forked pointer with two possible SCEVs
  // that are either SCEVAddRecExprs or loop invariant.
  if (Scevs.size() == 2 &&
      (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
       SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
      (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
       SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
    LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
    LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
    LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
    return Scevs;
  }

  return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
}

bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
                                          MemAccessInfo Access, Type *AccessTy,
                                          const DenseMap<Value *, const SCEV *> &StridesMap,
                                          DenseMap<Value *, unsigned> &DepSetId,
                                          Loop *TheLoop, unsigned &RunningDepId,
                                          unsigned ASId, bool ShouldCheckWrap,
                                          bool Assume) {
  Value *Ptr = Access.getPointer();

  SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
      findForkedPointer(PSE, StridesMap, Ptr, TheLoop);

  for (auto &P : TranslatedPtrs) {
    const SCEV *PtrExpr = get<0>(P);
    if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
      return false;

    // When we run after a failing dependency check we have to make sure
    // we don't have wrapping pointers.
    if (ShouldCheckWrap) {
      // Skip wrap checking when translating pointers.
      if (TranslatedPtrs.size() > 1)
        return false;

      if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
        auto *Expr = PSE.getSCEV(Ptr);
        if (!Assume || !isa<SCEVAddRecExpr>(Expr))
          return false;
        PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
      }
    }
    // If there's only one option for Ptr, look it up after bounds and wrap
    // checking, because assumptions might have been added to PSE.
    if (TranslatedPtrs.size() == 1)
      TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
                           false};
  }

  for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
    // The id of the dependence set.
    unsigned DepId;

    if (isDependencyCheckNeeded()) {
      Value *Leader = DepCands.getLeaderValue(Access).getPointer();
      unsigned &LeaderId = DepSetId[Leader];
      if (!LeaderId)
        LeaderId = RunningDepId++;
      DepId = LeaderId;
    } else
      // Each access has its own dependence set.
      DepId = RunningDepId++;

    bool IsWrite = Access.getInt();
    RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
                   NeedsFreeze);
    LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
  }

  return true;
}

bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
                                     ScalarEvolution *SE, Loop *TheLoop,
                                     const DenseMap<Value *, const SCEV *> &StridesMap,
                                     Value *&UncomputablePtr, bool ShouldCheckWrap) {
  // Find pointers with computable bounds. We are going to use this information
  // to place a runtime bound check.
  bool CanDoRT = true;

  bool MayNeedRTCheck = false;
  if (!IsRTCheckAnalysisNeeded) return true;

  bool IsDepCheckNeeded = isDependencyCheckNeeded();

  // We assign a consecutive id to access from different alias sets.
  // Accesses between different groups doesn't need to be checked.
  unsigned ASId = 0;
  for (auto &AS : AST) {
    int NumReadPtrChecks = 0;
    int NumWritePtrChecks = 0;
    bool CanDoAliasSetRT = true;
    ++ASId;
    auto ASPointers = AS.getPointers();

    // We assign consecutive id to access from different dependence sets.
    // Accesses within the same set don't need a runtime check.
    unsigned RunningDepId = 1;
    DenseMap<Value *, unsigned> DepSetId;

    SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;

    // First, count how many write and read accesses are in the alias set. Also
    // collect MemAccessInfos for later.
    SmallVector<MemAccessInfo, 4> AccessInfos;
    for (const Value *Ptr_ : ASPointers) {
      Value *Ptr = const_cast<Value *>(Ptr_);
      bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
      if (IsWrite)
        ++NumWritePtrChecks;
      else
        ++NumReadPtrChecks;
      AccessInfos.emplace_back(Ptr, IsWrite);
    }

    // We do not need runtime checks for this alias set, if there are no writes
    // or a single write and no reads.
    if (NumWritePtrChecks == 0 ||
        (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
      assert((ASPointers.size() <= 1 ||
              all_of(ASPointers,
                     [this](const Value *Ptr) {
                       MemAccessInfo AccessWrite(const_cast<Value *>(Ptr),
                                                 true);
                       return DepCands.findValue(AccessWrite) == DepCands.end();
                     })) &&
             "Can only skip updating CanDoRT below, if all entries in AS "
             "are reads or there is at most 1 entry");
      continue;
    }

    for (auto &Access : AccessInfos) {
      for (const auto &AccessTy : Accesses[Access]) {
        if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
                                  DepSetId, TheLoop, RunningDepId, ASId,
                                  ShouldCheckWrap, false)) {
          LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
                            << *Access.getPointer() << '\n');
          Retries.push_back({Access, AccessTy});
          CanDoAliasSetRT = false;
        }
      }
    }

    // Note that this function computes CanDoRT and MayNeedRTCheck
    // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
    // we have a pointer for which we couldn't find the bounds but we don't
    // actually need to emit any checks so it does not matter.
    //
    // We need runtime checks for this alias set, if there are at least 2
    // dependence sets (in which case RunningDepId > 2) or if we need to re-try
    // any bound checks (because in that case the number of dependence sets is
    // incomplete).
    bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();

    // We need to perform run-time alias checks, but some pointers had bounds
    // that couldn't be checked.
    if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
      // Reset the CanDoSetRt flag and retry all accesses that have failed.
      // We know that we need these checks, so we can now be more aggressive
      // and add further checks if required (overflow checks).
      CanDoAliasSetRT = true;
      for (auto Retry : Retries) {
        MemAccessInfo Access = Retry.first;
        Type *AccessTy = Retry.second;
        if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
                                  DepSetId, TheLoop, RunningDepId, ASId,
                                  ShouldCheckWrap, /*Assume=*/true)) {
          CanDoAliasSetRT = false;
          UncomputablePtr = Access.getPointer();
          break;
        }
      }
    }

    CanDoRT &= CanDoAliasSetRT;
    MayNeedRTCheck |= NeedsAliasSetRTCheck;
    ++ASId;
  }

  // If the pointers that we would use for the bounds comparison have different
  // address spaces, assume the values aren't directly comparable, so we can't
  // use them for the runtime check. We also have to assume they could
  // overlap. In the future there should be metadata for whether address spaces
  // are disjoint.
  unsigned NumPointers = RtCheck.Pointers.size();
  for (unsigned i = 0; i < NumPointers; ++i) {
    for (unsigned j = i + 1; j < NumPointers; ++j) {
      // Only need to check pointers between two different dependency sets.
      if (RtCheck.Pointers[i].DependencySetId ==
          RtCheck.Pointers[j].DependencySetId)
       continue;
      // Only need to check pointers in the same alias set.
      if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
        continue;

      Value *PtrI = RtCheck.Pointers[i].PointerValue;
      Value *PtrJ = RtCheck.Pointers[j].PointerValue;

      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
      if (ASi != ASj) {
        LLVM_DEBUG(
            dbgs() << "LAA: Runtime check would require comparison between"
                      " different address spaces\n");
        return false;
      }
    }
  }

  if (MayNeedRTCheck && CanDoRT)
    RtCheck.generateChecks(DepCands, IsDepCheckNeeded);

  LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
                    << " pointer comparisons.\n");

  // If we can do run-time checks, but there are no checks, no runtime checks
  // are needed. This can happen when all pointers point to the same underlying
  // object for example.
  RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;

  bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
  if (!CanDoRTIfNeeded)
    RtCheck.reset();
  return CanDoRTIfNeeded;
}

void AccessAnalysis::processMemAccesses() {
  // We process the set twice: first we process read-write pointers, last we
  // process read-only pointers. This allows us to skip dependence tests for
  // read-only pointers.

  LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
  LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
  LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
  LLVM_DEBUG({
    for (auto A : Accesses)
      dbgs() << "\t" << *A.first.getPointer() << " ("
             << (A.first.getInt()
                     ? "write"
                     : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only"
                                                                : "read"))
             << ")\n";
  });

  // The AliasSetTracker has nicely partitioned our pointers by metadata
  // compatibility and potential for underlying-object overlap. As a result, we
  // only need to check for potential pointer dependencies within each alias
  // set.
  for (const auto &AS : AST) {
    // Note that both the alias-set tracker and the alias sets themselves used
    // ordered collections internally and so the iteration order here is
    // deterministic.
    auto ASPointers = AS.getPointers();

    bool SetHasWrite = false;

    // Map of pointers to last access encountered.
    typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
    UnderlyingObjToAccessMap ObjToLastAccess;

    // Set of access to check after all writes have been processed.
    PtrAccessMap DeferredAccesses;

    // Iterate over each alias set twice, once to process read/write pointers,
    // and then to process read-only pointers.
    for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
      bool UseDeferred = SetIteration > 0;
      PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;

      for (const Value *Ptr_ : ASPointers) {
        Value *Ptr = const_cast<Value *>(Ptr_);

        // For a single memory access in AliasSetTracker, Accesses may contain
        // both read and write, and they both need to be handled for CheckDeps.
        for (const auto &AC : S) {
          if (AC.first.getPointer() != Ptr)
            continue;

          bool IsWrite = AC.first.getInt();

          // If we're using the deferred access set, then it contains only
          // reads.
          bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
          if (UseDeferred && !IsReadOnlyPtr)
            continue;
          // Otherwise, the pointer must be in the PtrAccessSet, either as a
          // read or a write.
          assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
                  S.count(MemAccessInfo(Ptr, false))) &&
                 "Alias-set pointer not in the access set?");

          MemAccessInfo Access(Ptr, IsWrite);
          DepCands.insert(Access);

          // Memorize read-only pointers for later processing and skip them in
          // the first round (they need to be checked after we have seen all
          // write pointers). Note: we also mark pointer that are not
          // consecutive as "read-only" pointers (so that we check
          // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
          if (!UseDeferred && IsReadOnlyPtr) {
            // We only use the pointer keys, the types vector values don't
            // matter.
            DeferredAccesses.insert({Access, {}});
            continue;
          }

          // If this is a write - check other reads and writes for conflicts. If
          // this is a read only check other writes for conflicts (but only if
          // there is no other write to the ptr - this is an optimization to
          // catch "a[i] = a[i] + " without having to do a dependence check).
          if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
            CheckDeps.push_back(Access);
            IsRTCheckAnalysisNeeded = true;
          }

          if (IsWrite)
            SetHasWrite = true;

          // Create sets of pointers connected by a shared alias set and
          // underlying object.
          typedef SmallVector<const Value *, 16> ValueVector;
          ValueVector TempObjects;

          UnderlyingObjects[Ptr] = {};
          SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
          ::getUnderlyingObjects(Ptr, UOs, LI);
          LLVM_DEBUG(dbgs()
                     << "Underlying objects for pointer " << *Ptr << "\n");
          for (const Value *UnderlyingObj : UOs) {
            // nullptr never alias, don't join sets for pointer that have "null"
            // in their UnderlyingObjects list.
            if (isa<ConstantPointerNull>(UnderlyingObj) &&
                !NullPointerIsDefined(
                    TheLoop->getHeader()->getParent(),
                    UnderlyingObj->getType()->getPointerAddressSpace()))
              continue;

            UnderlyingObjToAccessMap::iterator Prev =
                ObjToLastAccess.find(UnderlyingObj);
            if (Prev != ObjToLastAccess.end())
              DepCands.unionSets(Access, Prev->second);

            ObjToLastAccess[UnderlyingObj] = Access;
            LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
          }
        }
      }
    }
  }
}

/// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
/// i.e. monotonically increasing/decreasing.
static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
                           PredicatedScalarEvolution &PSE, const Loop *L) {

  // FIXME: This should probably only return true for NUW.
  if (AR->getNoWrapFlags(SCEV::NoWrapMask))
    return true;

  if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
    return true;

  // Scalar evolution does not propagate the non-wrapping flags to values that
  // are derived from a non-wrapping induction variable because non-wrapping
  // could be flow-sensitive.
  //
  // Look through the potentially overflowing instruction to try to prove
  // non-wrapping for the *specific* value of Ptr.

  // The arithmetic implied by an inbounds GEP can't overflow.
  auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
  if (!GEP || !GEP->isInBounds())
    return false;

  // Make sure there is only one non-const index and analyze that.
  Value *NonConstIndex = nullptr;
  for (Value *Index : GEP->indices())
    if (!isa<ConstantInt>(Index)) {
      if (NonConstIndex)
        return false;
      NonConstIndex = Index;
    }
  if (!NonConstIndex)
    // The recurrence is on the pointer, ignore for now.
    return false;

  // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
  // AddRec using a NSW operation.
  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
    if (OBO->hasNoSignedWrap() &&
        // Assume constant for other the operand so that the AddRec can be
        // easily found.
        isa<ConstantInt>(OBO->getOperand(1))) {
      auto *OpScev = PSE.getSCEV(OBO->getOperand(0));

      if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
        return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
    }

  return false;
}

/// Check whether the access through \p Ptr has a constant stride.
std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE,
                                          Type *AccessTy, Value *Ptr,
                                          const Loop *Lp,
                                          const DenseMap<Value *, const SCEV *> &StridesMap,
                                          bool Assume, bool ShouldCheckWrap) {
  Type *Ty = Ptr->getType();
  assert(Ty->isPointerTy() && "Unexpected non-ptr");

  if (isa<ScalableVectorType>(AccessTy)) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
                      << "\n");
    return std::nullopt;
  }

  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);

  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
  if (Assume && !AR)
    AR = PSE.getAsAddRec(Ptr);

  if (!AR) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
                      << " SCEV: " << *PtrScev << "\n");
    return std::nullopt;
  }

  // The access function must stride over the innermost loop.
  if (Lp != AR->getLoop()) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
                      << *Ptr << " SCEV: " << *AR << "\n");
    return std::nullopt;
  }

  // Check the step is constant.
  const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());

  // Calculate the pointer stride and check if it is constant.
  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
  if (!C) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
                      << " SCEV: " << *AR << "\n");
    return std::nullopt;
  }

  auto &DL = Lp->getHeader()->getModule()->getDataLayout();
  TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
  int64_t Size = AllocSize.getFixedValue();
  const APInt &APStepVal = C->getAPInt();

  // Huge step value - give up.
  if (APStepVal.getBitWidth() > 64)
    return std::nullopt;

  int64_t StepVal = APStepVal.getSExtValue();

  // Strided access.
  int64_t Stride = StepVal / Size;
  int64_t Rem = StepVal % Size;
  if (Rem)
    return std::nullopt;

  if (!ShouldCheckWrap)
    return Stride;

  // The address calculation must not wrap. Otherwise, a dependence could be
  // inverted.
  if (isNoWrapAddRec(Ptr, AR, PSE, Lp))
    return Stride;

  // An inbounds getelementptr that is a AddRec with a unit stride
  // cannot wrap per definition.  If it did, the result would be poison
  // and any memory access dependent on it would be immediate UB
  // when executed.
  if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
      GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1))
    return Stride;

  // If the null pointer is undefined, then a access sequence which would
  // otherwise access it can be assumed not to unsigned wrap.  Note that this
  // assumes the object in memory is aligned to the natural alignment.
  unsigned AddrSpace = Ty->getPointerAddressSpace();
  if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) &&
      (Stride == 1 || Stride == -1))
    return Stride;

  if (Assume) {
    PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
    LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
                      << "LAA:   Pointer: " << *Ptr << "\n"
                      << "LAA:   SCEV: " << *AR << "\n"
                      << "LAA:   Added an overflow assumption\n");
    return Stride;
  }
  LLVM_DEBUG(
      dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
             << *Ptr << " SCEV: " << *AR << "\n");
  return std::nullopt;
}

std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
                                         Type *ElemTyB, Value *PtrB,
                                         const DataLayout &DL,
                                         ScalarEvolution &SE, bool StrictCheck,
                                         bool CheckType) {
  assert(PtrA && PtrB && "Expected non-nullptr pointers.");

