summaryrefslogtreecommitdiffstats
path: root/llvm/lib/IR/Instruction.cpp
blob: e863ef3eb8d6d7d285280d18167f2e3c0c17320b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
//===-- Instruction.cpp - Implement the Instruction class -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Instruction class for the IR library.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Instruction.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/IR/AttributeMask.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/IR/Type.h"
using namespace llvm;

Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
                         InstListType::iterator InsertBefore)
    : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {

  // When called with an iterator, there must be a block to insert into.
  BasicBlock *BB = InsertBefore->getParent();
  assert(BB && "Instruction to insert before is not in a basic block!");
  insertInto(BB, InsertBefore);
}

Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
                         Instruction *InsertBefore)
  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {

  // If requested, insert this instruction into a basic block...
  if (InsertBefore) {
    BasicBlock *BB = InsertBefore->getParent();
    assert(BB && "Instruction to insert before is not in a basic block!");
    insertInto(BB, InsertBefore->getIterator());
  }
}

Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
                         BasicBlock *InsertAtEnd)
    : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {

  // If requested, append this instruction into the basic block.
  if (InsertAtEnd)
    insertInto(InsertAtEnd, InsertAtEnd->end());
}

Instruction::~Instruction() {
  assert(!Parent && "Instruction still linked in the program!");

  // Replace any extant metadata uses of this instruction with undef to
  // preserve debug info accuracy. Some alternatives include:
  // - Treat Instruction like any other Value, and point its extant metadata
  //   uses to an empty ValueAsMetadata node. This makes extant dbg.value uses
  //   trivially dead (i.e. fair game for deletion in many passes), leading to
  //   stale dbg.values being in effect for too long.
  // - Call salvageDebugInfoOrMarkUndef. Not needed to make instruction removal
  //   correct. OTOH results in wasted work in some common cases (e.g. when all
  //   instructions in a BasicBlock are deleted).
  if (isUsedByMetadata())
    ValueAsMetadata::handleRAUW(this, UndefValue::get(getType()));

  // Explicitly remove DIAssignID metadata to clear up ID -> Instruction(s)
  // mapping in LLVMContext.
  setMetadata(LLVMContext::MD_DIAssignID, nullptr);
}

void Instruction::setParent(BasicBlock *P) {
  Parent = P;
}

const Module *Instruction::getModule() const {
  return getParent()->getModule();
}

const Function *Instruction::getFunction() const {
  return getParent()->getParent();
}

void Instruction::removeFromParent() {
  // Perform any debug-info maintenence required.
  handleMarkerRemoval();

  getParent()->getInstList().remove(getIterator());
}

void Instruction::handleMarkerRemoval() {
  if (!Parent->IsNewDbgInfoFormat || !DbgMarker)
    return;

  DbgMarker->removeMarker();
}

BasicBlock::iterator Instruction::eraseFromParent() {
  handleMarkerRemoval();
  return getParent()->getInstList().erase(getIterator());
}

void Instruction::insertBefore(Instruction *InsertPos) {
  insertBefore(InsertPos->getIterator());
}

/// Insert an unlinked instruction into a basic block immediately before the
/// specified instruction.
void Instruction::insertBefore(BasicBlock::iterator InsertPos) {
  insertBefore(*InsertPos->getParent(), InsertPos);
}

/// Insert an unlinked instruction into a basic block immediately after the
/// specified instruction.
void Instruction::insertAfter(Instruction *InsertPos) {
  BasicBlock *DestParent = InsertPos->getParent();

  DestParent->getInstList().insertAfter(InsertPos->getIterator(), this);
}

BasicBlock::iterator Instruction::insertInto(BasicBlock *ParentBB,
                                             BasicBlock::iterator It) {
  assert(getParent() == nullptr && "Expected detached instruction");
  assert((It == ParentBB->end() || It->getParent() == ParentBB) &&
         "It not in ParentBB");
  insertBefore(*ParentBB, It);
  return getIterator();
}

extern cl::opt<bool> UseNewDbgInfoFormat;

void Instruction::insertBefore(BasicBlock &BB,
                               InstListType::iterator InsertPos) {
  assert(!DbgMarker);

  BB.getInstList().insert(InsertPos, this);

  if (!BB.IsNewDbgInfoFormat)
    return;

  // We've inserted "this": if InsertAtHead is set then it comes before any
  // DPValues attached to InsertPos. But if it's not set, then any DPValues
  // should now come before "this".
  bool InsertAtHead = InsertPos.getHeadBit();
  if (!InsertAtHead) {
    DPMarker *SrcMarker = BB.getMarker(InsertPos);
    if (SrcMarker && !SrcMarker->empty()) {
      // If this assertion fires, the calling code is about to insert a PHI
      // after debug-records, which would form a sequence like:
      //     %0 = PHI
      //     #dbg_value
      //     %1 = PHI
      // Which is de-normalised and undesired -- hence the assertion. To avoid
      // this, you must insert at that position using an iterator, and it must
      // be aquired by calling getFirstNonPHIIt / begin or similar methods on
      // the block. This will signal to this behind-the-scenes debug-info
      // maintenence code that you intend the PHI to be ahead of everything,
      // including any debug-info.
      assert(!isa<PHINode>(this) && "Inserting PHI after debug-records!");
      adoptDbgValues(&BB, InsertPos, false);
    }
  }

