summaryrefslogtreecommitdiffstats
path: root/llvm/lib/CodeGen/SelectOptimize.cpp
blob: 40898d284a09ae5e6a65888afd3d910ef6637ea3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
//===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass converts selects to conditional jumps when profitable.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/SelectOptimize.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/ScaledNumber.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <algorithm>
#include <memory>
#include <queue>
#include <stack>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "select-optimize"

STATISTIC(NumSelectOptAnalyzed,
          "Number of select groups considered for conversion to branch");
STATISTIC(NumSelectConvertedExpColdOperand,
          "Number of select groups converted due to expensive cold operand");
STATISTIC(NumSelectConvertedHighPred,
          "Number of select groups converted due to high-predictability");
STATISTIC(NumSelectUnPred,
          "Number of select groups not converted due to unpredictability");
STATISTIC(NumSelectColdBB,
          "Number of select groups not converted due to cold basic block");
STATISTIC(NumSelectConvertedLoop,
          "Number of select groups converted due to loop-level analysis");
STATISTIC(NumSelectsConverted, "Number of selects converted");

static cl::opt<unsigned> ColdOperandThreshold(
    "cold-operand-threshold",
    cl::desc("Maximum frequency of path for an operand to be considered cold."),
    cl::init(20), cl::Hidden);

static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
    "cold-operand-max-cost-multiplier",
    cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
             "slice of a cold operand to be considered inexpensive."),
    cl::init(1), cl::Hidden);

static cl::opt<unsigned>
    GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
                          cl::desc("Gradient gain threshold (%)."),
                          cl::init(25), cl::Hidden);

static cl::opt<unsigned>
    GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
                       cl::desc("Minimum gain per loop (in cycles) threshold."),
                       cl::init(4), cl::Hidden);

static cl::opt<unsigned> GainRelativeThreshold(
    "select-opti-loop-relative-gain-threshold",
    cl::desc(
        "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
    cl::init(8), cl::Hidden);

static cl::opt<unsigned> MispredictDefaultRate(
    "mispredict-default-rate", cl::Hidden, cl::init(25),
    cl::desc("Default mispredict rate (initialized to 25%)."));

static cl::opt<bool>
    DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
                               cl::init(false),
                               cl::desc("Disable loop-level heuristics."));

namespace {

class SelectOptimizeImpl {
  const TargetMachine *TM = nullptr;
  const TargetSubtargetInfo *TSI = nullptr;
  const TargetLowering *TLI = nullptr;
  const TargetTransformInfo *TTI = nullptr;
  const LoopInfo *LI = nullptr;
  BlockFrequencyInfo *BFI;
  ProfileSummaryInfo *PSI = nullptr;
  OptimizationRemarkEmitter *ORE = nullptr;
  TargetSchedModel TSchedModel;

public:
  SelectOptimizeImpl() = default;
  SelectOptimizeImpl(const TargetMachine *TM) : TM(TM){};
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
  bool runOnFunction(Function &F, Pass &P);

  using Scaled64 = ScaledNumber<uint64_t>;

  struct CostInfo {
    /// Predicated cost (with selects as conditional moves).
    Scaled64 PredCost;
    /// Non-predicated cost (with selects converted to branches).
    Scaled64 NonPredCost;
  };

  /// SelectLike is an abstraction over SelectInst and other operations that can
  /// act like selects. For example Or(Zext(icmp), X) can be treated like
  /// select(icmp, X|1, X).
  class SelectLike {
    SelectLike(Instruction *I) : I(I) {}

    Instruction *I;

  public:
    /// Match a select or select-like instruction, returning a SelectLike.
    static SelectLike match(Instruction *I) {
      // Select instruction are what we are usually looking for.
      if (isa<SelectInst>(I))
        return SelectLike(I);

      // An Or(zext(i1 X), Y) can also be treated like a select, with condition
      // C and values Y|1 and Y.
      Value *X;
      if (PatternMatch::match(
              I, m_c_Or(m_OneUse(m_ZExt(m_Value(X))), m_Value())) &&
          X->getType()->isIntegerTy(1))
        return SelectLike(I);

      return SelectLike(nullptr);
    }

    bool isValid() { return I; }
    operator bool() { return isValid(); }

    Instruction *getI() { return I; }
    const Instruction *getI() const { return I; }

    Type *getType() const { return I->getType(); }

    /// Return the condition for the SelectLike instruction. For example the
    /// condition of a select or c in `or(zext(c), x)`
    Value *getCondition() const {
      if (auto *Sel = dyn_cast<SelectInst>(I))
        return Sel->getCondition();
      // Or(zext) case
      if (auto *BO = dyn_cast<BinaryOperator>(I)) {
        Value *X;
        if (PatternMatch::match(BO->getOperand(0),
                                m_OneUse(m_ZExt(m_Value(X)))))
          return X;
        if (PatternMatch::match(BO->getOperand(1),
                                m_OneUse(m_ZExt(m_Value(X)))))
          return X;
      }

      llvm_unreachable("Unhandled case in getCondition");
    }

    /// Return the true value for the SelectLike instruction. Note this may not
    /// exist for all SelectLike instructions. For example, for `or(zext(c), x)`
    /// the true value would be `or(x,1)`. As this value does not exist, nullptr
    /// is returned.
    Value *getTrueValue() const {
      if (auto *Sel = dyn_cast<SelectInst>(I))
        return Sel->getTrueValue();
      // Or(zext) case - The true value is Or(X), so return nullptr as the value
      // does not yet exist.
      if (isa<BinaryOperator>(I))
        return nullptr;

