summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.cpp
blob: edb0e50da2896be360b2cafdafcedf7149802c82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "AMDGPUBaseInfo.h"
#include "AMDGPU.h"
#include "AMDGPUAsmUtils.h"
#include "AMDKernelCodeT.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/AMDHSAKernelDescriptor.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/TargetParser/TargetParser.h"
#include <optional>

#define GET_INSTRINFO_NAMED_OPS
#define GET_INSTRMAP_INFO
#include "AMDGPUGenInstrInfo.inc"

static llvm::cl::opt<unsigned> DefaultAMDHSACodeObjectVersion(
    "amdhsa-code-object-version", llvm::cl::Hidden,
    llvm::cl::init(llvm::AMDGPU::AMDHSA_COV5),
    llvm::cl::desc("Set default AMDHSA Code Object Version (module flag "
                   "or asm directive still take priority if present)"));

namespace {

/// \returns Bit mask for given bit \p Shift and bit \p Width.
unsigned getBitMask(unsigned Shift, unsigned Width) {
  return ((1 << Width) - 1) << Shift;
}

/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
///
/// \returns Packed \p Dst.
unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
  unsigned Mask = getBitMask(Shift, Width);
  return ((Src << Shift) & Mask) | (Dst & ~Mask);
}

/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
///
/// \returns Unpacked bits.
unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
  return (Src & getBitMask(Shift, Width)) >> Shift;
}

/// \returns Vmcnt bit shift (lower bits).
unsigned getVmcntBitShiftLo(unsigned VersionMajor) {
  return VersionMajor >= 11 ? 10 : 0;
}

/// \returns Vmcnt bit width (lower bits).
unsigned getVmcntBitWidthLo(unsigned VersionMajor) {
  return VersionMajor >= 11 ? 6 : 4;
}

/// \returns Expcnt bit shift.
unsigned getExpcntBitShift(unsigned VersionMajor) {
  return VersionMajor >= 11 ? 0 : 4;
}

/// \returns Expcnt bit width.
unsigned getExpcntBitWidth(unsigned VersionMajor) { return 3; }

/// \returns Lgkmcnt bit shift.
unsigned getLgkmcntBitShift(unsigned VersionMajor) {
  return VersionMajor >= 11 ? 4 : 8;
}

/// \returns Lgkmcnt bit width.
unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
  return VersionMajor >= 10 ? 6 : 4;
}

/// \returns Vmcnt bit shift (higher bits).
unsigned getVmcntBitShiftHi(unsigned VersionMajor) { return 14; }

/// \returns Vmcnt bit width (higher bits).
unsigned getVmcntBitWidthHi(unsigned VersionMajor) {
  return (VersionMajor == 9 || VersionMajor == 10) ? 2 : 0;
}

/// \returns Loadcnt bit width
unsigned getLoadcntBitWidth(unsigned VersionMajor) {
  return VersionMajor >= 12 ? 6 : 0;
}

/// \returns Samplecnt bit width.
unsigned getSamplecntBitWidth(unsigned VersionMajor) {
  return VersionMajor >= 12 ? 6 : 0;
}

/// \returns Bvhcnt bit width.
unsigned getBvhcntBitWidth(unsigned VersionMajor) {
  return VersionMajor >= 12 ? 3 : 0;
}

/// \returns Dscnt bit width.
unsigned getDscntBitWidth(unsigned VersionMajor) {
  return VersionMajor >= 12 ? 6 : 0;
}

/// \returns Dscnt bit shift in combined S_WAIT instructions.
unsigned getDscntBitShift(unsigned VersionMajor) { return 0; }

/// \returns Storecnt or Vscnt bit width, depending on VersionMajor.
unsigned getStorecntBitWidth(unsigned VersionMajor) {
  return VersionMajor >= 10 ? 6 : 0;
}

/// \returns Kmcnt bit width.
unsigned getKmcntBitWidth(unsigned VersionMajor) {
  return VersionMajor >= 12 ? 5 : 0;
}

/// \returns shift for Loadcnt/Storecnt in combined S_WAIT instructions.
unsigned getLoadcntStorecntBitShift(unsigned VersionMajor) {
  return VersionMajor >= 12 ? 8 : 0;
}

/// \returns VmVsrc bit width
inline unsigned getVmVsrcBitWidth() { return 3; }

/// \returns VmVsrc bit shift
inline unsigned getVmVsrcBitShift() { return 2; }

/// \returns VaVdst bit width
inline unsigned getVaVdstBitWidth() { return 4; }

/// \returns VaVdst bit shift
inline unsigned getVaVdstBitShift() { return 12; }

/// \returns SaSdst bit width
inline unsigned getSaSdstBitWidth() { return 1; }

/// \returns SaSdst bit shift
inline unsigned getSaSdstBitShift() { return 0; }

} // end namespace anonymous

namespace llvm {

namespace AMDGPU {

/// \returns True if \p STI is AMDHSA.
bool isHsaAbi(const MCSubtargetInfo &STI) {
  return STI.getTargetTriple().getOS() == Triple::AMDHSA;
}

unsigned getAMDHSACodeObjectVersion(const Module &M) {
  if (auto Ver = mdconst::extract_or_null<ConstantInt>(
          M.getModuleFlag("amdhsa_code_object_version"))) {
    return (unsigned)Ver->getZExtValue() / 100;
  }

  return getDefaultAMDHSACodeObjectVersion();
}

unsigned getDefaultAMDHSACodeObjectVersion() {
  return DefaultAMDHSACodeObjectVersion;
}

unsigned getAMDHSACodeObjectVersion(unsigned ABIVersion) {
  switch (ABIVersion) {
  case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
    return 4;
  case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
    return 5;
  default:
    return getDefaultAMDHSACodeObjectVersion();
  }
}

uint8_t getELFABIVersion(const Triple &T, unsigned CodeObjectVersion) {
  if (T.getOS() != Triple::AMDHSA)
    return 0;

  switch (CodeObjectVersion) {
  case 4:
    return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
  case 5:
    return ELF::ELFABIVERSION_AMDGPU_HSA_V5;
  case 6:
    return ELF::ELFABIVERSION_AMDGPU_HSA_V6;
  default:
    report_fatal_error("Unsupported AMDHSA Code Object Version " +
                       Twine(CodeObjectVersion));
  }
}

unsigned getMultigridSyncArgImplicitArgPosition(unsigned CodeObjectVersion) {
  switch (CodeObjectVersion) {
  case AMDHSA_COV4:
    return 48;
  case AMDHSA_COV5:
  case AMDHSA_COV6:
  default:
    return AMDGPU::ImplicitArg::MULTIGRID_SYNC_ARG_OFFSET;
  }
}


// FIXME: All such magic numbers about the ABI should be in a
// central TD file.
unsigned getHostcallImplicitArgPosition(unsigned CodeObjectVersion) {
  switch (CodeObjectVersion) {
  case AMDHSA_COV4:
    return 24;
  case AMDHSA_COV5:
  case AMDHSA_COV6:
  default:
    return AMDGPU::ImplicitArg::HOSTCALL_PTR_OFFSET;
  }
}

unsigned getDefaultQueueImplicitArgPosition(unsigned CodeObjectVersion) {
  switch (CodeObjectVersion) {
  case AMDHSA_COV4:
    return 32;
  case AMDHSA_COV5:
  case AMDHSA_COV6:
  default:
    return AMDGPU::ImplicitArg::DEFAULT_QUEUE_OFFSET;
  }
}

unsigned getCompletionActionImplicitArgPosition(unsigned CodeObjectVersion) {
  switch (CodeObjectVersion) {
  case AMDHSA_COV4:
    return 40;
  case AMDHSA_COV5:
  case AMDHSA_COV6:
  default:
    return AMDGPU::ImplicitArg::COMPLETION_ACTION_OFFSET;
  }
}

#define GET_MIMGBaseOpcodesTable_IMPL
#define GET_MIMGDimInfoTable_IMPL
#define GET_MIMGInfoTable_IMPL
#define GET_MIMGLZMappingTable_IMPL
#define GET_MIMGMIPMappingTable_IMPL
#define GET_MIMGBiasMappingTable_IMPL
#define GET_MIMGOffsetMappingTable_IMPL
#define GET_MIMGG16MappingTable_IMPL
#define GET_MAIInstInfoTable_IMPL
#include "AMDGPUGenSearchableTables.inc"

int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
                  unsigned VDataDwords, unsigned VAddrDwords) {
  const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
                                             VDataDwords, VAddrDwords);
  return Info ? Info->Opcode : -1;
}

const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
  const MIMGInfo *Info = getMIMGInfo(Opc);
  return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
}

int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
  const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
  const MIMGInfo *NewInfo =
      getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
                          NewChannels, OrigInfo->VAddrDwords);
  return NewInfo ? NewInfo->Opcode : -1;
}

unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
                           const MIMGDimInfo *Dim, bool IsA16,
                           bool IsG16Supported) {
  unsigned AddrWords = BaseOpcode->NumExtraArgs;
  unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
                            (BaseOpcode->LodOrClampOrMip ? 1 : 0);
  if (IsA16)
    AddrWords += divideCeil(AddrComponents, 2);
  else
    AddrWords += AddrComponents;

  // Note: For subtargets that support A16 but not G16, enabling A16 also
  // enables 16 bit gradients.
  // For subtargets that support A16 (operand) and G16 (done with a different
  // instruction encoding), they are independent.