  // If we're inserting a terminator, check if we need to flush out
  // TrailingDPValues.
  if (isTerminator())
    getParent()->flushTerminatorDbgValues();
}

/// Unlink this instruction from its current basic block and insert it into the
/// basic block that MovePos lives in, right before MovePos.
void Instruction::moveBefore(Instruction *MovePos) {
  moveBeforeImpl(*MovePos->getParent(), MovePos->getIterator(), false);
}

void Instruction::moveBeforePreserving(Instruction *MovePos) {
  moveBeforeImpl(*MovePos->getParent(), MovePos->getIterator(), true);
}

void Instruction::moveAfter(Instruction *MovePos) {
  auto NextIt = std::next(MovePos->getIterator());
  // We want this instruction to be moved to before NextIt in the instruction
  // list, but before NextIt's debug value range.
  NextIt.setHeadBit(true);
  moveBeforeImpl(*MovePos->getParent(), NextIt, false);
}

void Instruction::moveAfterPreserving(Instruction *MovePos) {
  auto NextIt = std::next(MovePos->getIterator());
  // We want this instruction and its debug range to be moved to before NextIt
  // in the instruction list, but before NextIt's debug value range.
  NextIt.setHeadBit(true);
  moveBeforeImpl(*MovePos->getParent(), NextIt, true);
}

void Instruction::moveBefore(BasicBlock &BB, InstListType::iterator I) {
  moveBeforeImpl(BB, I, false);
}

void Instruction::moveBeforePreserving(BasicBlock &BB,
                                       InstListType::iterator I) {
  moveBeforeImpl(BB, I, true);
}

void Instruction::moveBeforeImpl(BasicBlock &BB, InstListType::iterator I,
                              bool Preserve) {
  assert(I == BB.end() || I->getParent() == &BB);
  bool InsertAtHead = I.getHeadBit();

  // If we've been given the "Preserve" flag, then just move the DPValues with
  // the instruction, no more special handling needed.
  if (BB.IsNewDbgInfoFormat && DbgMarker && !Preserve) {
    if (I != this->getIterator() || InsertAtHead) {
      // "this" is definitely moving in the list, or it's moving ahead of its
      // attached DPValues. Detach any existing DPValues.
      handleMarkerRemoval();
    }
  }

  // Move this single instruction. Use the list splice method directly, not
  // the block splicer, which will do more debug-info things.
  BB.getInstList().splice(I, getParent()->getInstList(), getIterator());

  if (BB.IsNewDbgInfoFormat && !Preserve) {
    DPMarker *NextMarker = getParent()->getNextMarker(this);

    // If we're inserting at point I, and not in front of the DPValues attached
    // there, then we should absorb the DPValues attached to I.
    if (!InsertAtHead && NextMarker && !NextMarker->empty()) {
      adoptDbgValues(&BB, I, false);
    }
  }

  if (isTerminator())
    getParent()->flushTerminatorDbgValues();
}

iterator_range<DbgRecord::self_iterator> Instruction::cloneDebugInfoFrom(
    const Instruction *From, std::optional<DbgRecord::self_iterator> FromHere,
    bool InsertAtHead) {
  if (!From->DbgMarker)
    return DPMarker::getEmptyDPValueRange();

  assert(getParent()->IsNewDbgInfoFormat);
  assert(getParent()->IsNewDbgInfoFormat ==
         From->getParent()->IsNewDbgInfoFormat);

  if (!DbgMarker)
    getParent()->createMarker(this);

  return DbgMarker->cloneDebugInfoFrom(From->DbgMarker, FromHere, InsertAtHead);
}

std::optional<DbgRecord::self_iterator>
Instruction::getDbgReinsertionPosition() {
  // Is there a marker on the next instruction?
  DPMarker *NextMarker = getParent()->getNextMarker(this);
  if (!NextMarker)
    return std::nullopt;

  // Are there any DPValues in the next marker?
  if (NextMarker->StoredDPValues.empty())
    return std::nullopt;

  return NextMarker->StoredDPValues.begin();
}

bool Instruction::hasDbgValues() const { return !getDbgValueRange().empty(); }

void Instruction::adoptDbgValues(BasicBlock *BB, BasicBlock::iterator It,
                                 bool InsertAtHead) {
  DPMarker *SrcMarker = BB->getMarker(It);
  auto ReleaseTrailingDPValues = [BB, It, SrcMarker]() {
    if (BB->end() == It) {
      SrcMarker->eraseFromParent();
      BB->deleteTrailingDPValues();
    }
  };

  if (!SrcMarker || SrcMarker->StoredDPValues.empty()) {
    ReleaseTrailingDPValues();
    return;
  }

  // If we have DPMarkers attached to this instruction, we have to honour the
  // ordering of DPValues between this and the other marker. Fall back to just
  // absorbing from the source.
  if (DbgMarker || It == BB->end()) {
    // Ensure we _do_ have a marker.
    getParent()->createMarker(this);
    DbgMarker->absorbDebugValues(*SrcMarker, InsertAtHead);