      llvm_unreachable("Unhandled case in getTrueValue");
    }

    /// Return the false value for the SelectLike instruction. For example the
    /// getFalseValue of a select or `x` in `or(zext(c), x)` (which is
    /// `select(c, x|1, x)`)
    Value *getFalseValue() const {
      if (auto *Sel = dyn_cast<SelectInst>(I))
        return Sel->getFalseValue();
      // Or(zext) case - return the operand which is not the zext.
      if (auto *BO = dyn_cast<BinaryOperator>(I)) {
        Value *X;
        if (PatternMatch::match(BO->getOperand(0),
                                m_OneUse(m_ZExt(m_Value(X)))))
          return BO->getOperand(1);
        if (PatternMatch::match(BO->getOperand(1),
                                m_OneUse(m_ZExt(m_Value(X)))))
          return BO->getOperand(0);
      }

      llvm_unreachable("Unhandled case in getFalseValue");
    }

    /// Return the NonPredCost cost of the true op, given the costs in
    /// InstCostMap. This may need to be generated for select-like instructions.
    Scaled64 getTrueOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap,
                           const TargetTransformInfo *TTI) {
      if (auto *Sel = dyn_cast<SelectInst>(I))
        if (auto *I = dyn_cast<Instruction>(Sel->getTrueValue()))
          return InstCostMap.contains(I) ? InstCostMap[I].NonPredCost
                                         : Scaled64::getZero();

      // Or case - add the cost of an extra Or to the cost of the False case.
      if (isa<BinaryOperator>(I))
        if (auto I = dyn_cast<Instruction>(getFalseValue()))
          if (InstCostMap.contains(I)) {
            InstructionCost OrCost = TTI->getArithmeticInstrCost(
                Instruction::Or, I->getType(), TargetTransformInfo::TCK_Latency,
                {TargetTransformInfo::OK_AnyValue,
                 TargetTransformInfo::OP_None},
                {TTI::OK_UniformConstantValue, TTI::OP_PowerOf2});
            return InstCostMap[I].NonPredCost +
                   Scaled64::get(*OrCost.getValue());
          }

      return Scaled64::getZero();
    }

    /// Return the NonPredCost cost of the false op, given the costs in
    /// InstCostMap. This may need to be generated for select-like instructions.
    Scaled64
    getFalseOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap,
                   const TargetTransformInfo *TTI) {
      if (auto *Sel = dyn_cast<SelectInst>(I))
        if (auto *I = dyn_cast<Instruction>(Sel->getFalseValue()))
          return InstCostMap.contains(I) ? InstCostMap[I].NonPredCost
                                         : Scaled64::getZero();

      // Or case - return the cost of the false case
      if (isa<BinaryOperator>(I))
        if (auto I = dyn_cast<Instruction>(getFalseValue()))
          if (InstCostMap.contains(I))
            return InstCostMap[I].NonPredCost;

      return Scaled64::getZero();
    }
  };

private:
  // Select groups consist of consecutive select instructions with the same
  // condition.
  using SelectGroup = SmallVector<SelectLike, 2>;
  using SelectGroups = SmallVector<SelectGroup, 2>;

  // Converts select instructions of a function to conditional jumps when deemed
  // profitable. Returns true if at least one select was converted.
  bool optimizeSelects(Function &F);

  // Heuristics for determining which select instructions can be profitably
  // conveted to branches. Separate heuristics for selects in inner-most loops
  // and the rest of code regions (base heuristics for non-inner-most loop
  // regions).
  void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
  void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);

  // Converts to branches the select groups that were deemed
  // profitable-to-convert.
  void convertProfitableSIGroups(SelectGroups &ProfSIGroups);

  // Splits selects of a given basic block into select groups.
  void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);

  // Determines for which select groups it is profitable converting to branches
  // (base and inner-most-loop heuristics).
  void findProfitableSIGroupsBase(SelectGroups &SIGroups,
                                  SelectGroups &ProfSIGroups);
  void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
                                        SelectGroups &ProfSIGroups);

  // Determines if a select group should be converted to a branch (base
  // heuristics).
  bool isConvertToBranchProfitableBase(const SelectGroup &ASI);

  // Returns true if there are expensive instructions in the cold value
  // operand's (if any) dependence slice of any of the selects of the given
  // group.
  bool hasExpensiveColdOperand(const SelectGroup &ASI);

  // For a given source instruction, collect its backwards dependence slice
  // consisting of instructions exclusively computed for producing the operands
  // of the source instruction.
  void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
                             Instruction *SI, bool ForSinking = false);

  // Returns true if the condition of the select is highly predictable.
  bool isSelectHighlyPredictable(const SelectLike SI);

  // Loop-level checks to determine if a non-predicated version (with branches)
  // of the given loop is more profitable than its predicated version.
  bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);

  // Computes instruction and loop-critical-path costs for both the predicated
  // and non-predicated version of the given loop.
  bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
                        DenseMap<const Instruction *, CostInfo> &InstCostMap,
                        CostInfo *LoopCost);

  // Returns a set of all the select instructions in the given select groups.
  SmallDenseMap<const Instruction *, SelectLike, 2>
  getSImap(const SelectGroups &SIGroups);

  // Returns the latency cost of a given instruction.
  std::optional<uint64_t> computeInstCost(const Instruction *I);