  if (BaseOpcode->Gradients) {
    if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
      // There are two gradients per coordinate, we pack them separately.
      // For the 3d case,
      // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
      AddrWords += alignTo<2>(Dim->NumGradients / 2);
    else
      AddrWords += Dim->NumGradients;
  }
  return AddrWords;
}

struct MUBUFInfo {
  uint16_t Opcode;
  uint16_t BaseOpcode;
  uint8_t elements;
  bool has_vaddr;
  bool has_srsrc;
  bool has_soffset;
  bool IsBufferInv;
};

struct MTBUFInfo {
  uint16_t Opcode;
  uint16_t BaseOpcode;
  uint8_t elements;
  bool has_vaddr;
  bool has_srsrc;
  bool has_soffset;
};

struct SMInfo {
  uint16_t Opcode;
  bool IsBuffer;
};

struct VOPInfo {
  uint16_t Opcode;
  bool IsSingle;
};

struct VOPC64DPPInfo {
  uint16_t Opcode;
};

struct VOPCDPPAsmOnlyInfo {
  uint16_t Opcode;
};

struct VOP3CDPPAsmOnlyInfo {
  uint16_t Opcode;
};

struct VOPDComponentInfo {
  uint16_t BaseVOP;
  uint16_t VOPDOp;
  bool CanBeVOPDX;
};

struct VOPDInfo {
  uint16_t Opcode;
  uint16_t OpX;
  uint16_t OpY;
  uint16_t Subtarget;
};

struct VOPTrue16Info {
  uint16_t Opcode;
  bool IsTrue16;
};

#define GET_MTBUFInfoTable_DECL
#define GET_MTBUFInfoTable_IMPL
#define GET_MUBUFInfoTable_DECL
#define GET_MUBUFInfoTable_IMPL
#define GET_SMInfoTable_DECL
#define GET_SMInfoTable_IMPL
#define GET_VOP1InfoTable_DECL
#define GET_VOP1InfoTable_IMPL
#define GET_VOP2InfoTable_DECL
#define GET_VOP2InfoTable_IMPL
#define GET_VOP3InfoTable_DECL
#define GET_VOP3InfoTable_IMPL
#define GET_VOPC64DPPTable_DECL
#define GET_VOPC64DPPTable_IMPL
#define GET_VOPC64DPP8Table_DECL
#define GET_VOPC64DPP8Table_IMPL
#define GET_VOPCAsmOnlyInfoTable_DECL
#define GET_VOPCAsmOnlyInfoTable_IMPL
#define GET_VOP3CAsmOnlyInfoTable_DECL
#define GET_VOP3CAsmOnlyInfoTable_IMPL
#define GET_VOPDComponentTable_DECL
#define GET_VOPDComponentTable_IMPL
#define GET_VOPDPairs_DECL
#define GET_VOPDPairs_IMPL
#define GET_VOPTrue16Table_DECL
#define GET_VOPTrue16Table_IMPL
#define GET_WMMAOpcode2AddrMappingTable_DECL
#define GET_WMMAOpcode2AddrMappingTable_IMPL
#define GET_WMMAOpcode3AddrMappingTable_DECL
#define GET_WMMAOpcode3AddrMappingTable_IMPL
#include "AMDGPUGenSearchableTables.inc"

int getMTBUFBaseOpcode(unsigned Opc) {
  const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
  return Info ? Info->BaseOpcode : -1;
}

int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
  const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
  return Info ? Info->Opcode : -1;
}

int getMTBUFElements(unsigned Opc) {
  const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
  return Info ? Info->elements : 0;
}

bool getMTBUFHasVAddr(unsigned Opc) {
  const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
  return Info ? Info->has_vaddr : false;
}

bool getMTBUFHasSrsrc(unsigned Opc) {
  const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
  return Info ? Info->has_srsrc : false;
}

bool getMTBUFHasSoffset(unsigned Opc) {
  const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
  return Info ? Info->has_soffset : false;
}

int getMUBUFBaseOpcode(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
  return Info ? Info->BaseOpcode : -1;
}

int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
  const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
  return Info ? Info->Opcode : -1;
}

int getMUBUFElements(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->elements : 0;
}

bool getMUBUFHasVAddr(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->has_vaddr : false;
}

bool getMUBUFHasSrsrc(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->has_srsrc : false;
}

bool getMUBUFHasSoffset(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->has_soffset : false;
}

bool getMUBUFIsBufferInv(unsigned Opc) {
  const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
  return Info ? Info->IsBufferInv : false;
}

bool getSMEMIsBuffer(unsigned Opc) {
  const SMInfo *Info = getSMEMOpcodeHelper(Opc);
  return Info ? Info->IsBuffer : false;
}

bool getVOP1IsSingle(unsigned Opc) {
  const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
  return Info ? Info->IsSingle : false;
}

bool getVOP2IsSingle(unsigned Opc) {
  const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
  return Info ? Info->IsSingle : false;
}

bool getVOP3IsSingle(unsigned Opc) {
  const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
  return Info ? Info->IsSingle : false;
}

bool isVOPC64DPP(unsigned Opc) {
  return isVOPC64DPPOpcodeHelper(Opc) || isVOPC64DPP8OpcodeHelper(Opc);
}

bool isVOPCAsmOnly(unsigned Opc) {
  return isVOPCAsmOnlyOpcodeHelper(Opc) || isVOP3CAsmOnlyOpcodeHelper(Opc);
}

bool getMAIIsDGEMM(unsigned Opc) {
  const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
  return Info ? Info->is_dgemm : false;
}

bool getMAIIsGFX940XDL(unsigned Opc) {
  const MAIInstInfo *Info = getMAIInstInfoHelper(Opc);
  return Info ? Info->is_gfx940_xdl : false;
}

unsigned getVOPDEncodingFamily(const MCSubtargetInfo &ST) {
  if (ST.hasFeature(AMDGPU::FeatureGFX12Insts))
    return SIEncodingFamily::GFX12;
  if (ST.hasFeature(AMDGPU::FeatureGFX11Insts))
    return SIEncodingFamily::GFX11;
  llvm_unreachable("Subtarget generation does not support VOPD!");
}

CanBeVOPD getCanBeVOPD(unsigned Opc) {
  const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
  if (Info)
    return {Info->CanBeVOPDX, true};
  else
    return {false, false};
}

unsigned getVOPDOpcode(unsigned Opc) {
  const VOPDComponentInfo *Info = getVOPDComponentHelper(Opc);
  return Info ? Info->VOPDOp : ~0u;
}

bool isVOPD(unsigned Opc) {
  return AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0X);
}

bool isMAC(unsigned Opc) {
  return Opc == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
         Opc == AMDGPU::V_MAC_F32_e64_gfx10 ||
         Opc == AMDGPU::V_MAC_F32_e64_vi ||
         Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
         Opc == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
         Opc == AMDGPU::V_MAC_F16_e64_vi ||
         Opc == AMDGPU::V_FMAC_F64_e64_gfx90a ||
         Opc == AMDGPU::V_FMAC_F32_e64_gfx10 ||
         Opc == AMDGPU::V_FMAC_F32_e64_gfx11 ||
         Opc == AMDGPU::V_FMAC_F32_e64_gfx12 ||
         Opc == AMDGPU::V_FMAC_F32_e64_vi ||
         Opc == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
         Opc == AMDGPU::V_FMAC_DX9_ZERO_F32_e64_gfx11 ||
         Opc == AMDGPU::V_FMAC_F16_e64_gfx10 ||
         Opc == AMDGPU::V_FMAC_F16_t16_e64_gfx11 ||
         Opc == AMDGPU::V_FMAC_F16_t16_e64_gfx12 ||
         Opc == AMDGPU::V_DOT2C_F32_F16_e64_vi ||
         Opc == AMDGPU::V_DOT2C_I32_I16_e64_vi ||
         Opc == AMDGPU::V_DOT4C_I32_I8_e64_vi ||
         Opc == AMDGPU::V_DOT8C_I32_I4_e64_vi;
}

bool isPermlane16(unsigned Opc) {
  return Opc == AMDGPU::V_PERMLANE16_B32_gfx10 ||
         Opc == AMDGPU::V_PERMLANEX16_B32_gfx10 ||
         Opc == AMDGPU::V_PERMLANE16_B32_e64_gfx11 ||
         Opc == AMDGPU::V_PERMLANEX16_B32_e64_gfx11 ||
         Opc == AMDGPU::V_PERMLANE16_B32_e64_gfx12 ||
         Opc == AMDGPU::V_PERMLANEX16_B32_e64_gfx12 ||
         Opc == AMDGPU::V_PERMLANE16_VAR_B32_e64_gfx12 ||
         Opc == AMDGPU::V_PERMLANEX16_VAR_B32_e64_gfx12;
}

bool isCvt_F32_Fp8_Bf8_e64(unsigned Opc) {
  return Opc == AMDGPU::V_CVT_F32_BF8_e64_gfx12 ||
         Opc == AMDGPU::V_CVT_F32_FP8_e64_gfx12 ||
         Opc == AMDGPU::V_CVT_F32_BF8_e64_dpp_gfx12 ||
         Opc == AMDGPU::V_CVT_F32_FP8_e64_dpp_gfx12 ||
         Opc == AMDGPU::V_CVT_F32_BF8_e64_dpp8_gfx12 ||
         Opc == AMDGPU::V_CVT_F32_FP8_e64_dpp8_gfx12 ||
         Opc == AMDGPU::V_CVT_PK_F32_BF8_e64_gfx12 ||
         Opc == AMDGPU::V_CVT_PK_F32_FP8_e64_gfx12;
}

bool isGenericAtomic(unsigned Opc) {
  return Opc == AMDGPU::G_AMDGPU_ATOMIC_FMIN ||
         Opc == AMDGPU::G_AMDGPU_ATOMIC_FMAX ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX ||
         Opc == AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP ||
         Opc == AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG;
}

bool isTrue16Inst(unsigned Opc) {
  const VOPTrue16Info *Info = getTrue16OpcodeHelper(Opc);
  return Info ? Info->IsTrue16 : false;
}

unsigned mapWMMA2AddrTo3AddrOpcode(unsigned Opc) {
  const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom2AddrOpcode(Opc);
  return Info ? Info->Opcode3Addr : ~0u;
}

unsigned mapWMMA3AddrTo2AddrOpcode(unsigned Opc) {
  const WMMAOpcodeMappingInfo *Info = getWMMAMappingInfoFrom3AddrOpcode(Opc);
  return Info ? Info->Opcode2Addr : ~0u;
}

// Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
// header files, so we need to wrap it in a function that takes unsigned
// instead.
int getMCOpcode(uint16_t Opcode, unsigned Gen) {
  return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
}

int getVOPDFull(unsigned OpX, unsigned OpY, unsigned EncodingFamily) {
  const VOPDInfo *Info =
      getVOPDInfoFromComponentOpcodes(OpX, OpY, EncodingFamily);
  return Info ? Info->Opcode : -1;
}

std::pair<unsigned, unsigned> getVOPDComponents(unsigned VOPDOpcode) {
  const VOPDInfo *Info = getVOPDOpcodeHelper(VOPDOpcode);
  assert(Info);
  auto OpX = getVOPDBaseFromComponent(Info->OpX);
  auto OpY = getVOPDBaseFromComponent(Info->OpY);
  assert(OpX && OpY);
  return {OpX->BaseVOP, OpY->BaseVOP};
}

namespace VOPD {

ComponentProps::ComponentProps(const MCInstrDesc &OpDesc) {
  assert(OpDesc.getNumDefs() == Component::DST_NUM);

  assert(OpDesc.getOperandConstraint(Component::SRC0, MCOI::TIED_TO) == -1);
  assert(OpDesc.getOperandConstraint(Component::SRC1, MCOI::TIED_TO) == -1);
  auto TiedIdx = OpDesc.getOperandConstraint(Component::SRC2, MCOI::TIED_TO);
  assert(TiedIdx == -1 || TiedIdx == Component::DST);
  HasSrc2Acc = TiedIdx != -1;

  SrcOperandsNum = OpDesc.getNumOperands() - OpDesc.getNumDefs();
  assert(SrcOperandsNum <= Component::MAX_SRC_NUM);

  auto OperandsNum = OpDesc.getNumOperands();
  unsigned CompOprIdx;
  for (CompOprIdx = Component::SRC1; CompOprIdx < OperandsNum; ++CompOprIdx) {
    if (OpDesc.operands()[CompOprIdx].OperandType == AMDGPU::OPERAND_KIMM32) {
      MandatoryLiteralIdx = CompOprIdx;
      break;
    }
  }
}

unsigned ComponentInfo::getIndexInParsedOperands(unsigned CompOprIdx) const {
  assert(CompOprIdx < Component::MAX_OPR_NUM);

  if (CompOprIdx == Component::DST)
    return getIndexOfDstInParsedOperands();

  auto CompSrcIdx = CompOprIdx - Component::DST_NUM;
  if (CompSrcIdx < getCompParsedSrcOperandsNum())
    return getIndexOfSrcInParsedOperands(CompSrcIdx);

  // The specified operand does not exist.
  return 0;
}

std::optional<unsigned> InstInfo::getInvalidCompOperandIndex(
    std::function<unsigned(unsigned, unsigned)> GetRegIdx, bool SkipSrc) const {

  auto OpXRegs = getRegIndices(ComponentIndex::X, GetRegIdx);
  auto OpYRegs = getRegIndices(ComponentIndex::Y, GetRegIdx);

  const unsigned CompOprNum =
      SkipSrc ? Component::DST_NUM : Component::MAX_OPR_NUM;
  unsigned CompOprIdx;
  for (CompOprIdx = 0; CompOprIdx < CompOprNum; ++CompOprIdx) {
    unsigned BanksMasks = VOPD_VGPR_BANK_MASKS[CompOprIdx];
    if (OpXRegs[CompOprIdx] && OpYRegs[CompOprIdx] &&
        ((OpXRegs[CompOprIdx] & BanksMasks) ==
         (OpYRegs[CompOprIdx] & BanksMasks)))
      return CompOprIdx;
  }

  return {};
}

// Return an array of VGPR registers [DST,SRC0,SRC1,SRC2] used
// by the specified component. If an operand is unused
// or is not a VGPR, the corresponding value is 0.
//
// GetRegIdx(Component, MCOperandIdx) must return a VGPR register index
// for the specified component and MC operand. The callback must return 0
// if the operand is not a register or not a VGPR.
InstInfo::RegIndices InstInfo::getRegIndices(
    unsigned CompIdx,
    std::function<unsigned(unsigned, unsigned)> GetRegIdx) const {
  assert(CompIdx < COMPONENTS_NUM);

  const auto &Comp = CompInfo[CompIdx];
  InstInfo::RegIndices RegIndices;

  RegIndices[DST] = GetRegIdx(CompIdx, Comp.getIndexOfDstInMCOperands());

  for (unsigned CompOprIdx : {SRC0, SRC1, SRC2}) {
    unsigned CompSrcIdx = CompOprIdx - DST_NUM;
    RegIndices[CompOprIdx] =
        Comp.hasRegSrcOperand(CompSrcIdx)
            ? GetRegIdx(CompIdx, Comp.getIndexOfSrcInMCOperands(CompSrcIdx))
            : 0;
  }
  return RegIndices;
}

} // namespace VOPD

VOPD::InstInfo getVOPDInstInfo(const MCInstrDesc &OpX, const MCInstrDesc &OpY) {
  return VOPD::InstInfo(OpX, OpY);
}

VOPD::InstInfo getVOPDInstInfo(unsigned VOPDOpcode,
                               const MCInstrInfo *InstrInfo) {
  auto [OpX, OpY] = getVOPDComponents(VOPDOpcode);
  const auto &OpXDesc = InstrInfo->get(OpX);
  const auto &OpYDesc = InstrInfo->get(OpY);
  VOPD::ComponentInfo OpXInfo(OpXDesc, VOPD::ComponentKind::COMPONENT_X);
  VOPD::ComponentInfo OpYInfo(OpYDesc, OpXInfo);
  return VOPD::InstInfo(OpXInfo, OpYInfo);
}

namespace IsaInfo {

AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
    : STI(STI), XnackSetting(TargetIDSetting::Any),
      SramEccSetting(TargetIDSetting::Any) {
  if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
    XnackSetting = TargetIDSetting::Unsupported;
  if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
    SramEccSetting = TargetIDSetting::Unsupported;
}

void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
  // Check if xnack or sramecc is explicitly enabled or disabled.  In the
  // absence of the target features we assume we must generate code that can run
  // in any environment.
  SubtargetFeatures Features(FS);
  std::optional<bool> XnackRequested;
  std::optional<bool> SramEccRequested;

  for (const std::string &Feature : Features.getFeatures()) {
    if (Feature == "+xnack")
      XnackRequested = true;
    else if (Feature == "-xnack")
      XnackRequested = false;
    else if (Feature == "+sramecc")
      SramEccRequested = true;
    else if (Feature == "-sramecc")
      SramEccRequested = false;
  }

  bool XnackSupported = isXnackSupported();
  bool SramEccSupported = isSramEccSupported();

  if (XnackRequested) {
    if (XnackSupported) {
      XnackSetting =
          *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
    } else {
      // If a specific xnack setting was requested and this GPU does not support
      // xnack emit a warning. Setting will remain set to "Unsupported".
      if (*XnackRequested) {
        errs() << "warning: xnack 'On' was requested for a processor that does "
                  "not support it!\n";
      } else {
        errs() << "warning: xnack 'Off' was requested for a processor that "
                  "does not support it!\n";
      }
    }
  }

  if (SramEccRequested) {
    if (SramEccSupported) {
      SramEccSetting =
          *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
    } else {
      // If a specific sramecc setting was requested and this GPU does not
      // support sramecc emit a warning. Setting will remain set to
      // "Unsupported".
      if (*SramEccRequested) {
        errs() << "warning: sramecc 'On' was requested for a processor that "
                  "does not support it!\n";
      } else {
        errs() << "warning: sramecc 'Off' was requested for a processor that "
                  "does not support it!\n";
      }
    }
  }
}

static TargetIDSetting
getTargetIDSettingFromFeatureString(StringRef FeatureString) {
  if (FeatureString.ends_with("-"))
    return TargetIDSetting::Off;
  if (FeatureString.ends_with("+"))
    return TargetIDSetting::On;

  llvm_unreachable("Malformed feature string");
}

void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
  SmallVector<StringRef, 3> TargetIDSplit;
  TargetID.split(TargetIDSplit, ':');

  for (const auto &FeatureString : TargetIDSplit) {
    if (FeatureString.starts_with("xnack"))
      XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
    if (FeatureString.starts_with("sramecc"))
      SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
  }
}

std::string AMDGPUTargetID::toString() const {
  std::string StringRep;
  raw_string_ostream StreamRep(StringRep);

  auto TargetTriple = STI.getTargetTriple();
  auto Version = getIsaVersion(STI.getCPU());

  StreamRep << TargetTriple.getArchName() << '-'
            << TargetTriple.getVendorName() << '-'
            << TargetTriple.getOSName() << '-'
            << TargetTriple.getEnvironmentName() << '-';

  std::string Processor;
  // TODO: Following else statement is present here because we used various
  // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
  // Remove once all aliases are removed from GCNProcessors.td.
  if (Version.Major >= 9)
    Processor = STI.getCPU().str();
  else
    Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
                 Twine(Version.Stepping))
                    .str();

  std::string Features;
  if (STI.getTargetTriple().getOS() == Triple::AMDHSA) {
    // sramecc.
    if (getSramEccSetting() == TargetIDSetting::Off)
      Features += ":sramecc-";
    else if (getSramEccSetting() == TargetIDSetting::On)
      Features += ":sramecc+";
    // xnack.
    if (getXnackSetting() == TargetIDSetting::Off)
      Features += ":xnack-";
    else if (getXnackSetting() == TargetIDSetting::On)
      Features += ":xnack+";
  }