  // Make sure that A and B are different pointers.
  if (PtrA == PtrB)
    return 0;

  // Make sure that the element types are the same if required.
  if (CheckType && ElemTyA != ElemTyB)
    return std::nullopt;

  unsigned ASA = PtrA->getType()->getPointerAddressSpace();
  unsigned ASB = PtrB->getType()->getPointerAddressSpace();

  // Check that the address spaces match.
  if (ASA != ASB)
    return std::nullopt;
  unsigned IdxWidth = DL.getIndexSizeInBits(ASA);

  APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
  Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
  Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);

  int Val;
  if (PtrA1 == PtrB1) {
    // Retrieve the address space again as pointer stripping now tracks through
    // `addrspacecast`.
    ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
    ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
    // Check that the address spaces match and that the pointers are valid.
    if (ASA != ASB)
      return std::nullopt;

    IdxWidth = DL.getIndexSizeInBits(ASA);
    OffsetA = OffsetA.sextOrTrunc(IdxWidth);
    OffsetB = OffsetB.sextOrTrunc(IdxWidth);

    OffsetB -= OffsetA;
    Val = OffsetB.getSExtValue();
  } else {
    // Otherwise compute the distance with SCEV between the base pointers.
    const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
    const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
    const auto *Diff =
        dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
    if (!Diff)
      return std::nullopt;
    Val = Diff->getAPInt().getSExtValue();
  }
  int Size = DL.getTypeStoreSize(ElemTyA);
  int Dist = Val / Size;

  // Ensure that the calculated distance matches the type-based one after all
  // the bitcasts removal in the provided pointers.
  if (!StrictCheck || Dist * Size == Val)
    return Dist;
  return std::nullopt;
}

bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
                           const DataLayout &DL, ScalarEvolution &SE,
                           SmallVectorImpl<unsigned> &SortedIndices) {
  assert(llvm::all_of(
             VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
         "Expected list of pointer operands.");
  // Walk over the pointers, and map each of them to an offset relative to
  // first pointer in the array.
  Value *Ptr0 = VL[0];

  using DistOrdPair = std::pair<int64_t, int>;
  auto Compare = llvm::less_first();
  std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
  Offsets.emplace(0, 0);
  int Cnt = 1;
  bool IsConsecutive = true;
  for (auto *Ptr : VL.drop_front()) {
    std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
                                              /*StrictCheck=*/true);
    if (!Diff)
      return false;

    // Check if the pointer with the same offset is found.
    int64_t Offset = *Diff;
    auto Res = Offsets.emplace(Offset, Cnt);
    if (!Res.second)
      return false;
    // Consecutive order if the inserted element is the last one.
    IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end();
    ++Cnt;
  }
  SortedIndices.clear();
  if (!IsConsecutive) {
    // Fill SortedIndices array only if it is non-consecutive.
    SortedIndices.resize(VL.size());
    Cnt = 0;
    for (const std::pair<int64_t, int> &Pair : Offsets) {
      SortedIndices[Cnt] = Pair.second;
      ++Cnt;
    }
  }
  return true;
}

/// Returns true if the memory operations \p A and \p B are consecutive.
bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
                               ScalarEvolution &SE, bool CheckType) {
  Value *PtrA = getLoadStorePointerOperand(A);
  Value *PtrB = getLoadStorePointerOperand(B);
  if (!PtrA || !PtrB)
    return false;
  Type *ElemTyA = getLoadStoreType(A);
  Type *ElemTyB = getLoadStoreType(B);
  std::optional<int> Diff =
      getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
                      /*StrictCheck=*/true, CheckType);
  return Diff && *Diff == 1;
}

void MemoryDepChecker::addAccess(StoreInst *SI) {
  visitPointers(SI->getPointerOperand(), *InnermostLoop,
                [this, SI](Value *Ptr) {
                  Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
                  InstMap.push_back(SI);
                  ++AccessIdx;
                });
}

void MemoryDepChecker::addAccess(LoadInst *LI) {
  visitPointers(LI->getPointerOperand(), *InnermostLoop,
                [this, LI](Value *Ptr) {
                  Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
                  InstMap.push_back(LI);
                  ++AccessIdx;
                });
}

MemoryDepChecker::VectorizationSafetyStatus
MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
  switch (Type) {
  case NoDep:
  case Forward:
  case BackwardVectorizable:
    return VectorizationSafetyStatus::Safe;

  case Unknown:
    return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
  case ForwardButPreventsForwarding:
  case Backward:
  case BackwardVectorizableButPreventsForwarding:
  case IndirectUnsafe:
    return VectorizationSafetyStatus::Unsafe;
  }
  llvm_unreachable("unexpected DepType!");
}

bool MemoryDepChecker::Dependence::isBackward() const {
  switch (Type) {
  case NoDep:
  case Forward:
  case ForwardButPreventsForwarding:
  case Unknown:
  case IndirectUnsafe:
    return false;

  case BackwardVectorizable:
  case Backward:
  case BackwardVectorizableButPreventsForwarding:
    return true;
  }
  llvm_unreachable("unexpected DepType!");
}

bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
  return isBackward() || Type == Unknown;
}

bool MemoryDepChecker::Dependence::isForward() const {
  switch (Type) {
  case Forward:
  case ForwardButPreventsForwarding:
    return true;

  case NoDep:
  case Unknown:
  case BackwardVectorizable:
  case Backward:
  case BackwardVectorizableButPreventsForwarding:
  case IndirectUnsafe:
    return false;
  }
  llvm_unreachable("unexpected DepType!");
}

bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
                                                    uint64_t TypeByteSize) {
  // If loads occur at a distance that is not a multiple of a feasible vector
  // factor store-load forwarding does not take place.
  // Positive dependences might cause troubles because vectorizing them might
  // prevent store-load forwarding making vectorized code run a lot slower.
  //   a[i] = a[i-3] ^ a[i-8];
  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
  //   hence on your typical architecture store-load forwarding does not take
  //   place. Vectorizing in such cases does not make sense.
  // Store-load forwarding distance.

  // After this many iterations store-to-load forwarding conflicts should not
  // cause any slowdowns.
  const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
  // Maximum vector factor.
  uint64_t MaxVFWithoutSLForwardIssues = std::min(
      VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);

  // Compute the smallest VF at which the store and load would be misaligned.
  for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
       VF *= 2) {
    // If the number of vector iteration between the store and the load are
    // small we could incur conflicts.
    if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
      MaxVFWithoutSLForwardIssues = (VF >> 1);
      break;
    }
  }

  if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
    LLVM_DEBUG(
        dbgs() << "LAA: Distance " << Distance
               << " that could cause a store-load forwarding conflict\n");
    return true;
  }

  if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
      MaxVFWithoutSLForwardIssues !=
          VectorizerParams::MaxVectorWidth * TypeByteSize)
    MinDepDistBytes = MaxVFWithoutSLForwardIssues;
  return false;
}

void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
  if (Status < S)
    Status = S;
}

/// Given a dependence-distance \p Dist between two
/// memory accesses, that have the same stride whose absolute value is given
/// in \p Stride, and that have the same type size \p TypeByteSize,
/// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
/// possible to prove statically that the dependence distance is larger
/// than the range that the accesses will travel through the execution of
/// the loop. If so, return true; false otherwise. This is useful for
/// example in loops such as the following (PR31098):
///     for (i = 0; i < D; ++i) {
///                = out[i];
///       out[i+D] =
///     }
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
                                     const SCEV &BackedgeTakenCount,
                                     const SCEV &Dist, uint64_t Stride,
                                     uint64_t TypeByteSize) {