  // Returns the misprediction cost of a given select when converted to branch.
  Scaled64 getMispredictionCost(const SelectLike SI, const Scaled64 CondCost);

  // Returns the cost of a branch when the prediction is correct.
  Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
                                const SelectLike SI);

  // Returns true if the target architecture supports lowering a given select.
  bool isSelectKindSupported(const SelectLike SI);
};

class SelectOptimize : public FunctionPass {
  SelectOptimizeImpl Impl;

public:
  static char ID;

  SelectOptimize() : FunctionPass(ID) {
    initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    return Impl.runOnFunction(F, *this);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    AU.addRequired<TargetPassConfig>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  }
};

} // namespace

PreservedAnalyses SelectOptimizePass::run(Function &F,
                                          FunctionAnalysisManager &FAM) {
  SelectOptimizeImpl Impl(TM);
  return Impl.run(F, FAM);
}

char SelectOptimize::ID = 0;

INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
                    false)

FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }

PreservedAnalyses SelectOptimizeImpl::run(Function &F,
                                          FunctionAnalysisManager &FAM) {
  TSI = TM->getSubtargetImpl(F);
  TLI = TSI->getTargetLowering();

  // If none of the select types are supported then skip this pass.
  // This is an optimization pass. Legality issues will be handled by
  // instruction selection.
  if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
      !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
      !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
    return PreservedAnalyses::all();

  TTI = &FAM.getResult<TargetIRAnalysis>(F);
  if (!TTI->enableSelectOptimize())
    return PreservedAnalyses::all();

  PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
            .getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
  assert(PSI && "This pass requires module analysis pass `profile-summary`!");
  BFI = &FAM.getResult<BlockFrequencyAnalysis>(F);

  // When optimizing for size, selects are preferable over branches.
  if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI))
    return PreservedAnalyses::all();

  LI = &FAM.getResult<LoopAnalysis>(F);
  ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  TSchedModel.init(TSI);

  bool Changed = optimizeSelects(F);
  return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}

bool SelectOptimizeImpl::runOnFunction(Function &F, Pass &P) {
  TM = &P.getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
  TSI = TM->getSubtargetImpl(F);
  TLI = TSI->getTargetLowering();

  // If none of the select types are supported then skip this pass.
  // This is an optimization pass. Legality issues will be handled by
  // instruction selection.
  if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
      !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
      !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
    return false;

  TTI = &P.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);

  if (!TTI->enableSelectOptimize())
    return false;

  LI = &P.getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  BFI = &P.getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
  PSI = &P.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  ORE = &P.getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
  TSchedModel.init(TSI);

  // When optimizing for size, selects are preferable over branches.
  if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI))
    return false;

  return optimizeSelects(F);
}

bool SelectOptimizeImpl::optimizeSelects(Function &F) {
  // Determine for which select groups it is profitable converting to branches.
  SelectGroups ProfSIGroups;
  // Base heuristics apply only to non-loops and outer loops.
  optimizeSelectsBase(F, ProfSIGroups);
  // Separate heuristics for inner-most loops.
  optimizeSelectsInnerLoops(F, ProfSIGroups);

  // Convert to branches the select groups that were deemed
  // profitable-to-convert.
  convertProfitableSIGroups(ProfSIGroups);

  // Code modified if at least one select group was converted.
  return !ProfSIGroups.empty();
}

void SelectOptimizeImpl::optimizeSelectsBase(Function &F,
                                             SelectGroups &ProfSIGroups) {
  // Collect all the select groups.
  SelectGroups SIGroups;
  for (BasicBlock &BB : F) {
    // Base heuristics apply only to non-loops and outer loops.
    Loop *L = LI->getLoopFor(&BB);
    if (L && L->isInnermost())
      continue;
    collectSelectGroups(BB, SIGroups);
  }

  // Determine for which select groups it is profitable converting to branches.
  findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
}

void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function &F,
                                                   SelectGroups &ProfSIGroups) {
  SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
  // Need to check size on each iteration as we accumulate child loops.
  for (unsigned long i = 0; i < Loops.size(); ++i)
    for (Loop *ChildL : Loops[i]->getSubLoops())
      Loops.push_back(ChildL);

  for (Loop *L : Loops) {
    if (!L->isInnermost())
      continue;

    SelectGroups SIGroups;
    for (BasicBlock *BB : L->getBlocks())
      collectSelectGroups(*BB, SIGroups);

    findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
  }
}

/// If \p isTrue is true, return the true value of \p SI, otherwise return
/// false value of \p SI. If the true/false value of \p SI is defined by any
/// select instructions in \p Selects, look through the defining select
/// instruction until the true/false value is not defined in \p Selects.
static Value *
getTrueOrFalseValue(SelectOptimizeImpl::SelectLike SI, bool isTrue,
                    const SmallPtrSet<const Instruction *, 2> &Selects,
                    IRBuilder<> &IB) {
  Value *V = nullptr;
  for (SelectInst *DefSI = dyn_cast<SelectInst>(SI.getI());
       DefSI != nullptr && Selects.count(DefSI);
       DefSI = dyn_cast<SelectInst>(V)) {
    assert(DefSI->getCondition() == SI.getCondition() &&
           "The condition of DefSI does not match with SI");
    V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
  }

  if (isa<BinaryOperator>(SI.getI())) {
    assert(SI.getI()->getOpcode() == Instruction::Or &&
           "Only currently handling Or instructions.");
    V = SI.getFalseValue();
    if (isTrue)
      V = IB.CreateOr(V, ConstantInt::get(V->getType(), 1));
  }

  assert(V && "Failed to get select true/false value");
  return V;
}

void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
  for (SelectGroup &ASI : ProfSIGroups) {
    // The code transformation here is a modified version of the sinking
    // transformation in CodeGenPrepare::optimizeSelectInst with a more
    // aggressive strategy of which instructions to sink.
    //
    // TODO: eliminate the redundancy of logic transforming selects to branches
    // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
    // selects for all cases (with and without profile information).