    // Having transferred everything out of SrcMarker, we _could_ clean it up
    // and free the marker now. However, that's a lot of heap-accounting for a
    // small amount of memory with a good chance of re-use. Leave it for the
    // moment. It will be released when the Instruction is freed in the worst
    // case.
    // However: if we transferred from a trailing marker off the end of the
    // block, it's important to not leave the empty marker trailing. It will
    // give a misleading impression that some debug records have been left
    // trailing.
    ReleaseTrailingDPValues();
  } else {
    // Optimisation: we're transferring all the DPValues from the source marker
    // onto this empty location: just adopt the other instructions marker.
    DbgMarker = SrcMarker;
    DbgMarker->MarkedInstr = this;
    It->DbgMarker = nullptr;
  }
}

void Instruction::dropDbgValues() {
  if (DbgMarker)
    DbgMarker->dropDbgValues();
}

void Instruction::dropOneDbgValue(DbgRecord *DPV) {
  DbgMarker->dropOneDbgValue(DPV);
}

bool Instruction::comesBefore(const Instruction *Other) const {
  assert(Parent && Other->Parent &&
         "instructions without BB parents have no order");
  assert(Parent == Other->Parent && "cross-BB instruction order comparison");
  if (!Parent->isInstrOrderValid())
    Parent->renumberInstructions();
  return Order < Other->Order;
}

std::optional<BasicBlock::iterator> Instruction::getInsertionPointAfterDef() {
  assert(!getType()->isVoidTy() && "Instruction must define result");
  BasicBlock *InsertBB;
  BasicBlock::iterator InsertPt;
  if (auto *PN = dyn_cast<PHINode>(this)) {
    InsertBB = PN->getParent();
    InsertPt = InsertBB->getFirstInsertionPt();
  } else if (auto *II = dyn_cast<InvokeInst>(this)) {
    InsertBB = II->getNormalDest();
    InsertPt = InsertBB->getFirstInsertionPt();
  } else if (isa<CallBrInst>(this)) {
    // Def is available in multiple successors, there's no single dominating
    // insertion point.
    return std::nullopt;
  } else {
    assert(!isTerminator() && "Only invoke/callbr terminators return value");
    InsertBB = getParent();
    InsertPt = std::next(getIterator());
    // Any instruction inserted immediately after "this" will come before any
    // debug-info records take effect -- thus, set the head bit indicating that
    // to debug-info-transfer code.
    InsertPt.setHeadBit(true);
  }

  // catchswitch blocks don't have any legal insertion point (because they
  // are both an exception pad and a terminator).
  if (InsertPt == InsertBB->end())
    return std::nullopt;
  return InsertPt;
}

bool Instruction::isOnlyUserOfAnyOperand() {
  return any_of(operands(), [](Value *V) { return V->hasOneUser(); });
}

void Instruction::setHasNoUnsignedWrap(bool b) {
  cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
}

void Instruction::setHasNoSignedWrap(bool b) {
  cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
}

void Instruction::setIsExact(bool b) {
  cast<PossiblyExactOperator>(this)->setIsExact(b);
}

void Instruction::setNonNeg(bool b) {
  assert(isa<PossiblyNonNegInst>(this) && "Must be zext");
  SubclassOptionalData = (SubclassOptionalData & ~PossiblyNonNegInst::NonNeg) |
                         (b * PossiblyNonNegInst::NonNeg);
}

bool Instruction::hasNoUnsignedWrap() const {
  return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
}

bool Instruction::hasNoSignedWrap() const {
  return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
}

bool Instruction::hasNonNeg() const {
  assert(isa<PossiblyNonNegInst>(this) && "Must be zext");
  return (SubclassOptionalData & PossiblyNonNegInst::NonNeg) != 0;
}

bool Instruction::hasPoisonGeneratingFlags() const {
  return cast<Operator>(this)->hasPoisonGeneratingFlags();
}

void Instruction::dropPoisonGeneratingFlags() {
  switch (getOpcode()) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::Shl:
    cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(false);
    cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(false);
    break;

  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::AShr:
  case Instruction::LShr:
    cast<PossiblyExactOperator>(this)->setIsExact(false);
    break;

  case Instruction::Or:
    cast<PossiblyDisjointInst>(this)->setIsDisjoint(false);
    break;

  case Instruction::GetElementPtr:
    cast<GetElementPtrInst>(this)->setIsInBounds(false);
    break;

  case Instruction::ZExt:
    setNonNeg(false);
    break;
  }

  if (isa<FPMathOperator>(this)) {
    setHasNoNaNs(false);
    setHasNoInfs(false);
  }

  assert(!hasPoisonGeneratingFlags() && "must be kept in sync");
}

bool Instruction::hasPoisonGeneratingMetadata() const {
  return hasMetadata(LLVMContext::MD_range) ||
         hasMetadata(LLVMContext::MD_nonnull) ||
         hasMetadata(LLVMContext::MD_align);
}