  // If we can prove that
  //      (**) |Dist| > BackedgeTakenCount * Step
  // where Step is the absolute stride of the memory accesses in bytes,
  // then there is no dependence.
  //
  // Rationale:
  // We basically want to check if the absolute distance (|Dist/Step|)
  // is >= the loop iteration count (or > BackedgeTakenCount).
  // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
  // Section 4.2.1); Note, that for vectorization it is sufficient to prove
  // that the dependence distance is >= VF; This is checked elsewhere.
  // But in some cases we can prune dependence distances early, and
  // even before selecting the VF, and without a runtime test, by comparing
  // the distance against the loop iteration count. Since the vectorized code
  // will be executed only if LoopCount >= VF, proving distance >= LoopCount
  // also guarantees that distance >= VF.
  //
  const uint64_t ByteStride = Stride * TypeByteSize;
  const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
  const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);

  const SCEV *CastedDist = &Dist;
  const SCEV *CastedProduct = Product;
  uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
  uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());

  // The dependence distance can be positive/negative, so we sign extend Dist;
  // The multiplication of the absolute stride in bytes and the
  // backedgeTakenCount is non-negative, so we zero extend Product.
  if (DistTypeSizeBits > ProductTypeSizeBits)
    CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
  else
    CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());

  // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
  // (If so, then we have proven (**) because |Dist| >= Dist)
  const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
  if (SE.isKnownPositive(Minus))
    return true;

  // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
  // (If so, then we have proven (**) because |Dist| >= -1*Dist)
  const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
  Minus = SE.getMinusSCEV(NegDist, CastedProduct);
  if (SE.isKnownPositive(Minus))
    return true;

  return false;
}

/// Check the dependence for two accesses with the same stride \p Stride.
/// \p Distance is the positive distance and \p TypeByteSize is type size in
/// bytes.
///
/// \returns true if they are independent.
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
                                          uint64_t TypeByteSize) {
  assert(Stride > 1 && "The stride must be greater than 1");
  assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
  assert(Distance > 0 && "The distance must be non-zero");

  // Skip if the distance is not multiple of type byte size.
  if (Distance % TypeByteSize)
    return false;

  uint64_t ScaledDist = Distance / TypeByteSize;

  // No dependence if the scaled distance is not multiple of the stride.
  // E.g.
  //      for (i = 0; i < 1024 ; i += 4)
  //        A[i+2] = A[i] + 1;
  //
  // Two accesses in memory (scaled distance is 2, stride is 4):
  //     | A[0] |      |      |      | A[4] |      |      |      |
  //     |      |      | A[2] |      |      |      | A[6] |      |
  //
  // E.g.
  //      for (i = 0; i < 1024 ; i += 3)
  //        A[i+4] = A[i] + 1;
  //
  // Two accesses in memory (scaled distance is 4, stride is 3):
  //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
  //     |      |      |      |      | A[4] |      |      | A[7] |      |
  return ScaledDist % Stride;
}

/// Returns true if any of the underlying objects has a loop varying address,
/// i.e. may change in \p L.
static bool
isLoopVariantIndirectAddress(ArrayRef<const Value *> UnderlyingObjects,
                             ScalarEvolution &SE, const Loop *L) {
  return any_of(UnderlyingObjects, [&SE, L](const Value *UO) {
    return !SE.isLoopInvariant(SE.getSCEV(const_cast<Value *>(UO)), L);
  });
}

// Get the dependence distance, stride, type size in whether i is a write for
// the dependence between A and B. Returns a DepType, if we can prove there's
// no dependence or the analysis fails. Outlined to lambda to limit he scope
// of various temporary variables, like A/BPtr, StrideA/BPtr and others.
// Returns either the dependence result, if it could already be determined, or a
// tuple with (Distance, Stride, TypeSize, AIsWrite, BIsWrite).
static std::variant<MemoryDepChecker::Dependence::DepType,
                    std::tuple<const SCEV *, uint64_t, uint64_t, bool, bool>>
getDependenceDistanceStrideAndSize(
    const AccessAnalysis::MemAccessInfo &A, Instruction *AInst,
    const AccessAnalysis::MemAccessInfo &B, Instruction *BInst,
    const DenseMap<Value *, const SCEV *> &Strides,
    const DenseMap<Value *, SmallVector<const Value *, 16>> &UnderlyingObjects,
    PredicatedScalarEvolution &PSE, const Loop *InnermostLoop) {
  auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
  auto &SE = *PSE.getSE();
  auto [APtr, AIsWrite] = A;
  auto [BPtr, BIsWrite] = B;

  // Two reads are independent.
  if (!AIsWrite && !BIsWrite)
    return MemoryDepChecker::Dependence::NoDep;

  Type *ATy = getLoadStoreType(AInst);
  Type *BTy = getLoadStoreType(BInst);

  // We cannot check pointers in different address spaces.
  if (APtr->getType()->getPointerAddressSpace() !=
      BPtr->getType()->getPointerAddressSpace())
    return MemoryDepChecker::Dependence::Unknown;

  int64_t StrideAPtr =
      getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true).value_or(0);
  int64_t StrideBPtr =
      getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true).value_or(0);

  const SCEV *Src = PSE.getSCEV(APtr);
  const SCEV *Sink = PSE.getSCEV(BPtr);

  // If the induction step is negative we have to invert source and sink of the
  // dependence when measuring the distance between them. We should not swap
  // AIsWrite with BIsWrite, as their uses expect them in program order.
  if (StrideAPtr < 0) {
    std::swap(Src, Sink);
    std::swap(AInst, BInst);
  }

  const SCEV *Dist = SE.getMinusSCEV(Sink, Src);

  LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
                    << "(Induction step: " << StrideAPtr << ")\n");
  LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
                    << ": " << *Dist << "\n");

  // Needs accesses where the addresses of the accessed underlying objects do
  // not change within the loop.
  if (isLoopVariantIndirectAddress(UnderlyingObjects.find(APtr)->second, SE,
                                   InnermostLoop) ||
      isLoopVariantIndirectAddress(UnderlyingObjects.find(BPtr)->second, SE,
                                   InnermostLoop))
    return MemoryDepChecker::Dependence::IndirectUnsafe;

  // Need accesses with constant stride. We don't want to vectorize
  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap
  // in the address space.
  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr) {
    LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
    return MemoryDepChecker::Dependence::Unknown;
  }

  uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
  bool HasSameSize =
      DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
  if (!HasSameSize)
    TypeByteSize = 0;
  uint64_t Stride = std::abs(StrideAPtr);
  return std::make_tuple(Dist, Stride, TypeByteSize, AIsWrite, BIsWrite);
}

MemoryDepChecker::Dependence::DepType MemoryDepChecker::isDependent(
    const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B,
    unsigned BIdx, const DenseMap<Value *, const SCEV *> &Strides,
    const DenseMap<Value *, SmallVector<const Value *, 16>>
        &UnderlyingObjects) {
  assert(AIdx < BIdx && "Must pass arguments in program order");

  // Get the dependence distance, stride, type size and what access writes for
  // the dependence between A and B.
  auto Res = getDependenceDistanceStrideAndSize(
      A, InstMap[AIdx], B, InstMap[BIdx], Strides, UnderlyingObjects, PSE,
      InnermostLoop);
  if (std::holds_alternative<Dependence::DepType>(Res))
    return std::get<Dependence::DepType>(Res);

  const auto &[Dist, Stride, TypeByteSize, AIsWrite, BIsWrite] =
      std::get<std::tuple<const SCEV *, uint64_t, uint64_t, bool, bool>>(Res);
  bool HasSameSize = TypeByteSize > 0;

  ScalarEvolution &SE = *PSE.getSE();
  auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
  if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize &&
      isSafeDependenceDistance(DL, SE, *(PSE.getBackedgeTakenCount()), *Dist,
                               Stride, TypeByteSize))
    return Dependence::NoDep;