    // Transform a sequence like this:
    //    start:
    //       %cmp = cmp uge i32 %a, %b
    //       %sel = select i1 %cmp, i32 %c, i32 %d
    //
    // Into:
    //    start:
    //       %cmp = cmp uge i32 %a, %b
    //       %cmp.frozen = freeze %cmp
    //       br i1 %cmp.frozen, label %select.true, label %select.false
    //    select.true:
    //       br label %select.end
    //    select.false:
    //       br label %select.end
    //    select.end:
    //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
    //
    // %cmp should be frozen, otherwise it may introduce undefined behavior.
    // In addition, we may sink instructions that produce %c or %d into the
    // destination(s) of the new branch.
    // If the true or false blocks do not contain a sunken instruction, that
    // block and its branch may be optimized away. In that case, one side of the
    // first branch will point directly to select.end, and the corresponding PHI
    // predecessor block will be the start block.

    // Find all the instructions that can be soundly sunk to the true/false
    // blocks. These are instructions that are computed solely for producing the
    // operands of the select instructions in the group and can be sunk without
    // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
    // with side effects).
    SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
    typedef std::stack<Instruction *>::size_type StackSizeType;
    StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
    for (SelectLike SI : ASI) {
      // For each select, compute the sinkable dependence chains of the true and
      // false operands.
      if (auto *TI = dyn_cast_or_null<Instruction>(SI.getTrueValue())) {
        std::stack<Instruction *> TrueSlice;
        getExclBackwardsSlice(TI, TrueSlice, SI.getI(), true);
        maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
        TrueSlices.push_back(TrueSlice);
      }
      if (auto *FI = dyn_cast_or_null<Instruction>(SI.getFalseValue())) {
        if (isa<SelectInst>(SI.getI()) || !FI->hasOneUse()) {
          std::stack<Instruction *> FalseSlice;
          getExclBackwardsSlice(FI, FalseSlice, SI.getI(), true);
          maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
          FalseSlices.push_back(FalseSlice);
        }
      }
    }
    // In the case of multiple select instructions in the same group, the order
    // of non-dependent instructions (instructions of different dependence
    // slices) in the true/false blocks appears to affect performance.
    // Interleaving the slices seems to experimentally be the optimal approach.
    // This interleaving scheduling allows for more ILP (with a natural downside
    // of increasing a bit register pressure) compared to a simple ordering of
    // one whole chain after another. One would expect that this ordering would
    // not matter since the scheduling in the backend of the compiler  would
    // take care of it, but apparently the scheduler fails to deliver optimal
    // ILP with a naive ordering here.
    SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
    for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
      for (auto &S : TrueSlices) {
        if (!S.empty()) {
          TrueSlicesInterleaved.push_back(S.top());
          S.pop();
        }
      }
    }
    for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
      for (auto &S : FalseSlices) {
        if (!S.empty()) {
          FalseSlicesInterleaved.push_back(S.top());
          S.pop();
        }
      }
    }

    // We split the block containing the select(s) into two blocks.
    SelectLike SI = ASI.front();
    SelectLike LastSI = ASI.back();
    BasicBlock *StartBlock = SI.getI()->getParent();
    BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI.getI()));
    // With RemoveDIs turned off, SplitPt can be a dbg.* intrinsic. With
    // RemoveDIs turned on, SplitPt would instead point to the next
    // instruction. To match existing dbg.* intrinsic behaviour with RemoveDIs,
    // tell splitBasicBlock that we want to include any DPValues attached to
    // SplitPt in the splice.
    SplitPt.setHeadBit(true);
    BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
    BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
    // Delete the unconditional branch that was just created by the split.
    StartBlock->getTerminator()->eraseFromParent();

    // Move any debug/pseudo instructions that were in-between the select
    // group to the newly-created end block.
    SmallVector<Instruction *, 2> DebugPseudoINS;
    auto DIt = SI.getI()->getIterator();
    while (&*DIt != LastSI.getI()) {
      if (DIt->isDebugOrPseudoInst())
        DebugPseudoINS.push_back(&*DIt);
      DIt++;
    }
    for (auto *DI : DebugPseudoINS) {
      DI->moveBeforePreserving(&*EndBlock->getFirstInsertionPt());
    }

    // Duplicate implementation for DPValues, the non-instruction debug-info
    // record. Helper lambda for moving DPValues to the end block.
    auto TransferDPValues = [&](Instruction &I) {
      for (auto &DPValue : llvm::make_early_inc_range(I.getDbgRecordRange())) {
        DPValue.removeFromParent();
        EndBlock->insertDbgRecordBefore(&DPValue,
                                        EndBlock->getFirstInsertionPt());
      }
    };

    // Iterate over all instructions in between SI and LastSI, not including
    // SI itself. These are all the variable assignments that happen "in the
    // middle" of the select group.
    auto R = make_range(std::next(SI.getI()->getIterator()),
                        std::next(LastSI.getI()->getIterator()));
    llvm::for_each(R, TransferDPValues);