  StreamRep << Processor << Features;

  StreamRep.flush();
  return StringRep;
}

unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureWavefrontSize16))
    return 16;
  if (STI->getFeatureBits().test(FeatureWavefrontSize32))
    return 32;

  return 64;
}

unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
  unsigned BytesPerCU = 0;
  if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
    BytesPerCU = 32768;
  if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
    BytesPerCU = 65536;

  // "Per CU" really means "per whatever functional block the waves of a
  // workgroup must share". So the effective local memory size is doubled in
  // WGP mode on gfx10.
  if (isGFX10Plus(*STI) && !STI->getFeatureBits().test(FeatureCuMode))
    BytesPerCU *= 2;

  return BytesPerCU;
}

unsigned getAddressableLocalMemorySize(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
    return 32768;
  if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
    return 65536;
  return 0;
}

unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
  // "Per CU" really means "per whatever functional block the waves of a
  // workgroup must share". For gfx10 in CU mode this is the CU, which contains
  // two SIMDs.
  if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
    return 2;
  // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
  // two CUs, so a total of four SIMDs.
  return 4;
}

unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
                               unsigned FlatWorkGroupSize) {
  assert(FlatWorkGroupSize != 0);
  if (STI->getTargetTriple().getArch() != Triple::amdgcn)
    return 8;
  unsigned MaxWaves = getMaxWavesPerEU(STI) * getEUsPerCU(STI);
  unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
  if (N == 1) {
    // Single-wave workgroups don't consume barrier resources.
    return MaxWaves;
  }

  unsigned MaxBarriers = 16;
  if (isGFX10Plus(*STI) && !STI->getFeatureBits().test(FeatureCuMode))
    MaxBarriers = 32;

  return std::min(MaxWaves / N, MaxBarriers);
}

unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
  return 1;
}

unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
  // FIXME: Need to take scratch memory into account.
  if (isGFX90A(*STI))
    return 8;
  if (!isGFX10Plus(*STI))
    return 10;
  return hasGFX10_3Insts(*STI) ? 16 : 20;
}

unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
                                   unsigned FlatWorkGroupSize) {
  return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
                    getEUsPerCU(STI));
}

unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
  return 1;
}

unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
  // Some subtargets allow encoding 2048, but this isn't tested or supported.
  return 1024;
}

unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
                              unsigned FlatWorkGroupSize) {
  return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
}

unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return getAddressableNumSGPRs(STI);
  if (Version.Major >= 8)
    return 16;
  return 8;
}

unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
  return 8;
}

unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 8)
    return 800;
  return 512;
}

unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureSGPRInitBug))
    return FIXED_NUM_SGPRS_FOR_INIT_BUG;

  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return 106;
  if (Version.Major >= 8)
    return 102;
  return 104;
}

unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
  assert(WavesPerEU != 0);

  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return 0;

  if (WavesPerEU >= getMaxWavesPerEU(STI))
    return 0;

  unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
  if (STI->getFeatureBits().test(FeatureTrapHandler))
    MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
  MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
  return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
}

unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
                        bool Addressable) {
  assert(WavesPerEU != 0);

  unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return Addressable ? AddressableNumSGPRs : 108;
  if (Version.Major >= 8 && !Addressable)
    AddressableNumSGPRs = 112;
  unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
  if (STI->getFeatureBits().test(FeatureTrapHandler))
    MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
  MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
  return std::min(MaxNumSGPRs, AddressableNumSGPRs);
}

unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
                          bool FlatScrUsed, bool XNACKUsed) {
  unsigned ExtraSGPRs = 0;
  if (VCCUsed)
    ExtraSGPRs = 2;

  IsaVersion Version = getIsaVersion(STI->getCPU());
  if (Version.Major >= 10)
    return ExtraSGPRs;

  if (Version.Major < 8) {
    if (FlatScrUsed)
      ExtraSGPRs = 4;
  } else {
    if (XNACKUsed)
      ExtraSGPRs = 4;

    if (FlatScrUsed ||
        STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
      ExtraSGPRs = 6;
  }

  return ExtraSGPRs;
}

unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
                          bool FlatScrUsed) {
  return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
                          STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
}

static unsigned getGranulatedNumRegisterBlocks(unsigned NumRegs,
                                               unsigned Granule) {
  return divideCeil(std::max(1u, NumRegs), Granule);
}

unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
  // SGPRBlocks is actual number of SGPR blocks minus 1.
  return getGranulatedNumRegisterBlocks(NumSGPRs, getSGPREncodingGranule(STI)) -
         1;
}

unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
                             std::optional<bool> EnableWavefrontSize32) {
  if (STI->getFeatureBits().test(FeatureGFX90AInsts))
    return 8;

  bool IsWave32 = EnableWavefrontSize32 ?
      *EnableWavefrontSize32 :
      STI->getFeatureBits().test(FeatureWavefrontSize32);

  if (STI->getFeatureBits().test(FeatureGFX11FullVGPRs))
    return IsWave32 ? 24 : 12;

  if (hasGFX10_3Insts(*STI))
    return IsWave32 ? 16 : 8;

  return IsWave32 ? 8 : 4;
}

unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
                                std::optional<bool> EnableWavefrontSize32) {
  if (STI->getFeatureBits().test(FeatureGFX90AInsts))
    return 8;

  bool IsWave32 = EnableWavefrontSize32 ?
      *EnableWavefrontSize32 :
      STI->getFeatureBits().test(FeatureWavefrontSize32);

  return IsWave32 ? 8 : 4;
}

unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureGFX90AInsts))
    return 512;
  if (!isGFX10Plus(*STI))
    return 256;
  bool IsWave32 = STI->getFeatureBits().test(FeatureWavefrontSize32);
  if (STI->getFeatureBits().test(FeatureGFX11FullVGPRs))
    return IsWave32 ? 1536 : 768;
  return IsWave32 ? 1024 : 512;
}

unsigned getAddressableNumArchVGPRs(const MCSubtargetInfo *STI) { return 256; }

unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
  if (STI->getFeatureBits().test(FeatureGFX90AInsts))
    return 512;
  return getAddressableNumArchVGPRs(STI);
}

unsigned getNumWavesPerEUWithNumVGPRs(const MCSubtargetInfo *STI,
                                      unsigned NumVGPRs) {
  unsigned MaxWaves = getMaxWavesPerEU(STI);
  unsigned Granule = getVGPRAllocGranule(STI);
  if (NumVGPRs < Granule)
    return MaxWaves;
  unsigned RoundedRegs = alignTo(NumVGPRs, Granule);
  return std::min(std::max(getTotalNumVGPRs(STI) / RoundedRegs, 1u), MaxWaves);
}

unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
  assert(WavesPerEU != 0);

  unsigned MaxWavesPerEU = getMaxWavesPerEU(STI);
  if (WavesPerEU >= MaxWavesPerEU)
    return 0;

  unsigned TotNumVGPRs = getTotalNumVGPRs(STI);
  unsigned AddrsableNumVGPRs = getAddressableNumVGPRs(STI);
  unsigned Granule = getVGPRAllocGranule(STI);
  unsigned MaxNumVGPRs = alignDown(TotNumVGPRs / WavesPerEU, Granule);

  if (MaxNumVGPRs == alignDown(TotNumVGPRs / MaxWavesPerEU, Granule))
    return 0;

  unsigned MinWavesPerEU = getNumWavesPerEUWithNumVGPRs(STI, AddrsableNumVGPRs);
  if (WavesPerEU < MinWavesPerEU)
    return getMinNumVGPRs(STI, MinWavesPerEU);

  unsigned MaxNumVGPRsNext = alignDown(TotNumVGPRs / (WavesPerEU + 1), Granule);
  unsigned MinNumVGPRs = 1 + std::min(MaxNumVGPRs - Granule, MaxNumVGPRsNext);
  return std::min(MinNumVGPRs, AddrsableNumVGPRs);
}

unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
  assert(WavesPerEU != 0);

  unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
                                   getVGPRAllocGranule(STI));
  unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
  return std::min(MaxNumVGPRs, AddressableNumVGPRs);
}

unsigned getEncodedNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
                                 std::optional<bool> EnableWavefrontSize32) {
  return getGranulatedNumRegisterBlocks(
             NumVGPRs, getVGPREncodingGranule(STI, EnableWavefrontSize32)) -
         1;
}

unsigned getAllocatedNumVGPRBlocks(const MCSubtargetInfo *STI,
                                   unsigned NumVGPRs,
                                   std::optional<bool> EnableWavefrontSize32) {
  return getGranulatedNumRegisterBlocks(
      NumVGPRs, getVGPRAllocGranule(STI, EnableWavefrontSize32));
}
} // end namespace IsaInfo

void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
                               const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());

  memset(&Header, 0, sizeof(Header));

  Header.amd_kernel_code_version_major = 1;
  Header.amd_kernel_code_version_minor = 2;
  Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
  Header.amd_machine_version_major = Version.Major;
  Header.amd_machine_version_minor = Version.Minor;
  Header.amd_machine_version_stepping = Version.Stepping;
  Header.kernel_code_entry_byte_offset = sizeof(Header);
  Header.wavefront_size = 6;

  // If the code object does not support indirect functions, then the value must
  // be 0xffffffff.
  Header.call_convention = -1;