  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
  if (!C) {
    LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
    FoundNonConstantDistanceDependence = true;
    return Dependence::Unknown;
  }

  const APInt &Val = C->getAPInt();
  int64_t Distance = Val.getSExtValue();

  // Attempt to prove strided accesses independent.
  if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize &&
      areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
    LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
    return Dependence::NoDep;
  }

  // Negative distances are not plausible dependencies.
  if (Val.isNegative()) {
    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
    // There is no need to update MaxSafeVectorWidthInBits after call to
    // couldPreventStoreLoadForward, even if it changed MinDepDistBytes,
    // since a forward dependency will allow vectorization using any width.
    if (IsTrueDataDependence && EnableForwardingConflictDetection &&
        (!HasSameSize || couldPreventStoreLoadForward(Val.abs().getZExtValue(),
                                                      TypeByteSize))) {
      LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
      return Dependence::ForwardButPreventsForwarding;
    }

    LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
    return Dependence::Forward;
  }

  // Write to the same location with the same size.
  if (Val == 0) {
    if (HasSameSize)
      return Dependence::Forward;
    LLVM_DEBUG(
        dbgs() << "LAA: Zero dependence difference but different type sizes\n");
    return Dependence::Unknown;
  }

  assert(Val.isStrictlyPositive() && "Expect a positive value");

  if (!HasSameSize) {
    LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
                         "different type sizes\n");
    return Dependence::Unknown;
  }

  // Bail out early if passed-in parameters make vectorization not feasible.
  unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
                           VectorizerParams::VectorizationFactor : 1);
  unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
                           VectorizerParams::VectorizationInterleave : 1);
  // The minimum number of iterations for a vectorized/unrolled version.
  unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);

  // It's not vectorizable if the distance is smaller than the minimum distance
  // needed for a vectroized/unrolled version. Vectorizing one iteration in
  // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
  // TypeByteSize (No need to plus the last gap distance).
  //
  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
  //      foo(int *A) {
  //        int *B = (int *)((char *)A + 14);
  //        for (i = 0 ; i < 1024 ; i += 2)
  //          B[i] = A[i] + 1;
  //      }
  //
  // Two accesses in memory (stride is 2):
  //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
  //                              | B[0] |      | B[2] |      | B[4] |
  //
  // Distance needs for vectorizing iterations except the last iteration:
  // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
  // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
  //
  // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
  // 12, which is less than distance.
  //
  // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
  // the minimum distance needed is 28, which is greater than distance. It is
  // not safe to do vectorization.
  uint64_t MinDistanceNeeded =
      TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
  if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
    LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
                      << Distance << '\n');
    return Dependence::Backward;
  }

  // Unsafe if the minimum distance needed is greater than smallest dependence
  // distance distance.
  if (MinDistanceNeeded > MinDepDistBytes) {
    LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
                      << MinDistanceNeeded << " size in bytes\n");
    return Dependence::Backward;
  }

  // Positive distance bigger than max vectorization factor.
  // FIXME: Should use max factor instead of max distance in bytes, which could
  // not handle different types.
  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
  //      void foo (int *A, char *B) {
  //        for (unsigned i = 0; i < 1024; i++) {
  //          A[i+2] = A[i] + 1;
  //          B[i+2] = B[i] + 1;
  //        }
  //      }
  //
  // This case is currently unsafe according to the max safe distance. If we
  // analyze the two accesses on array B, the max safe dependence distance
  // is 2. Then we analyze the accesses on array A, the minimum distance needed
  // is 8, which is less than 2 and forbidden vectorization, But actually
  // both A and B could be vectorized by 2 iterations.
  MinDepDistBytes =
      std::min(static_cast<uint64_t>(Distance), MinDepDistBytes);

  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
  uint64_t MinDepDistBytesOld = MinDepDistBytes;
  if (IsTrueDataDependence && EnableForwardingConflictDetection &&
      couldPreventStoreLoadForward(Distance, TypeByteSize)) {
    // Sanity check that we didn't update MinDepDistBytes when calling
    // couldPreventStoreLoadForward
    assert(MinDepDistBytes == MinDepDistBytesOld &&
           "An update to MinDepDistBytes requires an update to "
           "MaxSafeVectorWidthInBits");
    (void)MinDepDistBytesOld;
    return Dependence::BackwardVectorizableButPreventsForwarding;
  }

  // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
  // since there is a backwards dependency.
  uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * Stride);
  LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
                    << " with max VF = " << MaxVF << '\n');
  uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
  MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
  return Dependence::BackwardVectorizable;
}

bool MemoryDepChecker::areDepsSafe(
    DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
    const DenseMap<Value *, const SCEV *> &Strides,
    const DenseMap<Value *, SmallVector<const Value *, 16>>
        &UnderlyingObjects) {

  MinDepDistBytes = -1;
  SmallPtrSet<MemAccessInfo, 8> Visited;
  for (MemAccessInfo CurAccess : CheckDeps) {
    if (Visited.count(CurAccess))
      continue;

    // Get the relevant memory access set.
    EquivalenceClasses<MemAccessInfo>::iterator I =
      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));

    // Check accesses within this set.
    EquivalenceClasses<MemAccessInfo>::member_iterator AI =
        AccessSets.member_begin(I);
    EquivalenceClasses<MemAccessInfo>::member_iterator AE =
        AccessSets.member_end();

    // Check every access pair.
    while (AI != AE) {
      Visited.insert(*AI);
      bool AIIsWrite = AI->getInt();
      // Check loads only against next equivalent class, but stores also against
      // other stores in the same equivalence class - to the same address.
      EquivalenceClasses<MemAccessInfo>::member_iterator OI =
          (AIIsWrite ? AI : std::next(AI));
      while (OI != AE) {
        // Check every accessing instruction pair in program order.
        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
          // Scan all accesses of another equivalence class, but only the next
          // accesses of the same equivalent class.
          for (std::vector<unsigned>::iterator
                   I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
                   I2E = (OI == AI ? I1E : Accesses[*OI].end());
               I2 != I2E; ++I2) {
            auto A = std::make_pair(&*AI, *I1);
            auto B = std::make_pair(&*OI, *I2);

            assert(*I1 != *I2);
            if (*I1 > *I2)
              std::swap(A, B);

            Dependence::DepType Type =
                isDependent(*A.first, A.second, *B.first, B.second, Strides,
                            UnderlyingObjects);
            mergeInStatus(Dependence::isSafeForVectorization(Type));

            // Gather dependences unless we accumulated MaxDependences
            // dependences.  In that case return as soon as we find the first
            // unsafe dependence.  This puts a limit on this quadratic
            // algorithm.
            if (RecordDependences) {
              if (Type != Dependence::NoDep)
                Dependences.push_back(Dependence(A.second, B.second, Type));

              if (Dependences.size() >= MaxDependences) {
                RecordDependences = false;
                Dependences.clear();
                LLVM_DEBUG(dbgs()
                           << "Too many dependences, stopped recording\n");
              }
            }
            if (!RecordDependences && !isSafeForVectorization())
              return false;
          }
        ++OI;
      }
      AI++;
    }
  }

  LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
  return isSafeForVectorization();
}

SmallVector<Instruction *, 4>
MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
  MemAccessInfo Access(Ptr, isWrite);
  auto &IndexVector = Accesses.find(Access)->second;

  SmallVector<Instruction *, 4> Insts;
  transform(IndexVector,
                 std::back_inserter(Insts),
                 [&](unsigned Idx) { return this->InstMap[Idx]; });
  return Insts;
}

const char *MemoryDepChecker::Dependence::DepName[] = {
    "NoDep",
    "Unknown",
    "IndirectUnsafe",
    "Forward",
    "ForwardButPreventsForwarding",
    "Backward",
    "BackwardVectorizable",
    "BackwardVectorizableButPreventsForwarding"};

void MemoryDepChecker::Dependence::print(
    raw_ostream &OS, unsigned Depth,
    const SmallVectorImpl<Instruction *> &Instrs) const {
  OS.indent(Depth) << DepName[Type] << ":\n";
  OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
  OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
}

bool LoopAccessInfo::canAnalyzeLoop() {
  // We need to have a loop header.
  LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
                    << TheLoop->getHeader()->getParent()->getName() << ": "
                    << TheLoop->getHeader()->getName() << '\n');