void Instruction::dropPoisonGeneratingMetadata() {
  eraseMetadata(LLVMContext::MD_range);
  eraseMetadata(LLVMContext::MD_nonnull);
  eraseMetadata(LLVMContext::MD_align);
}

void Instruction::dropUBImplyingAttrsAndUnknownMetadata(
    ArrayRef<unsigned> KnownIDs) {
  dropUnknownNonDebugMetadata(KnownIDs);
  auto *CB = dyn_cast<CallBase>(this);
  if (!CB)
    return;
  // For call instructions, we also need to drop parameter and return attributes
  // that are can cause UB if the call is moved to a location where the
  // attribute is not valid.
  AttributeList AL = CB->getAttributes();
  if (AL.isEmpty())
    return;
  AttributeMask UBImplyingAttributes =
      AttributeFuncs::getUBImplyingAttributes();
  for (unsigned ArgNo = 0; ArgNo < CB->arg_size(); ArgNo++)
    CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
  CB->removeRetAttrs(UBImplyingAttributes);
}

void Instruction::dropUBImplyingAttrsAndMetadata() {
  // !annotation metadata does not impact semantics.
  // !range, !nonnull and !align produce poison, so they are safe to speculate.
  // !noundef and various AA metadata must be dropped, as it generally produces
  // immediate undefined behavior.
  unsigned KnownIDs[] = {LLVMContext::MD_annotation, LLVMContext::MD_range,
                         LLVMContext::MD_nonnull, LLVMContext::MD_align};
  dropUBImplyingAttrsAndUnknownMetadata(KnownIDs);
}

bool Instruction::isExact() const {
  return cast<PossiblyExactOperator>(this)->isExact();
}

void Instruction::setFast(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setFast(B);
}

void Instruction::setHasAllowReassoc(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasAllowReassoc(B);
}

void Instruction::setHasNoNaNs(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasNoNaNs(B);
}

void Instruction::setHasNoInfs(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasNoInfs(B);
}

void Instruction::setHasNoSignedZeros(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
}

void Instruction::setHasAllowReciprocal(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
}

void Instruction::setHasAllowContract(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasAllowContract(B);
}

void Instruction::setHasApproxFunc(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasApproxFunc(B);
}

void Instruction::setFastMathFlags(FastMathFlags FMF) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setFastMathFlags(FMF);
}

void Instruction::copyFastMathFlags(FastMathFlags FMF) {
  assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
  cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
}

bool Instruction::isFast() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->isFast();
}

bool Instruction::hasAllowReassoc() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasAllowReassoc();
}

bool Instruction::hasNoNaNs() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasNoNaNs();
}

bool Instruction::hasNoInfs() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasNoInfs();
}

bool Instruction::hasNoSignedZeros() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasNoSignedZeros();
}

bool Instruction::hasAllowReciprocal() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasAllowReciprocal();
}

bool Instruction::hasAllowContract() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasAllowContract();
}

bool Instruction::hasApproxFunc() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasApproxFunc();
}

FastMathFlags Instruction::getFastMathFlags() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->getFastMathFlags();
}

void Instruction::copyFastMathFlags(const Instruction *I) {
  copyFastMathFlags(I->getFastMathFlags());
}

void Instruction::copyIRFlags(const Value *V, bool IncludeWrapFlags) {
  // Copy the wrapping flags.
  if (IncludeWrapFlags && isa<OverflowingBinaryOperator>(this)) {
    if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
      setHasNoSignedWrap(OB->hasNoSignedWrap());
      setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
    }
  }

  // Copy the exact flag.
  if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
    if (isa<PossiblyExactOperator>(this))
      setIsExact(PE->isExact());

  if (auto *SrcPD = dyn_cast<PossiblyDisjointInst>(V))
    if (auto *DestPD = dyn_cast<PossiblyDisjointInst>(this))
      DestPD->setIsDisjoint(SrcPD->isDisjoint());

  // Copy the fast-math flags.
  if (auto *FP = dyn_cast<FPMathOperator>(V))
    if (isa<FPMathOperator>(this))
      copyFastMathFlags(FP->getFastMathFlags());

  if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
    if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
      DestGEP->setIsInBounds(SrcGEP->isInBounds() || DestGEP->isInBounds());

  if (auto *NNI = dyn_cast<PossiblyNonNegInst>(V))
    if (isa<PossiblyNonNegInst>(this))
      setNonNeg(NNI->hasNonNeg());
}

void Instruction::andIRFlags(const Value *V) {
  if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
    if (isa<OverflowingBinaryOperator>(this)) {
      setHasNoSignedWrap(hasNoSignedWrap() && OB->hasNoSignedWrap());
      setHasNoUnsignedWrap(hasNoUnsignedWrap() && OB->hasNoUnsignedWrap());
    }
  }

  if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
    if (isa<PossiblyExactOperator>(this))
      setIsExact(isExact() && PE->isExact());

  if (auto *SrcPD = dyn_cast<PossiblyDisjointInst>(V))
    if (auto *DestPD = dyn_cast<PossiblyDisjointInst>(this))
      DestPD->setIsDisjoint(DestPD->isDisjoint() && SrcPD->isDisjoint());