    // These are the new basic blocks for the conditional branch.
    // At least one will become an actual new basic block.
    BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
    BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
    if (!TrueSlicesInterleaved.empty()) {
      TrueBlock = BasicBlock::Create(EndBlock->getContext(), "select.true.sink",
                                     EndBlock->getParent(), EndBlock);
      TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
      TrueBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
      for (Instruction *TrueInst : TrueSlicesInterleaved)
        TrueInst->moveBefore(TrueBranch);
    }
    if (!FalseSlicesInterleaved.empty()) {
      FalseBlock =
          BasicBlock::Create(EndBlock->getContext(), "select.false.sink",
                             EndBlock->getParent(), EndBlock);
      FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
      FalseBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
      for (Instruction *FalseInst : FalseSlicesInterleaved)
        FalseInst->moveBefore(FalseBranch);
    }
    // If there was nothing to sink, then arbitrarily choose the 'false' side
    // for a new input value to the PHI.
    if (TrueBlock == FalseBlock) {
      assert(TrueBlock == nullptr &&
             "Unexpected basic block transform while optimizing select");

      FalseBlock = BasicBlock::Create(StartBlock->getContext(), "select.false",
                                      EndBlock->getParent(), EndBlock);
      auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
      FalseBranch->setDebugLoc(SI.getI()->getDebugLoc());
    }

    // Insert the real conditional branch based on the original condition.
    // If we did not create a new block for one of the 'true' or 'false' paths
    // of the condition, it means that side of the branch goes to the end block
    // directly and the path originates from the start block from the point of
    // view of the new PHI.
    BasicBlock *TT, *FT;
    if (TrueBlock == nullptr) {
      TT = EndBlock;
      FT = FalseBlock;
      TrueBlock = StartBlock;
    } else if (FalseBlock == nullptr) {
      TT = TrueBlock;
      FT = EndBlock;
      FalseBlock = StartBlock;
    } else {
      TT = TrueBlock;
      FT = FalseBlock;
    }
    IRBuilder<> IB(SI.getI());
    auto *CondFr = IB.CreateFreeze(SI.getCondition(),
                                   SI.getCondition()->getName() + ".frozen");

    SmallPtrSet<const Instruction *, 2> INS;
    for (auto SI : ASI)
      INS.insert(SI.getI());

    // Use reverse iterator because later select may use the value of the
    // earlier select, and we need to propagate value through earlier select
    // to get the PHI operand.
    for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
      SelectLike SI = *It;
      // The select itself is replaced with a PHI Node.
      PHINode *PN = PHINode::Create(SI.getType(), 2, "");
      PN->insertBefore(EndBlock->begin());
      PN->takeName(SI.getI());
      PN->addIncoming(getTrueOrFalseValue(SI, true, INS, IB), TrueBlock);
      PN->addIncoming(getTrueOrFalseValue(SI, false, INS, IB), FalseBlock);
      PN->setDebugLoc(SI.getI()->getDebugLoc());
      SI.getI()->replaceAllUsesWith(PN);
      INS.erase(SI.getI());
      ++NumSelectsConverted;
    }
    IB.CreateCondBr(CondFr, TT, FT, SI.getI());

    // Remove the old select instructions, now that they are not longer used.
    for (auto SI : ASI)
      SI.getI()->eraseFromParent();
  }
}

void SelectOptimizeImpl::collectSelectGroups(BasicBlock &BB,
                                             SelectGroups &SIGroups) {
  BasicBlock::iterator BBIt = BB.begin();
  while (BBIt != BB.end()) {
    Instruction *I = &*BBIt++;
    if (SelectLike SI = SelectLike::match(I)) {
      if (!TTI->shouldTreatInstructionLikeSelect(I))
        continue;

      SelectGroup SIGroup;
      SIGroup.push_back(SI);
      while (BBIt != BB.end()) {
        Instruction *NI = &*BBIt;
        // Debug/pseudo instructions should be skipped and not prevent the
        // formation of a select group.
        if (NI->isDebugOrPseudoInst()) {
          ++BBIt;
          continue;
        }
        // We only allow selects in the same group, not other select-like
        // instructions.
        if (!isa<SelectInst>(NI))
          break;

        SelectLike NSI = SelectLike::match(NI);
        if (NSI && SI.getCondition() == NSI.getCondition()) {
          SIGroup.push_back(NSI);
        } else
          break;
        ++BBIt;
      }

      // If the select type is not supported, no point optimizing it.
      // Instruction selection will take care of it.
      if (!isSelectKindSupported(SI))
        continue;

      SIGroups.push_back(SIGroup);
    }
  }
}

void SelectOptimizeImpl::findProfitableSIGroupsBase(
    SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
  for (SelectGroup &ASI : SIGroups) {
    ++NumSelectOptAnalyzed;
    if (isConvertToBranchProfitableBase(ASI))
      ProfSIGroups.push_back(ASI);
  }
}

static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE,
                               DiagnosticInfoOptimizationBase &Rem) {
  LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n");
  ORE->emit(Rem);
}

void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops(
    const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
  NumSelectOptAnalyzed += SIGroups.size();
  // For each select group in an inner-most loop,
  // a branch is more preferable than a select/conditional-move if:
  // i) conversion to branches for all the select groups of the loop satisfies
  //    loop-level heuristics including reducing the loop's critical path by
  //    some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and
  // ii) the total cost of the select group is cheaper with a branch compared
  //     to its predicated version. The cost is in terms of latency and the cost
  //     of a select group is the cost of its most expensive select instruction
  //     (assuming infinite resources and thus fully leveraging available ILP).