  // These alignment values are specified in powers of two, so alignment =
  // 2^n.  The minimum alignment is 2^4 = 16.
  Header.kernarg_segment_alignment = 4;
  Header.group_segment_alignment = 4;
  Header.private_segment_alignment = 4;

  if (Version.Major >= 10) {
    if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
      Header.wavefront_size = 5;
      Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
    }
    Header.compute_pgm_resource_registers |=
      S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
      S_00B848_MEM_ORDERED(1);
  }
}

amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
    const MCSubtargetInfo *STI) {
  IsaVersion Version = getIsaVersion(STI->getCPU());

  amdhsa::kernel_descriptor_t KD;
  memset(&KD, 0, sizeof(KD));

  AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                  amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
                  amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
  if (Version.Major >= 12) {
    AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                    amdhsa::COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN, 0);
    AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                    amdhsa::COMPUTE_PGM_RSRC1_GFX12_PLUS_DISABLE_PERF, 0);
  } else {
    AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                    amdhsa::COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP, 1);
    AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                    amdhsa::COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE, 1);
  }
  AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
                  amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
  if (Version.Major >= 10) {
    AMDHSA_BITS_SET(KD.kernel_code_properties,
                    amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
                    STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
    AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                    amdhsa::COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE,
                    STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
    AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
                    amdhsa::COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED, 1);
  }
  if (AMDGPU::isGFX90A(*STI)) {
    AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
                    amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
                    STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
  }
  return KD;
}

bool isGroupSegment(const GlobalValue *GV) {
  return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}

bool isGlobalSegment(const GlobalValue *GV) {
  return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
}

bool isReadOnlySegment(const GlobalValue *GV) {
  unsigned AS = GV->getAddressSpace();
  return AS == AMDGPUAS::CONSTANT_ADDRESS ||
         AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
}

bool shouldEmitConstantsToTextSection(const Triple &TT) {
  return TT.getArch() == Triple::r600;
}

std::pair<unsigned, unsigned>
getIntegerPairAttribute(const Function &F, StringRef Name,
                        std::pair<unsigned, unsigned> Default,
                        bool OnlyFirstRequired) {
  Attribute A = F.getFnAttribute(Name);
  if (!A.isStringAttribute())
    return Default;

  LLVMContext &Ctx = F.getContext();
  std::pair<unsigned, unsigned> Ints = Default;
  std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
  if (Strs.first.trim().getAsInteger(0, Ints.first)) {
    Ctx.emitError("can't parse first integer attribute " + Name);
    return Default;
  }
  if (Strs.second.trim().getAsInteger(0, Ints.second)) {
    if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
      Ctx.emitError("can't parse second integer attribute " + Name);
      return Default;
    }
  }

  return Ints;
}

unsigned getVmcntBitMask(const IsaVersion &Version) {
  return (1 << (getVmcntBitWidthLo(Version.Major) +
                getVmcntBitWidthHi(Version.Major))) -
         1;
}

unsigned getLoadcntBitMask(const IsaVersion &Version) {
  return (1 << getLoadcntBitWidth(Version.Major)) - 1;
}

unsigned getSamplecntBitMask(const IsaVersion &Version) {
  return (1 << getSamplecntBitWidth(Version.Major)) - 1;
}

unsigned getBvhcntBitMask(const IsaVersion &Version) {
  return (1 << getBvhcntBitWidth(Version.Major)) - 1;
}

unsigned getExpcntBitMask(const IsaVersion &Version) {
  return (1 << getExpcntBitWidth(Version.Major)) - 1;
}

unsigned getLgkmcntBitMask(const IsaVersion &Version) {
  return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
}

unsigned getDscntBitMask(const IsaVersion &Version) {
  return (1 << getDscntBitWidth(Version.Major)) - 1;
}

unsigned getKmcntBitMask(const IsaVersion &Version) {
  return (1 << getKmcntBitWidth(Version.Major)) - 1;
}

unsigned getStorecntBitMask(const IsaVersion &Version) {
  return (1 << getStorecntBitWidth(Version.Major)) - 1;
}

unsigned getWaitcntBitMask(const IsaVersion &Version) {
  unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(Version.Major),
                                getVmcntBitWidthLo(Version.Major));
  unsigned Expcnt = getBitMask(getExpcntBitShift(Version.Major),
                               getExpcntBitWidth(Version.Major));
  unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(Version.Major),
                                getLgkmcntBitWidth(Version.Major));
  unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(Version.Major),
                                getVmcntBitWidthHi(Version.Major));
  return VmcntLo | Expcnt | Lgkmcnt | VmcntHi;
}

unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
  unsigned VmcntLo = unpackBits(Waitcnt, getVmcntBitShiftLo(Version.Major),
                                getVmcntBitWidthLo(Version.Major));
  unsigned VmcntHi = unpackBits(Waitcnt, getVmcntBitShiftHi(Version.Major),
                                getVmcntBitWidthHi(Version.Major));
  return VmcntLo | VmcntHi << getVmcntBitWidthLo(Version.Major);
}

unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
  return unpackBits(Waitcnt, getExpcntBitShift(Version.Major),
                    getExpcntBitWidth(Version.Major));
}

unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
  return unpackBits(Waitcnt, getLgkmcntBitShift(Version.Major),
                    getLgkmcntBitWidth(Version.Major));
}

void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
                   unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
  Vmcnt = decodeVmcnt(Version, Waitcnt);
  Expcnt = decodeExpcnt(Version, Waitcnt);
  Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
}

Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
  Waitcnt Decoded;
  Decoded.LoadCnt = decodeVmcnt(Version, Encoded);
  Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
  Decoded.DsCnt = decodeLgkmcnt(Version, Encoded);
  return Decoded;
}

unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
                     unsigned Vmcnt) {
  Waitcnt = packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(Version.Major),
                     getVmcntBitWidthLo(Version.Major));
  return packBits(Vmcnt >> getVmcntBitWidthLo(Version.Major), Waitcnt,
                  getVmcntBitShiftHi(Version.Major),
                  getVmcntBitWidthHi(Version.Major));
}

unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
                      unsigned Expcnt) {
  return packBits(Expcnt, Waitcnt, getExpcntBitShift(Version.Major),
                  getExpcntBitWidth(Version.Major));
}

unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
                       unsigned Lgkmcnt) {
  return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(Version.Major),
                  getLgkmcntBitWidth(Version.Major));
}

unsigned encodeWaitcnt(const IsaVersion &Version,
                       unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
  unsigned Waitcnt = getWaitcntBitMask(Version);
  Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
  Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
  Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
  return Waitcnt;
}

unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
  return encodeWaitcnt(Version, Decoded.LoadCnt, Decoded.ExpCnt, Decoded.DsCnt);
}

static unsigned getCombinedCountBitMask(const IsaVersion &Version,
                                        bool IsStore) {
  unsigned Dscnt = getBitMask(getDscntBitShift(Version.Major),
                              getDscntBitWidth(Version.Major));
  if (IsStore) {
    unsigned Storecnt = getBitMask(getLoadcntStorecntBitShift(Version.Major),
                                   getStorecntBitWidth(Version.Major));
    return Dscnt | Storecnt;
  } else {
    unsigned Loadcnt = getBitMask(getLoadcntStorecntBitShift(Version.Major),
                                  getLoadcntBitWidth(Version.Major));
    return Dscnt | Loadcnt;
  }
}

Waitcnt decodeLoadcntDscnt(const IsaVersion &Version, unsigned LoadcntDscnt) {
  Waitcnt Decoded;
  Decoded.LoadCnt =
      unpackBits(LoadcntDscnt, getLoadcntStorecntBitShift(Version.Major),
                 getLoadcntBitWidth(Version.Major));
  Decoded.DsCnt = unpackBits(LoadcntDscnt, getDscntBitShift(Version.Major),
                             getDscntBitWidth(Version.Major));
  return Decoded;
}

Waitcnt decodeStorecntDscnt(const IsaVersion &Version, unsigned StorecntDscnt) {
  Waitcnt Decoded;
  Decoded.StoreCnt =
      unpackBits(StorecntDscnt, getLoadcntStorecntBitShift(Version.Major),
                 getStorecntBitWidth(Version.Major));
  Decoded.DsCnt = unpackBits(StorecntDscnt, getDscntBitShift(Version.Major),
                             getDscntBitWidth(Version.Major));
  return Decoded;
}

static unsigned encodeLoadcnt(const IsaVersion &Version, unsigned Waitcnt,
                              unsigned Loadcnt) {
  return packBits(Loadcnt, Waitcnt, getLoadcntStorecntBitShift(Version.Major),
                  getLoadcntBitWidth(Version.Major));
}

static unsigned encodeStorecnt(const IsaVersion &Version, unsigned Waitcnt,
                               unsigned Storecnt) {
  return packBits(Storecnt, Waitcnt, getLoadcntStorecntBitShift(Version.Major),
                  getStorecntBitWidth(Version.Major));
}

static unsigned encodeDscnt(const IsaVersion &Version, unsigned Waitcnt,
                            unsigned Dscnt) {
  return packBits(Dscnt, Waitcnt, getDscntBitShift(Version.Major),
                  getDscntBitWidth(Version.Major));
}

static unsigned encodeLoadcntDscnt(const IsaVersion &Version, unsigned Loadcnt,
                                   unsigned Dscnt) {
  unsigned Waitcnt = getCombinedCountBitMask(Version, false);
  Waitcnt = encodeLoadcnt(Version, Waitcnt, Loadcnt);
  Waitcnt = encodeDscnt(Version, Waitcnt, Dscnt);
  return Waitcnt;
}

unsigned encodeLoadcntDscnt(const IsaVersion &Version, const Waitcnt &Decoded) {
  return encodeLoadcntDscnt(Version, Decoded.LoadCnt, Decoded.DsCnt);
}

static unsigned encodeStorecntDscnt(const IsaVersion &Version,
                                    unsigned Storecnt, unsigned Dscnt) {
  unsigned Waitcnt = getCombinedCountBitMask(Version, true);
  Waitcnt = encodeStorecnt(Version, Waitcnt, Storecnt);
  Waitcnt = encodeDscnt(Version, Waitcnt, Dscnt);
  return Waitcnt;
}

unsigned encodeStorecntDscnt(const IsaVersion &Version,
                             const Waitcnt &Decoded) {
  return encodeStorecntDscnt(Version, Decoded.StoreCnt, Decoded.DsCnt);
}