  if (auto *FP = dyn_cast<FPMathOperator>(V)) {
    if (isa<FPMathOperator>(this)) {
      FastMathFlags FM = getFastMathFlags();
      FM &= FP->getFastMathFlags();
      copyFastMathFlags(FM);
    }
  }

  if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
    if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
      DestGEP->setIsInBounds(SrcGEP->isInBounds() && DestGEP->isInBounds());

  if (auto *NNI = dyn_cast<PossiblyNonNegInst>(V))
    if (isa<PossiblyNonNegInst>(this))
      setNonNeg(hasNonNeg() && NNI->hasNonNeg());
}

const char *Instruction::getOpcodeName(unsigned OpCode) {
  switch (OpCode) {
  // Terminators
  case Ret:    return "ret";
  case Br:     return "br";
  case Switch: return "switch";
  case IndirectBr: return "indirectbr";
  case Invoke: return "invoke";
  case Resume: return "resume";
  case Unreachable: return "unreachable";
  case CleanupRet: return "cleanupret";
  case CatchRet: return "catchret";
  case CatchPad: return "catchpad";
  case CatchSwitch: return "catchswitch";
  case CallBr: return "callbr";

  // Standard unary operators...
  case FNeg: return "fneg";

  // Standard binary operators...
  case Add: return "add";
  case FAdd: return "fadd";
  case Sub: return "sub";
  case FSub: return "fsub";
  case Mul: return "mul";
  case FMul: return "fmul";
  case UDiv: return "udiv";
  case SDiv: return "sdiv";
  case FDiv: return "fdiv";
  case URem: return "urem";
  case SRem: return "srem";
  case FRem: return "frem";

  // Logical operators...
  case And: return "and";
  case Or : return "or";
  case Xor: return "xor";

  // Memory instructions...
  case Alloca:        return "alloca";
  case Load:          return "load";
  case Store:         return "store";
  case AtomicCmpXchg: return "cmpxchg";
  case AtomicRMW:     return "atomicrmw";
  case Fence:         return "fence";
  case GetElementPtr: return "getelementptr";

  // Convert instructions...
  case Trunc:         return "trunc";
  case ZExt:          return "zext";
  case SExt:          return "sext";
  case FPTrunc:       return "fptrunc";
  case FPExt:         return "fpext";
  case FPToUI:        return "fptoui";
  case FPToSI:        return "fptosi";
  case UIToFP:        return "uitofp";
  case SIToFP:        return "sitofp";
  case IntToPtr:      return "inttoptr";
  case PtrToInt:      return "ptrtoint";
  case BitCast:       return "bitcast";
  case AddrSpaceCast: return "addrspacecast";

  // Other instructions...
  case ICmp:           return "icmp";
  case FCmp:           return "fcmp";
  case PHI:            return "phi";
  case Select:         return "select";
  case Call:           return "call";
  case Shl:            return "shl";
  case LShr:           return "lshr";
  case AShr:           return "ashr";
  case VAArg:          return "va_arg";
  case ExtractElement: return "extractelement";
  case InsertElement:  return "insertelement";
  case ShuffleVector:  return "shufflevector";
  case ExtractValue:   return "extractvalue";
  case InsertValue:    return "insertvalue";
  case LandingPad:     return "landingpad";
  case CleanupPad:     return "cleanuppad";
  case Freeze:         return "freeze";

  default: return "<Invalid operator> ";
  }
}

/// This must be kept in sync with FunctionComparator::cmpOperations in
/// lib/Transforms/IPO/MergeFunctions.cpp.
bool Instruction::hasSameSpecialState(const Instruction *I2,
                                      bool IgnoreAlignment) const {
  auto I1 = this;
  assert(I1->getOpcode() == I2->getOpcode() &&
         "Can not compare special state of different instructions");

  if (const AllocaInst *AI = dyn_cast<AllocaInst>(I1))
    return AI->getAllocatedType() == cast<AllocaInst>(I2)->getAllocatedType() &&
           (AI->getAlign() == cast<AllocaInst>(I2)->getAlign() ||
            IgnoreAlignment);
  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
           (LI->getAlign() == cast<LoadInst>(I2)->getAlign() ||
            IgnoreAlignment) &&
           LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
           LI->getSyncScopeID() == cast<LoadInst>(I2)->getSyncScopeID();
  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
           (SI->getAlign() == cast<StoreInst>(I2)->getAlign() ||
            IgnoreAlignment) &&
           SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
           SI->getSyncScopeID() == cast<StoreInst>(I2)->getSyncScopeID();
  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
  if (const CallInst *CI = dyn_cast<CallInst>(I1))
    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
           CI->getAttributes() == cast<CallInst>(I2)->getAttributes() &&
           CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2));
  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
           CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() &&
           CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2));
  if (const CallBrInst *CI = dyn_cast<CallBrInst>(I1))
    return CI->getCallingConv() == cast<CallBrInst>(I2)->getCallingConv() &&
           CI->getAttributes() == cast<CallBrInst>(I2)->getAttributes() &&
           CI->hasIdenticalOperandBundleSchema(*cast<CallBrInst>(I2));
  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
    return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
    return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
  if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
    return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
           FI->getSyncScopeID() == cast<FenceInst>(I2)->getSyncScopeID();
  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
    return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
           CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
           CXI->getSuccessOrdering() ==
               cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
           CXI->getFailureOrdering() ==
               cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
           CXI->getSyncScopeID() ==
               cast<AtomicCmpXchgInst>(I2)->getSyncScopeID();
  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
    return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
           RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
           RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
           RMWI->getSyncScopeID() == cast<AtomicRMWInst>(I2)->getSyncScopeID();
  if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I1))
    return SVI->getShuffleMask() ==
           cast<ShuffleVectorInst>(I2)->getShuffleMask();
  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I1))
    return GEP->getSourceElementType() ==
           cast<GetElementPtrInst>(I2)->getSourceElementType();