  DenseMap<const Instruction *, CostInfo> InstCostMap;
  CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
                          {Scaled64::getZero(), Scaled64::getZero()}};
  if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
      !checkLoopHeuristics(L, LoopCost)) {
    return;
  }

  for (SelectGroup &ASI : SIGroups) {
    // Assuming infinite resources, the cost of a group of instructions is the
    // cost of the most expensive instruction of the group.
    Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
    for (SelectLike SI : ASI) {
      SelectCost = std::max(SelectCost, InstCostMap[SI.getI()].PredCost);
      BranchCost = std::max(BranchCost, InstCostMap[SI.getI()].NonPredCost);
    }
    if (BranchCost < SelectCost) {
      OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front().getI());
      OR << "Profitable to convert to branch (loop analysis). BranchCost="
         << BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
         << ". ";
      EmitAndPrintRemark(ORE, OR);
      ++NumSelectConvertedLoop;
      ProfSIGroups.push_back(ASI);
    } else {
      OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
                                      ASI.front().getI());
      ORmiss << "Select is more profitable (loop analysis). BranchCost="
             << BranchCost.toString()
             << ", SelectCost=" << SelectCost.toString() << ". ";
      EmitAndPrintRemark(ORE, ORmiss);
    }
  }
}

bool SelectOptimizeImpl::isConvertToBranchProfitableBase(
    const SelectGroup &ASI) {
  SelectLike SI = ASI.front();
  LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI.getI()
                    << "\n");
  OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI.getI());
  OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI.getI());

  // Skip cold basic blocks. Better to optimize for size for cold blocks.
  if (PSI->isColdBlock(SI.getI()->getParent(), BFI)) {
    ++NumSelectColdBB;
    ORmiss << "Not converted to branch because of cold basic block. ";
    EmitAndPrintRemark(ORE, ORmiss);
    return false;
  }

  // If unpredictable, branch form is less profitable.
  if (SI.getI()->getMetadata(LLVMContext::MD_unpredictable)) {
    ++NumSelectUnPred;
    ORmiss << "Not converted to branch because of unpredictable branch. ";
    EmitAndPrintRemark(ORE, ORmiss);
    return false;
  }

  // If highly predictable, branch form is more profitable, unless a
  // predictable select is inexpensive in the target architecture.
  if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
    ++NumSelectConvertedHighPred;
    OR << "Converted to branch because of highly predictable branch. ";
    EmitAndPrintRemark(ORE, OR);
    return true;
  }

  // Look for expensive instructions in the cold operand's (if any) dependence
  // slice of any of the selects in the group.
  if (hasExpensiveColdOperand(ASI)) {
    ++NumSelectConvertedExpColdOperand;
    OR << "Converted to branch because of expensive cold operand.";
    EmitAndPrintRemark(ORE, OR);
    return true;
  }

  ORmiss << "Not profitable to convert to branch (base heuristic).";
  EmitAndPrintRemark(ORE, ORmiss);
  return false;
}

static InstructionCost divideNearest(InstructionCost Numerator,
                                     uint64_t Denominator) {
  return (Numerator + (Denominator / 2)) / Denominator;
}

static bool extractBranchWeights(const SelectOptimizeImpl::SelectLike SI,
                                 uint64_t &TrueVal, uint64_t &FalseVal) {
  if (isa<SelectInst>(SI.getI()))
    return extractBranchWeights(*SI.getI(), TrueVal, FalseVal);
  return false;
}

bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup &ASI) {
  bool ColdOperand = false;
  uint64_t TrueWeight, FalseWeight, TotalWeight;
  if (extractBranchWeights(ASI.front(), TrueWeight, FalseWeight)) {
    uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
    TotalWeight = TrueWeight + FalseWeight;
    // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
    ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
  } else if (PSI->hasProfileSummary()) {
    OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
                                    ASI.front().getI());
    ORmiss << "Profile data available but missing branch-weights metadata for "
              "select instruction. ";
    EmitAndPrintRemark(ORE, ORmiss);
  }
  if (!ColdOperand)
    return false;
  // Check if the cold path's dependence slice is expensive for any of the
  // selects of the group.
  for (SelectLike SI : ASI) {
    Instruction *ColdI = nullptr;
    uint64_t HotWeight;
    if (TrueWeight < FalseWeight) {
      ColdI = dyn_cast_or_null<Instruction>(SI.getTrueValue());
      HotWeight = FalseWeight;
    } else {
      ColdI = dyn_cast_or_null<Instruction>(SI.getFalseValue());
      HotWeight = TrueWeight;
    }
    if (ColdI) {
      std::stack<Instruction *> ColdSlice;
      getExclBackwardsSlice(ColdI, ColdSlice, SI.getI());
      InstructionCost SliceCost = 0;
      while (!ColdSlice.empty()) {
        SliceCost += TTI->getInstructionCost(ColdSlice.top(),
                                             TargetTransformInfo::TCK_Latency);
        ColdSlice.pop();
      }
      // The colder the cold value operand of the select is the more expensive
      // the cmov becomes for computing the cold value operand every time. Thus,
      // the colder the cold operand is the more its cost counts.
      // Get nearest integer cost adjusted for coldness.
      InstructionCost AdjSliceCost =
          divideNearest(SliceCost * HotWeight, TotalWeight);
      if (AdjSliceCost >=
          ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
        return true;
    }
  }
  return false;
}