  // We can only analyze innermost loops.
  if (!TheLoop->isInnermost()) {
    LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
    recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
    return false;
  }

  // We must have a single backedge.
  if (TheLoop->getNumBackEdges() != 1) {
    LLVM_DEBUG(
        dbgs() << "LAA: loop control flow is not understood by analyzer\n");
    recordAnalysis("CFGNotUnderstood")
        << "loop control flow is not understood by analyzer";
    return false;
  }

  // ScalarEvolution needs to be able to find the exit count.
  const SCEV *ExitCount = PSE->getBackedgeTakenCount();
  if (isa<SCEVCouldNotCompute>(ExitCount)) {
    recordAnalysis("CantComputeNumberOfIterations")
        << "could not determine number of loop iterations";
    LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
    return false;
  }

  return true;
}

void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
                                 const TargetLibraryInfo *TLI,
                                 DominatorTree *DT) {
  // Holds the Load and Store instructions.
  SmallVector<LoadInst *, 16> Loads;
  SmallVector<StoreInst *, 16> Stores;
  SmallPtrSet<MDNode *, 8> LoopAliasScopes;

  // Holds all the different accesses in the loop.
  unsigned NumReads = 0;
  unsigned NumReadWrites = 0;

  bool HasComplexMemInst = false;

  // A runtime check is only legal to insert if there are no convergent calls.
  HasConvergentOp = false;

  PtrRtChecking->Pointers.clear();
  PtrRtChecking->Need = false;

  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();

  const bool EnableMemAccessVersioningOfLoop =
      EnableMemAccessVersioning &&
      !TheLoop->getHeader()->getParent()->hasOptSize();

  // Traverse blocks in fixed RPOT order, regardless of their storage in the
  // loop info, as it may be arbitrary.
  LoopBlocksRPO RPOT(TheLoop);
  RPOT.perform(LI);
  for (BasicBlock *BB : RPOT) {
    // Scan the BB and collect legal loads and stores. Also detect any
    // convergent instructions.
    for (Instruction &I : *BB) {
      if (auto *Call = dyn_cast<CallBase>(&I)) {
        if (Call->isConvergent())
          HasConvergentOp = true;
      }

      // With both a non-vectorizable memory instruction and a convergent
      // operation, found in this loop, no reason to continue the search.
      if (HasComplexMemInst && HasConvergentOp) {
        CanVecMem = false;
        return;
      }

      // Avoid hitting recordAnalysis multiple times.
      if (HasComplexMemInst)
        continue;

      // Record alias scopes defined inside the loop.
      if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
        for (Metadata *Op : Decl->getScopeList()->operands())
          LoopAliasScopes.insert(cast<MDNode>(Op));

      // Many math library functions read the rounding mode. We will only
      // vectorize a loop if it contains known function calls that don't set
      // the flag. Therefore, it is safe to ignore this read from memory.
      auto *Call = dyn_cast<CallInst>(&I);
      if (Call && getVectorIntrinsicIDForCall(Call, TLI))
        continue;

      // If this is a load, save it. If this instruction can read from memory
      // but is not a load, then we quit. Notice that we don't handle function
      // calls that read or write.
      if (I.mayReadFromMemory()) {
        // If the function has an explicit vectorized counterpart, we can safely
        // assume that it can be vectorized.
        if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
            !VFDatabase::getMappings(*Call).empty())
          continue;

        auto *Ld = dyn_cast<LoadInst>(&I);
        if (!Ld) {
          recordAnalysis("CantVectorizeInstruction", Ld)
            << "instruction cannot be vectorized";
          HasComplexMemInst = true;
          continue;
        }
        if (!Ld->isSimple() && !IsAnnotatedParallel) {
          recordAnalysis("NonSimpleLoad", Ld)
              << "read with atomic ordering or volatile read";
          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
          HasComplexMemInst = true;
          continue;
        }
        NumLoads++;
        Loads.push_back(Ld);
        DepChecker->addAccess(Ld);
        if (EnableMemAccessVersioningOfLoop)
          collectStridedAccess(Ld);
        continue;
      }

      // Save 'store' instructions. Abort if other instructions write to memory.
      if (I.mayWriteToMemory()) {
        auto *St = dyn_cast<StoreInst>(&I);
        if (!St) {
          recordAnalysis("CantVectorizeInstruction", St)
              << "instruction cannot be vectorized";
          HasComplexMemInst = true;
          continue;
        }
        if (!St->isSimple() && !IsAnnotatedParallel) {
          recordAnalysis("NonSimpleStore", St)
              << "write with atomic ordering or volatile write";
          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
          HasComplexMemInst = true;
          continue;
        }
        NumStores++;
        Stores.push_back(St);
        DepChecker->addAccess(St);
        if (EnableMemAccessVersioningOfLoop)
          collectStridedAccess(St);
      }
    } // Next instr.
  } // Next block.

  if (HasComplexMemInst) {
    CanVecMem = false;
    return;
  }

  // Now we have two lists that hold the loads and the stores.
  // Next, we find the pointers that they use.

  // Check if we see any stores. If there are no stores, then we don't
  // care if the pointers are *restrict*.
  if (!Stores.size()) {
    LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
    CanVecMem = true;
    return;
  }

  MemoryDepChecker::DepCandidates DependentAccesses;
  AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE,
                          LoopAliasScopes);

  // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
  // multiple times on the same object. If the ptr is accessed twice, once
  // for read and once for write, it will only appear once (on the write
  // list). This is okay, since we are going to check for conflicts between
  // writes and between reads and writes, but not between reads and reads.
  SmallSet<std::pair<Value *, Type *>, 16> Seen;

  // Record uniform store addresses to identify if we have multiple stores
  // to the same address.
  SmallPtrSet<Value *, 16> UniformStores;

  for (StoreInst *ST : Stores) {
    Value *Ptr = ST->getPointerOperand();

    if (isInvariant(Ptr)) {
      // Record store instructions to loop invariant addresses
      StoresToInvariantAddresses.push_back(ST);
      HasDependenceInvolvingLoopInvariantAddress |=
          !UniformStores.insert(Ptr).second;
    }

    // If we did *not* see this pointer before, insert it to  the read-write
    // list. At this phase it is only a 'write' list.
    Type *AccessTy = getLoadStoreType(ST);
    if (Seen.insert({Ptr, AccessTy}).second) {
      ++NumReadWrites;

      MemoryLocation Loc = MemoryLocation::get(ST);
      // The TBAA metadata could have a control dependency on the predication
      // condition, so we cannot rely on it when determining whether or not we
      // need runtime pointer checks.
      if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
        Loc.AATags.TBAA = nullptr;

      visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
                    [&Accesses, AccessTy, Loc](Value *Ptr) {
                      MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
                      Accesses.addStore(NewLoc, AccessTy);
                    });
    }
  }

  if (IsAnnotatedParallel) {
    LLVM_DEBUG(
        dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
               << "checks.\n");
    CanVecMem = true;
    return;
  }

  for (LoadInst *LD : Loads) {
    Value *Ptr = LD->getPointerOperand();
    // If we did *not* see this pointer before, insert it to the
    // read list. If we *did* see it before, then it is already in
    // the read-write list. This allows us to vectorize expressions
    // such as A[i] += x;  Because the address of A[i] is a read-write
    // pointer. This only works if the index of A[i] is consecutive.
    // If the address of i is unknown (for example A[B[i]]) then we may
    // read a few words, modify, and write a few words, and some of the
    // words may be written to the same address.
    bool IsReadOnlyPtr = false;
    Type *AccessTy = getLoadStoreType(LD);
    if (Seen.insert({Ptr, AccessTy}).second ||
        !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
      ++NumReads;
      IsReadOnlyPtr = true;
    }