  return true;
}

bool Instruction::isIdenticalTo(const Instruction *I) const {
  return isIdenticalToWhenDefined(I) &&
         SubclassOptionalData == I->SubclassOptionalData;
}

bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
  if (getOpcode() != I->getOpcode() ||
      getNumOperands() != I->getNumOperands() ||
      getType() != I->getType())
    return false;

  // If both instructions have no operands, they are identical.
  if (getNumOperands() == 0 && I->getNumOperands() == 0)
    return this->hasSameSpecialState(I);

  // We have two instructions of identical opcode and #operands.  Check to see
  // if all operands are the same.
  if (!std::equal(op_begin(), op_end(), I->op_begin()))
    return false;

  // WARNING: this logic must be kept in sync with EliminateDuplicatePHINodes()!
  if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
    const PHINode *otherPHI = cast<PHINode>(I);
    return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
                      otherPHI->block_begin());
  }

  return this->hasSameSpecialState(I);
}

// Keep this in sync with FunctionComparator::cmpOperations in
// lib/Transforms/IPO/MergeFunctions.cpp.
bool Instruction::isSameOperationAs(const Instruction *I,
                                    unsigned flags) const {
  bool IgnoreAlignment = flags & CompareIgnoringAlignment;
  bool UseScalarTypes  = flags & CompareUsingScalarTypes;

  if (getOpcode() != I->getOpcode() ||
      getNumOperands() != I->getNumOperands() ||
      (UseScalarTypes ?
       getType()->getScalarType() != I->getType()->getScalarType() :
       getType() != I->getType()))
    return false;

  // We have two instructions of identical opcode and #operands.  Check to see
  // if all operands are the same type
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    if (UseScalarTypes ?
        getOperand(i)->getType()->getScalarType() !=
          I->getOperand(i)->getType()->getScalarType() :
        getOperand(i)->getType() != I->getOperand(i)->getType())
      return false;

  return this->hasSameSpecialState(I, IgnoreAlignment);
}

bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
  for (const Use &U : uses()) {
    // PHI nodes uses values in the corresponding predecessor block.  For other
    // instructions, just check to see whether the parent of the use matches up.
    const Instruction *I = cast<Instruction>(U.getUser());
    const PHINode *PN = dyn_cast<PHINode>(I);
    if (!PN) {
      if (I->getParent() != BB)
        return true;
      continue;
    }

    if (PN->getIncomingBlock(U) != BB)
      return true;
  }
  return false;
}

bool Instruction::mayReadFromMemory() const {
  switch (getOpcode()) {
  default: return false;
  case Instruction::VAArg:
  case Instruction::Load:
  case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::CatchPad:
  case Instruction::CatchRet:
    return true;
  case Instruction::Call:
  case Instruction::Invoke:
  case Instruction::CallBr:
    return !cast<CallBase>(this)->onlyWritesMemory();
  case Instruction::Store:
    return !cast<StoreInst>(this)->isUnordered();
  }
}

bool Instruction::mayWriteToMemory() const {
  switch (getOpcode()) {
  default: return false;
  case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
  case Instruction::Store:
  case Instruction::VAArg:
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::CatchPad:
  case Instruction::CatchRet:
    return true;
  case Instruction::Call:
  case Instruction::Invoke:
  case Instruction::CallBr:
    return !cast<CallBase>(this)->onlyReadsMemory();
  case Instruction::Load:
    return !cast<LoadInst>(this)->isUnordered();
  }
}

bool Instruction::isAtomic() const {
  switch (getOpcode()) {
  default:
    return false;
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::Fence:
    return true;
  case Instruction::Load:
    return cast<LoadInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
  case Instruction::Store:
    return cast<StoreInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
  }
}

bool Instruction::hasAtomicLoad() const {
  assert(isAtomic());
  switch (getOpcode()) {
  default:
    return false;
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::Load:
    return true;
  }
}

bool Instruction::hasAtomicStore() const {
  assert(isAtomic());
  switch (getOpcode()) {
  default:
    return false;
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::Store:
    return true;
  }
}