// Check if it is safe to move LoadI next to the SI.
// Conservatively assume it is safe only if there is no instruction
// modifying memory in-between the load and the select instruction.
static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) {
  // Assume loads from different basic blocks are unsafe to move.
  if (LoadI->getParent() != SI->getParent())
    return false;
  auto It = LoadI->getIterator();
  while (&*It != SI) {
    if (It->mayWriteToMemory())
      return false;
    It++;
  }
  return true;
}

// For a given source instruction, collect its backwards dependence slice
// consisting of instructions exclusively computed for the purpose of producing
// the operands of the source instruction. As an approximation
// (sufficiently-accurate in practice), we populate this set with the
// instructions of the backwards dependence slice that only have one-use and
// form an one-use chain that leads to the source instruction.
void SelectOptimizeImpl::getExclBackwardsSlice(Instruction *I,
                                               std::stack<Instruction *> &Slice,
                                               Instruction *SI,
                                               bool ForSinking) {
  SmallPtrSet<Instruction *, 2> Visited;
  std::queue<Instruction *> Worklist;
  Worklist.push(I);
  while (!Worklist.empty()) {
    Instruction *II = Worklist.front();
    Worklist.pop();

    // Avoid cycles.
    if (!Visited.insert(II).second)
      continue;

    if (!II->hasOneUse())
      continue;

    // Cannot soundly sink instructions with side-effects.
    // Terminator or phi instructions cannot be sunk.
    // Avoid sinking other select instructions (should be handled separetely).
    if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
                       isa<SelectInst>(II) || isa<PHINode>(II)))
      continue;

    // Avoid sinking loads in order not to skip state-modifying instructions,
    // that may alias with the loaded address.
    // Only allow sinking of loads within the same basic block that are
    // conservatively proven to be safe.
    if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI))
      continue;

    // Avoid considering instructions with less frequency than the source
    // instruction (i.e., avoid colder code regions of the dependence slice).
    if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
      continue;

    // Eligible one-use instruction added to the dependence slice.
    Slice.push(II);

    // Explore all the operands of the current instruction to expand the slice.
    for (unsigned k = 0; k < II->getNumOperands(); ++k)
      if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k)))
        Worklist.push(OpI);
  }
}

bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI) {
  uint64_t TrueWeight, FalseWeight;
  if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
    uint64_t Max = std::max(TrueWeight, FalseWeight);
    uint64_t Sum = TrueWeight + FalseWeight;
    if (Sum != 0) {
      auto Probability = BranchProbability::getBranchProbability(Max, Sum);
      if (Probability > TTI->getPredictableBranchThreshold())
        return true;
    }
  }
  return false;
}

bool SelectOptimizeImpl::checkLoopHeuristics(const Loop *L,
                                             const CostInfo LoopCost[2]) {
  // Loop-level checks to determine if a non-predicated version (with branches)
  // of the loop is more profitable than its predicated version.

  if (DisableLoopLevelHeuristics)
    return true;

  OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
                                   L->getHeader()->getFirstNonPHI());

  if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
      LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
    ORmissL << "No select conversion in the loop due to no reduction of loop's "
               "critical path. ";
    EmitAndPrintRemark(ORE, ORmissL);
    return false;
  }

  Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
                      LoopCost[1].PredCost - LoopCost[1].NonPredCost};

  // Profitably converting to branches need to reduce the loop's critical path
  // by at least some threshold (absolute gain of GainCycleThreshold cycles and
  // relative gain of 12.5%).
  if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
      Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
    Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
    ORmissL << "No select conversion in the loop due to small reduction of "
               "loop's critical path. Gain="
            << Gain[1].toString()
            << ", RelativeGain=" << RelativeGain.toString() << "%. ";
    EmitAndPrintRemark(ORE, ORmissL);
    return false;
  }

  // If the loop's critical path involves loop-carried dependences, the gradient
  // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
  // This check ensures that the latency reduction for the loop's critical path
  // keeps decreasing with sufficient rate beyond the two analyzed loop
  // iterations.
  if (Gain[1] > Gain[0]) {
    Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
                            (LoopCost[1].PredCost - LoopCost[0].PredCost);
    if (GradientGain < Scaled64::get(GainGradientThreshold)) {
      ORmissL << "No select conversion in the loop due to small gradient gain. "
                 "GradientGain="
              << GradientGain.toString() << "%. ";
      EmitAndPrintRemark(ORE, ORmissL);
      return false;
    }
  }
  // If the gain decreases it is not profitable to convert.
  else if (Gain[1] < Gain[0]) {
    ORmissL
        << "No select conversion in the loop due to negative gradient gain. ";
    EmitAndPrintRemark(ORE, ORmissL);
    return false;
  }

  // Non-predicated version of the loop is more profitable than its
  // predicated version.
  return true;
}