    // See if there is an unsafe dependency between a load to a uniform address and
    // store to the same uniform address.
    if (UniformStores.count(Ptr)) {
      LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
                           "load and uniform store to the same address!\n");
      HasDependenceInvolvingLoopInvariantAddress = true;
    }

    MemoryLocation Loc = MemoryLocation::get(LD);
    // The TBAA metadata could have a control dependency on the predication
    // condition, so we cannot rely on it when determining whether or not we
    // need runtime pointer checks.
    if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
      Loc.AATags.TBAA = nullptr;

    visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
                  [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
                    MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
                    Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
                  });
  }

  // If we write (or read-write) to a single destination and there are no
  // other reads in this loop then is it safe to vectorize.
  if (NumReadWrites == 1 && NumReads == 0) {
    LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
    CanVecMem = true;
    return;
  }

  // Build dependence sets and check whether we need a runtime pointer bounds
  // check.
  Accesses.buildDependenceSets();

  // Find pointers with computable bounds. We are going to use this information
  // to place a runtime bound check.
  Value *UncomputablePtr = nullptr;
  bool CanDoRTIfNeeded =
      Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
                               SymbolicStrides, UncomputablePtr, false);
  if (!CanDoRTIfNeeded) {
    auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
    recordAnalysis("CantIdentifyArrayBounds", I) 
        << "cannot identify array bounds";
    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
                      << "the array bounds.\n");
    CanVecMem = false;
    return;
  }

  LLVM_DEBUG(
    dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");

  CanVecMem = true;
  if (Accesses.isDependencyCheckNeeded()) {
    LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
    CanVecMem = DepChecker->areDepsSafe(
        DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides,
        Accesses.getUnderlyingObjects());

    if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
      LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");

      // Clear the dependency checks. We assume they are not needed.
      Accesses.resetDepChecks(*DepChecker);

      PtrRtChecking->reset();
      PtrRtChecking->Need = true;

      auto *SE = PSE->getSE();
      UncomputablePtr = nullptr;
      CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
          *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);

      // Check that we found the bounds for the pointer.
      if (!CanDoRTIfNeeded) {
        auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
        recordAnalysis("CantCheckMemDepsAtRunTime", I)
            << "cannot check memory dependencies at runtime";
        LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
        CanVecMem = false;
        return;
      }

      CanVecMem = true;
    }
  }

  if (HasConvergentOp) {
    recordAnalysis("CantInsertRuntimeCheckWithConvergent")
      << "cannot add control dependency to convergent operation";
    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
                         "would be needed with a convergent operation\n");
    CanVecMem = false;
    return;
  }

  if (CanVecMem)
    LLVM_DEBUG(
        dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
               << (PtrRtChecking->Need ? "" : " don't")
               << " need runtime memory checks.\n");
  else
    emitUnsafeDependenceRemark();
}

void LoopAccessInfo::emitUnsafeDependenceRemark() {
  auto Deps = getDepChecker().getDependences();
  if (!Deps)
    return;
  auto Found = llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
    return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
           MemoryDepChecker::VectorizationSafetyStatus::Safe;
  });
  if (Found == Deps->end())
    return;
  MemoryDepChecker::Dependence Dep = *Found;

  LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");

  // Emit remark for first unsafe dependence
  bool HasForcedDistribution = false;
  std::optional<const MDOperand *> Value =
      findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
  if (Value) {
    const MDOperand *Op = *Value;
    assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
    HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
  }

  const std::string Info =
      HasForcedDistribution
          ? "unsafe dependent memory operations in loop."
          : "unsafe dependent memory operations in loop. Use "
            "#pragma clang loop distribute(enable) to allow loop distribution "
            "to attempt to isolate the offending operations into a separate "
            "loop";
  OptimizationRemarkAnalysis &R =
      recordAnalysis("UnsafeDep", Dep.getDestination(*this)) << Info;

  switch (Dep.Type) {
  case MemoryDepChecker::Dependence::NoDep:
  case MemoryDepChecker::Dependence::Forward:
  case MemoryDepChecker::Dependence::BackwardVectorizable:
    llvm_unreachable("Unexpected dependence");
  case MemoryDepChecker::Dependence::Backward:
    R << "\nBackward loop carried data dependence.";
    break;
  case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
    R << "\nForward loop carried data dependence that prevents "
         "store-to-load forwarding.";
    break;
  case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
    R << "\nBackward loop carried data dependence that prevents "
         "store-to-load forwarding.";
    break;
  case MemoryDepChecker::Dependence::IndirectUnsafe:
    R << "\nUnsafe indirect dependence.";
    break;
  case MemoryDepChecker::Dependence::Unknown:
    R << "\nUnknown data dependence.";
    break;
  }

  if (Instruction *I = Dep.getSource(*this)) {
    DebugLoc SourceLoc = I->getDebugLoc();
    if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
      SourceLoc = DD->getDebugLoc();
    if (SourceLoc)
      R << " Memory location is the same as accessed at "
        << ore::NV("Location", SourceLoc);
  }
}

bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
                                           DominatorTree *DT)  {
  assert(TheLoop->contains(BB) && "Unknown block used");

  // Blocks that do not dominate the latch need predication.
  BasicBlock* Latch = TheLoop->getLoopLatch();
  return !DT->dominates(BB, Latch);
}

OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
                                                           Instruction *I) {
  assert(!Report && "Multiple reports generated");

  Value *CodeRegion = TheLoop->getHeader();
  DebugLoc DL = TheLoop->getStartLoc();

  if (I) {
    CodeRegion = I->getParent();
    // If there is no debug location attached to the instruction, revert back to
    // using the loop's.
    if (I->getDebugLoc())
      DL = I->getDebugLoc();
  }

  Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
                                                   CodeRegion);
  return *Report;
}

bool LoopAccessInfo::isInvariant(Value *V) const {
  auto *SE = PSE->getSE();
  // TODO: Is this really what we want? Even without FP SCEV, we may want some
  // trivially loop-invariant FP values to be considered invariant.
  if (!SE->isSCEVable(V->getType()))
    return false;
  const SCEV *S = SE->getSCEV(V);
  return SE->isLoopInvariant(S, TheLoop);
}

/// Find the operand of the GEP that should be checked for consecutive
/// stores. This ignores trailing indices that have no effect on the final
/// pointer.
static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
  const DataLayout &DL = Gep->getModule()->getDataLayout();
  unsigned LastOperand = Gep->getNumOperands() - 1;
  TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());

  // Walk backwards and try to peel off zeros.
  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
    // Find the type we're currently indexing into.
    gep_type_iterator GEPTI = gep_type_begin(Gep);
    std::advance(GEPTI, LastOperand - 2);

    // If it's a type with the same allocation size as the result of the GEP we
    // can peel off the zero index.
    TypeSize ElemSize = GEPTI.isStruct()
                            ? DL.getTypeAllocSize(GEPTI.getIndexedType())
                            : GEPTI.getSequentialElementStride(DL);
    if (ElemSize != GEPAllocSize)
      break;
    --LastOperand;
  }

  return LastOperand;
}

/// If the argument is a GEP, then returns the operand identified by
/// getGEPInductionOperand. However, if there is some other non-loop-invariant
/// operand, it returns that instead.
static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
  if (!GEP)
    return Ptr;

  unsigned InductionOperand = getGEPInductionOperand(GEP);

  // Check that all of the gep indices are uniform except for our induction
  // operand.
  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
    if (i != InductionOperand &&
        !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
      return Ptr;
  return GEP->getOperand(InductionOperand);
}