bool Instruction::isVolatile() const {
  switch (getOpcode()) {
  default:
    return false;
  case Instruction::AtomicRMW:
    return cast<AtomicRMWInst>(this)->isVolatile();
  case Instruction::Store:
    return cast<StoreInst>(this)->isVolatile();
  case Instruction::Load:
    return cast<LoadInst>(this)->isVolatile();
  case Instruction::AtomicCmpXchg:
    return cast<AtomicCmpXchgInst>(this)->isVolatile();
  case Instruction::Call:
  case Instruction::Invoke:
    // There are a very limited number of intrinsics with volatile flags.
    if (auto *II = dyn_cast<IntrinsicInst>(this)) {
      if (auto *MI = dyn_cast<MemIntrinsic>(II))
        return MI->isVolatile();
      switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::matrix_column_major_load:
        return cast<ConstantInt>(II->getArgOperand(2))->isOne();
      case Intrinsic::matrix_column_major_store:
        return cast<ConstantInt>(II->getArgOperand(3))->isOne();
      }
    }
    return false;
  }
}

Type *Instruction::getAccessType() const {
  switch (getOpcode()) {
  case Instruction::Store:
    return cast<StoreInst>(this)->getValueOperand()->getType();
  case Instruction::Load:
  case Instruction::AtomicRMW:
    return getType();
  case Instruction::AtomicCmpXchg:
    return cast<AtomicCmpXchgInst>(this)->getNewValOperand()->getType();
  case Instruction::Call:
  case Instruction::Invoke:
    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(this)) {
      switch (II->getIntrinsicID()) {
      case Intrinsic::masked_load:
      case Intrinsic::masked_gather:
      case Intrinsic::masked_expandload:
      case Intrinsic::vp_load:
      case Intrinsic::vp_gather:
      case Intrinsic::experimental_vp_strided_load:
        return II->getType();
      case Intrinsic::masked_store:
      case Intrinsic::masked_scatter:
      case Intrinsic::masked_compressstore:
      case Intrinsic::vp_store:
      case Intrinsic::vp_scatter:
      case Intrinsic::experimental_vp_strided_store:
        return II->getOperand(0)->getType();
      default:
        break;
      }
    }
  }

  return nullptr;
}

static bool canUnwindPastLandingPad(const LandingPadInst *LP,
                                    bool IncludePhaseOneUnwind) {
  // Because phase one unwinding skips cleanup landingpads, we effectively
  // unwind past this frame, and callers need to have valid unwind info.
  if (LP->isCleanup())
    return IncludePhaseOneUnwind;

  for (unsigned I = 0; I < LP->getNumClauses(); ++I) {
    Constant *Clause = LP->getClause(I);
    // catch ptr null catches all exceptions.
    if (LP->isCatch(I) && isa<ConstantPointerNull>(Clause))
      return false;
    // filter [0 x ptr] catches all exceptions.
    if (LP->isFilter(I) && Clause->getType()->getArrayNumElements() == 0)
      return false;
  }

  // May catch only some subset of exceptions, in which case other exceptions
  // will continue unwinding.
  return true;
}

bool Instruction::mayThrow(bool IncludePhaseOneUnwind) const {
  switch (getOpcode()) {
  case Instruction::Call:
    return !cast<CallInst>(this)->doesNotThrow();
  case Instruction::CleanupRet:
    return cast<CleanupReturnInst>(this)->unwindsToCaller();
  case Instruction::CatchSwitch:
    return cast<CatchSwitchInst>(this)->unwindsToCaller();
  case Instruction::Resume:
    return true;
  case Instruction::Invoke: {
    // Landingpads themselves don't unwind -- however, an invoke of a skipped
    // landingpad may continue unwinding.
    BasicBlock *UnwindDest = cast<InvokeInst>(this)->getUnwindDest();
    Instruction *Pad = UnwindDest->getFirstNonPHI();
    if (auto *LP = dyn_cast<LandingPadInst>(Pad))
      return canUnwindPastLandingPad(LP, IncludePhaseOneUnwind);
    return false;
  }
  case Instruction::CleanupPad:
    // Treat the same as cleanup landingpad.
    return IncludePhaseOneUnwind;
  default:
    return false;
  }
}

bool Instruction::mayHaveSideEffects() const {
  return mayWriteToMemory() || mayThrow() || !willReturn();
}

bool Instruction::isSafeToRemove() const {
  return (!isa<CallInst>(this) || !this->mayHaveSideEffects()) &&
         !this->isTerminator() && !this->isEHPad();
}

bool Instruction::willReturn() const {
  // Volatile store isn't guaranteed to return; see LangRef.
  if (auto *SI = dyn_cast<StoreInst>(this))
    return !SI->isVolatile();

  if (const auto *CB = dyn_cast<CallBase>(this))
    return CB->hasFnAttr(Attribute::WillReturn);
  return true;
}

bool Instruction::isLifetimeStartOrEnd() const {
  auto *II = dyn_cast<IntrinsicInst>(this);
  if (!II)
    return false;
  Intrinsic::ID ID = II->getIntrinsicID();
  return ID == Intrinsic::lifetime_start || ID == Intrinsic::lifetime_end;
}