//===----------------------------------------------------------------------===//
// Custom Operands.
//
// A table of custom operands shall describe "primary" operand names
// first followed by aliases if any. It is not required but recommended
// to arrange operands so that operand encoding match operand position
// in the table. This will make disassembly a bit more efficient.
// Unused slots in the table shall have an empty name.
//
//===----------------------------------------------------------------------===//

template <class T>
static bool isValidOpr(int Idx, const CustomOperand<T> OpInfo[], int OpInfoSize,
                       T Context) {
  return 0 <= Idx && Idx < OpInfoSize && !OpInfo[Idx].Name.empty() &&
         (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context));
}

template <class T>
static int getOprIdx(std::function<bool(const CustomOperand<T> &)> Test,
                     const CustomOperand<T> OpInfo[], int OpInfoSize,
                     T Context) {
  int InvalidIdx = OPR_ID_UNKNOWN;
  for (int Idx = 0; Idx < OpInfoSize; ++Idx) {
    if (Test(OpInfo[Idx])) {
      if (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context))
        return Idx;
      InvalidIdx = OPR_ID_UNSUPPORTED;
    }
  }
  return InvalidIdx;
}

template <class T>
static int getOprIdx(const StringRef Name, const CustomOperand<T> OpInfo[],
                     int OpInfoSize, T Context) {
  auto Test = [=](const CustomOperand<T> &Op) { return Op.Name == Name; };
  return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context);
}

template <class T>
static int getOprIdx(int Id, const CustomOperand<T> OpInfo[], int OpInfoSize,
                     T Context, bool QuickCheck = true) {
  auto Test = [=](const CustomOperand<T> &Op) {
    return Op.Encoding == Id && !Op.Name.empty();
  };
  // This is an optimization that should work in most cases.
  // As a side effect, it may cause selection of an alias
  // instead of a primary operand name in case of sparse tables.
  if (QuickCheck && isValidOpr<T>(Id, OpInfo, OpInfoSize, Context) &&
      OpInfo[Id].Encoding == Id) {
    return Id;
  }
  return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context);
}

//===----------------------------------------------------------------------===//
// Custom Operand Values
//===----------------------------------------------------------------------===//

static unsigned getDefaultCustomOperandEncoding(const CustomOperandVal *Opr,
                                                int Size,
                                                const MCSubtargetInfo &STI) {
  unsigned Enc = 0;
  for (int Idx = 0; Idx < Size; ++Idx) {
    const auto &Op = Opr[Idx];
    if (Op.isSupported(STI))
      Enc |= Op.encode(Op.Default);
  }
  return Enc;
}

static bool isSymbolicCustomOperandEncoding(const CustomOperandVal *Opr,
                                            int Size, unsigned Code,
                                            bool &HasNonDefaultVal,
                                            const MCSubtargetInfo &STI) {
  unsigned UsedOprMask = 0;
  HasNonDefaultVal = false;
  for (int Idx = 0; Idx < Size; ++Idx) {
    const auto &Op = Opr[Idx];
    if (!Op.isSupported(STI))
      continue;
    UsedOprMask |= Op.getMask();
    unsigned Val = Op.decode(Code);
    if (!Op.isValid(Val))
      return false;
    HasNonDefaultVal |= (Val != Op.Default);
  }
  return (Code & ~UsedOprMask) == 0;
}

static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size,
                                unsigned Code, int &Idx, StringRef &Name,
                                unsigned &Val, bool &IsDefault,
                                const MCSubtargetInfo &STI) {
  while (Idx < Size) {
    const auto &Op = Opr[Idx++];
    if (Op.isSupported(STI)) {
      Name = Op.Name;
      Val = Op.decode(Code);
      IsDefault = (Val == Op.Default);
      return true;
    }
  }

  return false;
}

static int encodeCustomOperandVal(const CustomOperandVal &Op,
                                  int64_t InputVal) {
  if (InputVal < 0 || InputVal > Op.Max)
    return OPR_VAL_INVALID;
  return Op.encode(InputVal);
}

static int encodeCustomOperand(const CustomOperandVal *Opr, int Size,
                               const StringRef Name, int64_t InputVal,
                               unsigned &UsedOprMask,
                               const MCSubtargetInfo &STI) {
  int InvalidId = OPR_ID_UNKNOWN;
  for (int Idx = 0; Idx < Size; ++Idx) {
    const auto &Op = Opr[Idx];
    if (Op.Name == Name) {
      if (!Op.isSupported(STI)) {
        InvalidId = OPR_ID_UNSUPPORTED;
        continue;
      }
      auto OprMask = Op.getMask();
      if (OprMask & UsedOprMask)
        return OPR_ID_DUPLICATE;
      UsedOprMask |= OprMask;
      return encodeCustomOperandVal(Op, InputVal);
    }
  }
  return InvalidId;
}

//===----------------------------------------------------------------------===//
// DepCtr
//===----------------------------------------------------------------------===//

namespace DepCtr {

int getDefaultDepCtrEncoding(const MCSubtargetInfo &STI) {
  static int Default = -1;
  if (Default == -1)
    Default = getDefaultCustomOperandEncoding(DepCtrInfo, DEP_CTR_SIZE, STI);
  return Default;
}

bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal,
                              const MCSubtargetInfo &STI) {
  return isSymbolicCustomOperandEncoding(DepCtrInfo, DEP_CTR_SIZE, Code,
                                         HasNonDefaultVal, STI);
}

bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val,
                  bool &IsDefault, const MCSubtargetInfo &STI) {
  return decodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Code, Id, Name, Val,
                             IsDefault, STI);
}

int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask,
                 const MCSubtargetInfo &STI) {
  return encodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Name, Val, UsedOprMask,
                             STI);
}

unsigned decodeFieldVmVsrc(unsigned Encoded) {
  return unpackBits(Encoded, getVmVsrcBitShift(), getVmVsrcBitWidth());
}

unsigned decodeFieldVaVdst(unsigned Encoded) {
  return unpackBits(Encoded, getVaVdstBitShift(), getVaVdstBitWidth());
}

unsigned decodeFieldSaSdst(unsigned Encoded) {
  return unpackBits(Encoded, getSaSdstBitShift(), getSaSdstBitWidth());
}

unsigned encodeFieldVmVsrc(unsigned Encoded, unsigned VmVsrc) {
  return packBits(VmVsrc, Encoded, getVmVsrcBitShift(), getVmVsrcBitWidth());
}

unsigned encodeFieldVmVsrc(unsigned VmVsrc) {
  return encodeFieldVmVsrc(0xffff, VmVsrc);
}

unsigned encodeFieldVaVdst(unsigned Encoded, unsigned VaVdst) {
  return packBits(VaVdst, Encoded, getVaVdstBitShift(), getVaVdstBitWidth());
}

unsigned encodeFieldVaVdst(unsigned VaVdst) {
  return encodeFieldVaVdst(0xffff, VaVdst);
}

unsigned encodeFieldSaSdst(unsigned Encoded, unsigned SaSdst) {
  return packBits(SaSdst, Encoded, getSaSdstBitShift(), getSaSdstBitWidth());
}

unsigned encodeFieldSaSdst(unsigned SaSdst) {
  return encodeFieldSaSdst(0xffff, SaSdst);
}

} // namespace DepCtr

//===----------------------------------------------------------------------===//
// hwreg
//===----------------------------------------------------------------------===//

namespace Hwreg {

int64_t getHwregId(const StringRef Name, const MCSubtargetInfo &STI) {
  int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Opr, OPR_SIZE, STI);
  return (Idx < 0) ? Idx : Opr[Idx].Encoding;
}

StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
  int Idx = getOprIdx<const MCSubtargetInfo &>(Id, Opr, OPR_SIZE, STI);
  return (Idx < 0) ? "" : Opr[Idx].Name;
}

} // namespace Hwreg

//===----------------------------------------------------------------------===//
// exp tgt
//===----------------------------------------------------------------------===//

namespace Exp {

struct ExpTgt {
  StringLiteral Name;
  unsigned Tgt;
  unsigned MaxIndex;
};

static constexpr ExpTgt ExpTgtInfo[] = {
  {{"null"},           ET_NULL,            ET_NULL_MAX_IDX},
  {{"mrtz"},           ET_MRTZ,            ET_MRTZ_MAX_IDX},
  {{"prim"},           ET_PRIM,            ET_PRIM_MAX_IDX},
  {{"mrt"},            ET_MRT0,            ET_MRT_MAX_IDX},
  {{"pos"},            ET_POS0,            ET_POS_MAX_IDX},
  {{"dual_src_blend"}, ET_DUAL_SRC_BLEND0, ET_DUAL_SRC_BLEND_MAX_IDX},
  {{"param"},          ET_PARAM0,          ET_PARAM_MAX_IDX},
};

bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
  for (const ExpTgt &Val : ExpTgtInfo) {
    if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
      Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
      Name = Val.Name;
      return true;
    }
  }
  return false;
}

unsigned getTgtId(const StringRef Name) {

  for (const ExpTgt &Val : ExpTgtInfo) {
    if (Val.MaxIndex == 0 && Name == Val.Name)
      return Val.Tgt;

    if (Val.MaxIndex > 0 && Name.starts_with(Val.Name)) {
      StringRef Suffix = Name.drop_front(Val.Name.size());

      unsigned Id;
      if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
        return ET_INVALID;