// Computes instruction and loop-critical-path costs for both the predicated
// and non-predicated version of the given loop.
// Returns false if unable to compute these costs due to invalid cost of loop
// instruction(s).
bool SelectOptimizeImpl::computeLoopCosts(
    const Loop *L, const SelectGroups &SIGroups,
    DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
  LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop "
                    << L->getHeader()->getName() << "\n");
  const auto &SImap = getSImap(SIGroups);
  // Compute instruction and loop-critical-path costs across two iterations for
  // both predicated and non-predicated version.
  const unsigned Iterations = 2;
  for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
    // Cost of the loop's critical path.
    CostInfo &MaxCost = LoopCost[Iter];
    for (BasicBlock *BB : L->getBlocks()) {
      for (const Instruction &I : *BB) {
        if (I.isDebugOrPseudoInst())
          continue;
        // Compute the predicated and non-predicated cost of the instruction.
        Scaled64 IPredCost = Scaled64::getZero(),
                 INonPredCost = Scaled64::getZero();

        // Assume infinite resources that allow to fully exploit the available
        // instruction-level parallelism.
        // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
        for (const Use &U : I.operands()) {
          auto UI = dyn_cast<Instruction>(U.get());
          if (!UI)
            continue;
          if (InstCostMap.count(UI)) {
            IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
            INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
          }
        }
        auto ILatency = computeInstCost(&I);
        if (!ILatency) {
          OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
          ORmissL << "Invalid instruction cost preventing analysis and "
                     "optimization of the inner-most loop containing this "
                     "instruction. ";
          EmitAndPrintRemark(ORE, ORmissL);
          return false;
        }
        IPredCost += Scaled64::get(*ILatency);
        INonPredCost += Scaled64::get(*ILatency);

        // For a select that can be converted to branch,
        // compute its cost as a branch (non-predicated cost).
        //
        // BranchCost = PredictedPathCost + MispredictCost
        // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
        // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
        if (SImap.contains(&I)) {
          auto SI = SImap.at(&I);
          Scaled64 TrueOpCost = SI.getTrueOpCost(InstCostMap, TTI);
          Scaled64 FalseOpCost = SI.getFalseOpCost(InstCostMap, TTI);
          Scaled64 PredictedPathCost =
              getPredictedPathCost(TrueOpCost, FalseOpCost, SI);

          Scaled64 CondCost = Scaled64::getZero();
          if (auto *CI = dyn_cast<Instruction>(SI.getCondition()))
            if (InstCostMap.count(CI))
              CondCost = InstCostMap[CI].NonPredCost;
          Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);

          INonPredCost = PredictedPathCost + MispredictCost;
        }
        LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/"
                          << INonPredCost << " for " << I << "\n");

        InstCostMap[&I] = {IPredCost, INonPredCost};
        MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
        MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
      }
    }
    LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1
                      << " MaxCost = " << MaxCost.PredCost << " "
                      << MaxCost.NonPredCost << "\n");
  }
  return true;
}

SmallDenseMap<const Instruction *, SelectOptimizeImpl::SelectLike, 2>
SelectOptimizeImpl::getSImap(const SelectGroups &SIGroups) {
  SmallDenseMap<const Instruction *, SelectLike, 2> SImap;
  for (const SelectGroup &ASI : SIGroups)
    for (SelectLike SI : ASI)
      SImap.try_emplace(SI.getI(), SI);
  return SImap;
}

std::optional<uint64_t>
SelectOptimizeImpl::computeInstCost(const Instruction *I) {
  InstructionCost ICost =
      TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
  if (auto OC = ICost.getValue())
    return std::optional<uint64_t>(*OC);
  return std::nullopt;
}

ScaledNumber<uint64_t>
SelectOptimizeImpl::getMispredictionCost(const SelectLike SI,
                                         const Scaled64 CondCost) {
  uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;

  // Account for the default misprediction rate when using a branch
  // (conservatively set to 25% by default).
  uint64_t MispredictRate = MispredictDefaultRate;
  // If the select condition is obviously predictable, then the misprediction
  // rate is zero.
  if (isSelectHighlyPredictable(SI))
    MispredictRate = 0;

  // CondCost is included to account for cases where the computation of the
  // condition is part of a long dependence chain (potentially loop-carried)
  // that would delay detection of a misprediction and increase its cost.
  Scaled64 MispredictCost =
      std::max(Scaled64::get(MispredictPenalty), CondCost) *
      Scaled64::get(MispredictRate);
  MispredictCost /= Scaled64::get(100);

  return MispredictCost;
}

// Returns the cost of a branch when the prediction is correct.
// TrueCost * TrueProbability + FalseCost * FalseProbability.
ScaledNumber<uint64_t>
SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
                                         const SelectLike SI) {
  Scaled64 PredPathCost;
  uint64_t TrueWeight, FalseWeight;
  if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
    uint64_t SumWeight = TrueWeight + FalseWeight;
    if (SumWeight != 0) {
      PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
                     FalseCost * Scaled64::get(FalseWeight);
      PredPathCost /= Scaled64::get(SumWeight);
      return PredPathCost;
    }
  }
  // Without branch weight metadata, we assume 75% for the one path and 25% for
  // the other, and pick the result with the biggest cost.
  PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
                          FalseCost * Scaled64::get(3) + TrueCost);
  PredPathCost /= Scaled64::get(4);
  return PredPathCost;
}

bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI) {
  bool VectorCond = !SI.getCondition()->getType()->isIntegerTy(1);
  if (VectorCond)
    return false;
  TargetLowering::SelectSupportKind SelectKind;
  if (SI.getType()->isVectorTy())
    SelectKind = TargetLowering::ScalarCondVectorVal;
  else
    SelectKind = TargetLowering::ScalarValSelect;
  return TLI->isSelectSupported(SelectKind);
}