bool Instruction::isLaunderOrStripInvariantGroup() const {
  auto *II = dyn_cast<IntrinsicInst>(this);
  if (!II)
    return false;
  Intrinsic::ID ID = II->getIntrinsicID();
  return ID == Intrinsic::launder_invariant_group ||
         ID == Intrinsic::strip_invariant_group;
}

bool Instruction::isDebugOrPseudoInst() const {
  return isa<DbgInfoIntrinsic>(this) || isa<PseudoProbeInst>(this);
}

const Instruction *
Instruction::getNextNonDebugInstruction(bool SkipPseudoOp) const {
  for (const Instruction *I = getNextNode(); I; I = I->getNextNode())
    if (!isa<DbgInfoIntrinsic>(I) && !(SkipPseudoOp && isa<PseudoProbeInst>(I)))
      return I;
  return nullptr;
}

const Instruction *
Instruction::getPrevNonDebugInstruction(bool SkipPseudoOp) const {
  for (const Instruction *I = getPrevNode(); I; I = I->getPrevNode())
    if (!isa<DbgInfoIntrinsic>(I) && !(SkipPseudoOp && isa<PseudoProbeInst>(I)))
      return I;
  return nullptr;
}

const DebugLoc &Instruction::getStableDebugLoc() const {
  if (isa<DbgInfoIntrinsic>(this))
    if (const Instruction *Next = getNextNonDebugInstruction())
      return Next->getDebugLoc();
  return getDebugLoc();
}

bool Instruction::isAssociative() const {
  if (auto *II = dyn_cast<IntrinsicInst>(this))
    return II->isAssociative();
  unsigned Opcode = getOpcode();
  if (isAssociative(Opcode))
    return true;

  switch (Opcode) {
  case FMul:
  case FAdd:
    return cast<FPMathOperator>(this)->hasAllowReassoc() &&
           cast<FPMathOperator>(this)->hasNoSignedZeros();
  default:
    return false;
  }
}

bool Instruction::isCommutative() const {
  if (auto *II = dyn_cast<IntrinsicInst>(this))
    return II->isCommutative();
  // TODO: Should allow icmp/fcmp?
  return isCommutative(getOpcode());
}

unsigned Instruction::getNumSuccessors() const {
  switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
  case Instruction::OPC:                                                       \
    return static_cast<const CLASS *>(this)->getNumSuccessors();
#include "llvm/IR/Instruction.def"
  default:
    break;
  }
  llvm_unreachable("not a terminator");
}

BasicBlock *Instruction::getSuccessor(unsigned idx) const {
  switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
  case Instruction::OPC:                                                       \
    return static_cast<const CLASS *>(this)->getSuccessor(idx);
#include "llvm/IR/Instruction.def"
  default:
    break;
  }
  llvm_unreachable("not a terminator");
}

void Instruction::setSuccessor(unsigned idx, BasicBlock *B) {
  switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS)                                        \
  case Instruction::OPC:                                                       \
    return static_cast<CLASS *>(this)->setSuccessor(idx, B);
#include "llvm/IR/Instruction.def"
  default:
    break;
  }
  llvm_unreachable("not a terminator");
}

void Instruction::replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB) {
  for (unsigned Idx = 0, NumSuccessors = Instruction::getNumSuccessors();
       Idx != NumSuccessors; ++Idx)
    if (getSuccessor(Idx) == OldBB)
      setSuccessor(Idx, NewBB);
}

Instruction *Instruction::cloneImpl() const {
  llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
}

void Instruction::swapProfMetadata() {
  MDNode *ProfileData = getBranchWeightMDNode(*this);
  if (!ProfileData || ProfileData->getNumOperands() != 3)
    return;

  // The first operand is the name. Fetch them backwards and build a new one.
  Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
                     ProfileData->getOperand(1)};
  setMetadata(LLVMContext::MD_prof,
              MDNode::get(ProfileData->getContext(), Ops));
}

void Instruction::copyMetadata(const Instruction &SrcInst,
                               ArrayRef<unsigned> WL) {
  if (!SrcInst.hasMetadata())
    return;

  SmallDenseSet<unsigned, 4> WLS(WL.begin(), WL.end());

  // Otherwise, enumerate and copy over metadata from the old instruction to the
  // new one.
  SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
  SrcInst.getAllMetadataOtherThanDebugLoc(TheMDs);
  for (const auto &MD : TheMDs) {
    if (WL.empty() || WLS.count(MD.first))
      setMetadata(MD.first, MD.second);
  }
  if (WL.empty() || WLS.count(LLVMContext::MD_dbg))
    setDebugLoc(SrcInst.getDebugLoc());
}

Instruction *Instruction::clone() const {
  Instruction *New = nullptr;
  switch (getOpcode()) {
  default:
    llvm_unreachable("Unhandled Opcode.");
#define HANDLE_INST(num, opc, clas)                                            \
  case Instruction::opc:                                                       \
    New = cast<clas>(this)->cloneImpl();                                       \
    break;
#include "llvm/IR/Instruction.def"
#undef HANDLE_INST
  }

  New->SubclassOptionalData = SubclassOptionalData;
  New->copyMetadata(*this);
  return New;
}