      // Disable leading zeroes
      if (Suffix.size() > 1 && Suffix[0] == '0')
        return ET_INVALID;

      return Val.Tgt + Id;
    }
  }
  return ET_INVALID;
}

bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
  switch (Id) {
  case ET_NULL:
    return !isGFX11Plus(STI);
  case ET_POS4:
  case ET_PRIM:
    return isGFX10Plus(STI);
  case ET_DUAL_SRC_BLEND0:
  case ET_DUAL_SRC_BLEND1:
    return isGFX11Plus(STI);
  default:
    if (Id >= ET_PARAM0 && Id <= ET_PARAM31)
      return !isGFX11Plus(STI);
    return true;
  }
}

} // namespace Exp

//===----------------------------------------------------------------------===//
// MTBUF Format
//===----------------------------------------------------------------------===//

namespace MTBUFFormat {

int64_t getDfmt(const StringRef Name) {
  for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
    if (Name == DfmtSymbolic[Id])
      return Id;
  }
  return DFMT_UNDEF;
}

StringRef getDfmtName(unsigned Id) {
  assert(Id <= DFMT_MAX);
  return DfmtSymbolic[Id];
}

static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
  if (isSI(STI) || isCI(STI))
    return NfmtSymbolicSICI;
  if (isVI(STI) || isGFX9(STI))
    return NfmtSymbolicVI;
  return NfmtSymbolicGFX10;
}

int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
  auto lookupTable = getNfmtLookupTable(STI);
  for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
    if (Name == lookupTable[Id])
      return Id;
  }
  return NFMT_UNDEF;
}

StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
  assert(Id <= NFMT_MAX);
  return getNfmtLookupTable(STI)[Id];
}

bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
  unsigned Dfmt;
  unsigned Nfmt;
  decodeDfmtNfmt(Id, Dfmt, Nfmt);
  return isValidNfmt(Nfmt, STI);
}

bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
  return !getNfmtName(Id, STI).empty();
}

int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
  return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
}

void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
  Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
  Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
}

int64_t getUnifiedFormat(const StringRef Name, const MCSubtargetInfo &STI) {
  if (isGFX11Plus(STI)) {
    for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
      if (Name == UfmtSymbolicGFX11[Id])
        return Id;
    }
  } else {
    for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
      if (Name == UfmtSymbolicGFX10[Id])
        return Id;
    }
  }
  return UFMT_UNDEF;
}

StringRef getUnifiedFormatName(unsigned Id, const MCSubtargetInfo &STI) {
  if(isValidUnifiedFormat(Id, STI))
    return isGFX10(STI) ? UfmtSymbolicGFX10[Id] : UfmtSymbolicGFX11[Id];
  return "";
}

bool isValidUnifiedFormat(unsigned Id, const MCSubtargetInfo &STI) {
  return isGFX10(STI) ? Id <= UfmtGFX10::UFMT_LAST : Id <= UfmtGFX11::UFMT_LAST;
}

int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt,
                             const MCSubtargetInfo &STI) {
  int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
  if (isGFX11Plus(STI)) {
    for (int Id = UfmtGFX11::UFMT_FIRST; Id <= UfmtGFX11::UFMT_LAST; ++Id) {
      if (Fmt == DfmtNfmt2UFmtGFX11[Id])
        return Id;
    }
  } else {
    for (int Id = UfmtGFX10::UFMT_FIRST; Id <= UfmtGFX10::UFMT_LAST; ++Id) {
      if (Fmt == DfmtNfmt2UFmtGFX10[Id])
        return Id;
    }
  }
  return UFMT_UNDEF;
}

bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
  return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
}

unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
  if (isGFX10Plus(STI))
    return UFMT_DEFAULT;
  return DFMT_NFMT_DEFAULT;
}

} // namespace MTBUFFormat

//===----------------------------------------------------------------------===//
// SendMsg
//===----------------------------------------------------------------------===//

namespace SendMsg {

static uint64_t getMsgIdMask(const MCSubtargetInfo &STI) {
  return isGFX11Plus(STI) ? ID_MASK_GFX11Plus_ : ID_MASK_PreGFX11_;
}

int64_t getMsgId(const StringRef Name, const MCSubtargetInfo &STI) {
  int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Msg, MSG_SIZE, STI);
  return (Idx < 0) ? Idx : Msg[Idx].Encoding;
}

bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI) {
  return (MsgId & ~(getMsgIdMask(STI))) == 0;
}

StringRef getMsgName(int64_t MsgId, const MCSubtargetInfo &STI) {
  int Idx = getOprIdx<const MCSubtargetInfo &>(MsgId, Msg, MSG_SIZE, STI);
  return (Idx < 0) ? "" : Msg[Idx].Name;
}

int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
  const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
  const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
  const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
  for (int i = F; i < L; ++i) {
    if (Name == S[i]) {
      return i;
    }
  }
  return OP_UNKNOWN_;
}

bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
                  bool Strict) {
  assert(isValidMsgId(MsgId, STI));

  if (!Strict)
    return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);

  if (MsgId == ID_SYSMSG)
    return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
  if (!isGFX11Plus(STI)) {
    switch (MsgId) {
    case ID_GS_PreGFX11:
      return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
    case ID_GS_DONE_PreGFX11:
      return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
    }
  }
  return OpId == OP_NONE_;
}

StringRef getMsgOpName(int64_t MsgId, int64_t OpId,
                       const MCSubtargetInfo &STI) {
  assert(msgRequiresOp(MsgId, STI));
  return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
}

bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
                      const MCSubtargetInfo &STI, bool Strict) {
  assert(isValidMsgOp(MsgId, OpId, STI, Strict));

  if (!Strict)
    return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);

  if (!isGFX11Plus(STI)) {
    switch (MsgId) {
    case ID_GS_PreGFX11:
      return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
    case ID_GS_DONE_PreGFX11:
      return (OpId == OP_GS_NOP) ?
          (StreamId == STREAM_ID_NONE_) :
          (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
    }
  }
  return StreamId == STREAM_ID_NONE_;
}

bool msgRequiresOp(int64_t MsgId, const MCSubtargetInfo &STI) {
  return MsgId == ID_SYSMSG ||
      (!isGFX11Plus(STI) &&
       (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11));
}

bool msgSupportsStream(int64_t MsgId, int64_t OpId,
                       const MCSubtargetInfo &STI) {
  return !isGFX11Plus(STI) &&
      (MsgId == ID_GS_PreGFX11 || MsgId == ID_GS_DONE_PreGFX11) &&
      OpId != OP_GS_NOP;
}

void decodeMsg(unsigned Val, uint16_t &MsgId, uint16_t &OpId,
               uint16_t &StreamId, const MCSubtargetInfo &STI) {
  MsgId = Val & getMsgIdMask(STI);
  if (isGFX11Plus(STI)) {
    OpId = 0;
    StreamId = 0;
  } else {
    OpId = (Val & OP_MASK_) >> OP_SHIFT_;
    StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
  }
}

uint64_t encodeMsg(uint64_t MsgId,
                   uint64_t OpId,
                   uint64_t StreamId) {
  return MsgId | (OpId << OP_SHIFT_) | (StreamId << STREAM_ID_SHIFT_);
}

} // namespace SendMsg

//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//

unsigned getInitialPSInputAddr(const Function &F) {
  return F.getFnAttributeAsParsedInteger("InitialPSInputAddr", 0);
}

bool getHasColorExport(const Function &F) {
  // As a safe default always respond as if PS has color exports.
  return F.getFnAttributeAsParsedInteger(
             "amdgpu-color-export",
             F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
}

bool getHasDepthExport(const Function &F) {
  return F.getFnAttributeAsParsedInteger("amdgpu-depth-export", 0) != 0;
}

bool isShader(CallingConv::ID cc) {
  switch(cc) {
    case CallingConv::AMDGPU_VS:
    case CallingConv::AMDGPU_LS:
    case CallingConv::AMDGPU_HS:
    case CallingConv::AMDGPU_ES:
    case CallingConv::AMDGPU_GS:
    case CallingConv::AMDGPU_PS:
    case CallingConv::AMDGPU_CS_Chain:
    case CallingConv::AMDGPU_CS_ChainPreserve:
    case CallingConv::AMDGPU_CS:
      return true;
    default:
      return false;
  }
}

bool isGraphics(CallingConv::ID cc) {
  return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
}

bool isCompute(CallingConv::ID cc) {
  return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
}

bool isEntryFunctionCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_LS:
    return true;
  default:
    return false;
  }
}

bool isModuleEntryFunctionCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::AMDGPU_Gfx:
    return true;
  default:
    return isEntryFunctionCC(CC) || isChainCC(CC);
  }
}

bool isChainCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::AMDGPU_CS_Chain:
  case CallingConv::AMDGPU_CS_ChainPreserve:
    return true;
  default:
    return false;
  }
}

bool isKernelCC(const Function *Func) {
  return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv());
}

bool hasXNACK(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureXNACK);
}

bool hasSRAMECC(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureSRAMECC);
}

bool hasMIMG_R128(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureMIMG_R128) && !STI.hasFeature(AMDGPU::FeatureR128A16);
}

bool hasA16(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureA16);
}

bool hasG16(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureG16);
}

bool hasPackedD16(const MCSubtargetInfo &STI) {
  return !STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) && !isCI(STI) &&
         !isSI(STI);
}

bool hasGDS(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureGDS);
}

unsigned getNSAMaxSize(const MCSubtargetInfo &STI, bool HasSampler) {
  auto Version = getIsaVersion(STI.getCPU());
  if (Version.Major == 10)
    return Version.Minor >= 3 ? 13 : 5;
  if (Version.Major == 11)
    return 5;
  if (Version.Major >= 12)
    return HasSampler ? 4 : 5;
  return 0;
}

unsigned getMaxNumUserSGPRs(const MCSubtargetInfo &STI) { return 16; }

bool isSI(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureSouthernIslands);
}