/// If a value has only one user that is a CastInst, return it.
static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
  Value *UniqueCast = nullptr;
  for (User *U : Ptr->users()) {
    CastInst *CI = dyn_cast<CastInst>(U);
    if (CI && CI->getType() == Ty) {
      if (!UniqueCast)
        UniqueCast = CI;
      else
        return nullptr;
    }
  }
  return UniqueCast;
}

/// Get the stride of a pointer access in a loop. Looks for symbolic
/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
  auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
  if (!PtrTy || PtrTy->isAggregateType())
    return nullptr;

  // Try to remove a gep instruction to make the pointer (actually index at this
  // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
  // pointer, otherwise, we are analyzing the index.
  Value *OrigPtr = Ptr;

  // The size of the pointer access.
  int64_t PtrAccessSize = 1;

  Ptr = stripGetElementPtr(Ptr, SE, Lp);
  const SCEV *V = SE->getSCEV(Ptr);

  if (Ptr != OrigPtr)
    // Strip off casts.
    while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
      V = C->getOperand();

  const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
  if (!S)
    return nullptr;

  // If the pointer is invariant then there is no stride and it makes no
  // sense to add it here.
  if (Lp != S->getLoop())
    return nullptr;

  V = S->getStepRecurrence(*SE);
  if (!V)
    return nullptr;

  // Strip off the size of access multiplication if we are still analyzing the
  // pointer.
  if (OrigPtr == Ptr) {
    if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
      if (M->getOperand(0)->getSCEVType() != scConstant)
        return nullptr;

      const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();

      // Huge step value - give up.
      if (APStepVal.getBitWidth() > 64)
        return nullptr;

      int64_t StepVal = APStepVal.getSExtValue();
      if (PtrAccessSize != StepVal)
        return nullptr;
      V = M->getOperand(1);
    }
  }

  // Note that the restriction after this loop invariant check are only
  // profitability restrictions.
  if (!SE->isLoopInvariant(V, Lp))
    return nullptr;

  // Look for the loop invariant symbolic value.
  const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
  if (!U) {
    const auto *C = dyn_cast<SCEVIntegralCastExpr>(V);
    if (!C)
      return nullptr;
    U = dyn_cast<SCEVUnknown>(C->getOperand());
    if (!U)
      return nullptr;

    // Match legacy behavior - this is not needed for correctness
    if (!getUniqueCastUse(U->getValue(), Lp, V->getType()))
      return nullptr;
  }

  return V;
}

void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
  Value *Ptr = getLoadStorePointerOperand(MemAccess);
  if (!Ptr)
    return;

  // Note: getStrideFromPointer is a *profitability* heuristic.  We
  // could broaden the scope of values returned here - to anything
  // which happens to be loop invariant and contributes to the
  // computation of an interesting IV - but we chose not to as we
  // don't have a cost model here, and broadening the scope exposes
  // far too many unprofitable cases.
  const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
  if (!StrideExpr)
    return;

  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
                       "versioning:");
  LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");

  if (!SpeculateUnitStride) {
    LLVM_DEBUG(dbgs() << "  Chose not to due to -laa-speculate-unit-stride\n");
    return;
  }

  // Avoid adding the "Stride == 1" predicate when we know that
  // Stride >= Trip-Count. Such a predicate will effectively optimize a single
  // or zero iteration loop, as Trip-Count <= Stride == 1.
  //
  // TODO: We are currently not making a very informed decision on when it is
  // beneficial to apply stride versioning. It might make more sense that the
  // users of this analysis (such as the vectorizer) will trigger it, based on
  // their specific cost considerations; For example, in cases where stride
  // versioning does  not help resolving memory accesses/dependences, the
  // vectorizer should evaluate the cost of the runtime test, and the benefit
  // of various possible stride specializations, considering the alternatives
  // of using gather/scatters (if available).

  const SCEV *BETakenCount = PSE->getBackedgeTakenCount();

  // Match the types so we can compare the stride and the BETakenCount.
  // The Stride can be positive/negative, so we sign extend Stride;
  // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
  uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
  uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType());
  const SCEV *CastedStride = StrideExpr;
  const SCEV *CastedBECount = BETakenCount;
  ScalarEvolution *SE = PSE->getSE();
  if (BETypeSizeBits >= StrideTypeSizeBits)
    CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
  else
    CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
  const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
  // Since TripCount == BackEdgeTakenCount + 1, checking:
  // "Stride >= TripCount" is equivalent to checking:
  // Stride - BETakenCount > 0
  if (SE->isKnownPositive(StrideMinusBETaken)) {
    LLVM_DEBUG(
        dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
                  "Stride==1 predicate will imply that the loop executes "
                  "at most once.\n");
    return;
  }
  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");

  // Strip back off the integer cast, and check that our result is a
  // SCEVUnknown as we expect.
  const SCEV *StrideBase = StrideExpr;
  if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
    StrideBase = C->getOperand();
  SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
}

LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
                               const TargetLibraryInfo *TLI, AAResults *AA,
                               DominatorTree *DT, LoopInfo *LI)
    : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
      PtrRtChecking(nullptr),
      DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) {
  PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
  if (canAnalyzeLoop()) {
    analyzeLoop(AA, LI, TLI, DT);
  }
}

void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
  if (CanVecMem) {
    OS.indent(Depth) << "Memory dependences are safe";
    const MemoryDepChecker &DC = getDepChecker();
    if (!DC.isSafeForAnyVectorWidth())
      OS << " with a maximum safe vector width of "
         << DC.getMaxSafeVectorWidthInBits() << " bits";
    if (PtrRtChecking->Need)
      OS << " with run-time checks";
    OS << "\n";
  }

  if (HasConvergentOp)
    OS.indent(Depth) << "Has convergent operation in loop\n";

  if (Report)
    OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";

  if (auto *Dependences = DepChecker->getDependences()) {
    OS.indent(Depth) << "Dependences:\n";
    for (const auto &Dep : *Dependences) {
      Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
      OS << "\n";
    }
  } else
    OS.indent(Depth) << "Too many dependences, not recorded\n";

  // List the pair of accesses need run-time checks to prove independence.
  PtrRtChecking->print(OS, Depth);
  OS << "\n";

  OS.indent(Depth) << "Non vectorizable stores to invariant address were "
                   << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
                   << "found in loop.\n";

  OS.indent(Depth) << "SCEV assumptions:\n";
  PSE->getPredicate().print(OS, Depth);

  OS << "\n";

  OS.indent(Depth) << "Expressions re-written:\n";
  PSE->print(OS, Depth);
}

const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
  auto I = LoopAccessInfoMap.insert({&L, nullptr});

  if (I.second)
    I.first->second =
        std::make_unique<LoopAccessInfo>(&L, &SE, TLI, &AA, &DT, &LI);

  return *I.first->second;
}

bool LoopAccessInfoManager::invalidate(
    Function &F, const PreservedAnalyses &PA,
    FunctionAnalysisManager::Invalidator &Inv) {
  // Check whether our analysis is preserved.
  auto PAC = PA.getChecker<LoopAccessAnalysis>();
  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
    // If not, give up now.
    return true;

  // Check whether the analyses we depend on became invalid for any reason.
  // Skip checking TargetLibraryAnalysis as it is immutable and can't become
  // invalid.
  return Inv.invalidate<AAManager>(F, PA) ||
         Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
         Inv.invalidate<LoopAnalysis>(F, PA) ||
         Inv.invalidate<DominatorTreeAnalysis>(F, PA);
}

LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
                                              FunctionAnalysisManager &FAM) {
  auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
  auto &AA = FAM.getResult<AAManager>(F);
  auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
  auto &LI = FAM.getResult<LoopAnalysis>(F);
  auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
  return LoopAccessInfoManager(SE, AA, DT, LI, &TLI);
}

AnalysisKey LoopAccessAnalysis::Key;