bool isCI(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureSeaIslands);
}

bool isVI(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
}

bool isGFX9(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureGFX9);
}

bool isGFX9_GFX10(const MCSubtargetInfo &STI) {
  return isGFX9(STI) || isGFX10(STI);
}

bool isGFX9_GFX10_GFX11(const MCSubtargetInfo &STI) {
  return isGFX9(STI) || isGFX10(STI) || isGFX11(STI);
}

bool isGFX8_GFX9_GFX10(const MCSubtargetInfo &STI) {
  return isVI(STI) || isGFX9(STI) || isGFX10(STI);
}

bool isGFX8Plus(const MCSubtargetInfo &STI) {
  return isVI(STI) || isGFX9Plus(STI);
}

bool isGFX9Plus(const MCSubtargetInfo &STI) {
  return isGFX9(STI) || isGFX10Plus(STI);
}

bool isGFX10(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureGFX10);
}

bool isGFX10_GFX11(const MCSubtargetInfo &STI) {
  return isGFX10(STI) || isGFX11(STI);
}

bool isGFX10Plus(const MCSubtargetInfo &STI) {
  return isGFX10(STI) || isGFX11Plus(STI);
}

bool isGFX11(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureGFX11);
}

bool isGFX11Plus(const MCSubtargetInfo &STI) {
  return isGFX11(STI) || isGFX12Plus(STI);
}

bool isGFX12(const MCSubtargetInfo &STI) {
  return STI.getFeatureBits()[AMDGPU::FeatureGFX12];
}

bool isGFX12Plus(const MCSubtargetInfo &STI) { return isGFX12(STI); }

bool isNotGFX12Plus(const MCSubtargetInfo &STI) { return !isGFX12Plus(STI); }

bool isNotGFX11Plus(const MCSubtargetInfo &STI) {
  return !isGFX11Plus(STI);
}

bool isNotGFX10Plus(const MCSubtargetInfo &STI) {
  return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
}

bool isGFX10Before1030(const MCSubtargetInfo &STI) {
  return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
}

bool isGCN3Encoding(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureGCN3Encoding);
}

bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureGFX10_AEncoding);
}

bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding);
}

bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureGFX10_3Insts);
}

bool isGFX10_3_GFX11(const MCSubtargetInfo &STI) {
  return isGFX10_BEncoding(STI) && !isGFX12Plus(STI);
}

bool isGFX90A(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
}

bool isGFX940(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureGFX940Insts);
}

bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
}

bool hasMAIInsts(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureMAIInsts);
}

bool hasVOPD(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureVOPD);
}

bool hasDPPSrc1SGPR(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureDPPSrc1SGPR);
}

unsigned hasKernargPreload(const MCSubtargetInfo &STI) {
  return STI.hasFeature(AMDGPU::FeatureKernargPreload);
}

int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR,
                         int32_t ArgNumVGPR) {
  if (has90AInsts && ArgNumAGPR)
    return alignTo(ArgNumVGPR, 4) + ArgNumAGPR;
  return std::max(ArgNumVGPR, ArgNumAGPR);
}

bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
  const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
  const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
  return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
    Reg == AMDGPU::SCC;
}

bool isHi(unsigned Reg, const MCRegisterInfo &MRI) {
  return MRI.getEncodingValue(Reg) & AMDGPU::HWEncoding::IS_HI;
}

#define MAP_REG2REG \
  using namespace AMDGPU; \
  switch(Reg) { \
  default: return Reg; \
  CASE_CI_VI(FLAT_SCR) \
  CASE_CI_VI(FLAT_SCR_LO) \
  CASE_CI_VI(FLAT_SCR_HI) \
  CASE_VI_GFX9PLUS(TTMP0) \
  CASE_VI_GFX9PLUS(TTMP1) \
  CASE_VI_GFX9PLUS(TTMP2) \
  CASE_VI_GFX9PLUS(TTMP3) \
  CASE_VI_GFX9PLUS(TTMP4) \
  CASE_VI_GFX9PLUS(TTMP5) \
  CASE_VI_GFX9PLUS(TTMP6) \
  CASE_VI_GFX9PLUS(TTMP7) \
  CASE_VI_GFX9PLUS(TTMP8) \
  CASE_VI_GFX9PLUS(TTMP9) \
  CASE_VI_GFX9PLUS(TTMP10) \
  CASE_VI_GFX9PLUS(TTMP11) \
  CASE_VI_GFX9PLUS(TTMP12) \
  CASE_VI_GFX9PLUS(TTMP13) \
  CASE_VI_GFX9PLUS(TTMP14) \
  CASE_VI_GFX9PLUS(TTMP15) \
  CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
  CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
  CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
  CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
  CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
  CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
  CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
  CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
  CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
  CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
  CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
  CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
  CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
  CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
  CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
  CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
  CASE_GFXPRE11_GFX11PLUS(M0) \
  CASE_GFXPRE11_GFX11PLUS(SGPR_NULL) \
  CASE_GFXPRE11_GFX11PLUS_TO(SGPR_NULL64, SGPR_NULL) \
  }

#define CASE_CI_VI(node) \
  assert(!isSI(STI)); \
  case node: return isCI(STI) ? node##_ci : node##_vi;

#define CASE_VI_GFX9PLUS(node) \
  case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;

#define CASE_GFXPRE11_GFX11PLUS(node) \
  case node: return isGFX11Plus(STI) ? node##_gfx11plus : node##_gfxpre11;

#define CASE_GFXPRE11_GFX11PLUS_TO(node, result) \
  case node: return isGFX11Plus(STI) ? result##_gfx11plus : result##_gfxpre11;

unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
  if (STI.getTargetTriple().getArch() == Triple::r600)
    return Reg;
  MAP_REG2REG
}

#undef CASE_CI_VI
#undef CASE_VI_GFX9PLUS
#undef CASE_GFXPRE11_GFX11PLUS
#undef CASE_GFXPRE11_GFX11PLUS_TO

#define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
#define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
#define CASE_GFXPRE11_GFX11PLUS(node) case node##_gfx11plus: case node##_gfxpre11: return node;
#define CASE_GFXPRE11_GFX11PLUS_TO(node, result)

unsigned mc2PseudoReg(unsigned Reg) {
  MAP_REG2REG
}

bool isInlineValue(unsigned Reg) {
  switch (Reg) {
  case AMDGPU::SRC_SHARED_BASE_LO:
  case AMDGPU::SRC_SHARED_BASE:
  case AMDGPU::SRC_SHARED_LIMIT_LO:
  case AMDGPU::SRC_SHARED_LIMIT:
  case AMDGPU::SRC_PRIVATE_BASE_LO:
  case AMDGPU::SRC_PRIVATE_BASE:
  case AMDGPU::SRC_PRIVATE_LIMIT_LO:
  case AMDGPU::SRC_PRIVATE_LIMIT:
  case AMDGPU::SRC_POPS_EXITING_WAVE_ID:
    return true;
  case AMDGPU::SRC_VCCZ:
  case AMDGPU::SRC_EXECZ:
  case AMDGPU::SRC_SCC:
    return true;
  case AMDGPU::SGPR_NULL:
    return true;
  default:
    return false;
  }
}

#undef CASE_CI_VI
#undef CASE_VI_GFX9PLUS
#undef CASE_GFXPRE11_GFX11PLUS
#undef CASE_GFXPRE11_GFX11PLUS_TO
#undef MAP_REG2REG

bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.operands()[OpNo].OperandType;
  return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
         OpType <= AMDGPU::OPERAND_SRC_LAST;
}

bool isKImmOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.operands()[OpNo].OperandType;
  return OpType >= AMDGPU::OPERAND_KIMM_FIRST &&
         OpType <= AMDGPU::OPERAND_KIMM_LAST;
}

bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.operands()[OpNo].OperandType;
  switch (OpType) {
  case AMDGPU::OPERAND_REG_IMM_FP32:
  case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
  case AMDGPU::OPERAND_REG_IMM_FP64:
  case AMDGPU::OPERAND_REG_IMM_FP16:
  case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
  case AMDGPU::OPERAND_REG_IMM_V2FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_FP32:
  case AMDGPU::OPERAND_REG_INLINE_C_FP64:
  case AMDGPU::OPERAND_REG_INLINE_C_FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
  case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
  case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
  case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
  case AMDGPU::OPERAND_REG_IMM_V2FP32:
  case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
  case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
    return true;
  default:
    return false;
  }
}

bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned OpType = Desc.operands()[OpNo].OperandType;
  return (OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST) ||
         (OpType >= AMDGPU::OPERAND_REG_INLINE_AC_FIRST &&
          OpType <= AMDGPU::OPERAND_REG_INLINE_AC_LAST);
}

// Avoid using MCRegisterClass::getSize, since that function will go away
// (move from MC* level to Target* level). Return size in bits.
unsigned getRegBitWidth(unsigned RCID) {
  switch (RCID) {
  case AMDGPU::SGPR_LO16RegClassID:
  case AMDGPU::AGPR_LO16RegClassID:
    return 16;
  case AMDGPU::SGPR_32RegClassID:
  case AMDGPU::VGPR_32RegClassID:
  case AMDGPU::VRegOrLds_32RegClassID:
  case AMDGPU::AGPR_32RegClassID:
  case AMDGPU::VS_32RegClassID:
  case AMDGPU::AV_32RegClassID:
  case AMDGPU::SReg_32RegClassID:
  case AMDGPU::SReg_32_XM0RegClassID:
  case AMDGPU::SRegOrLds_32RegClassID:
    return 32;
  case AMDGPU::SGPR_64RegClassID:
  case AMDGPU::VS_64RegClassID:
  case AMDGPU::SReg_64RegClassID:
  case AMDGPU::VReg_64RegClassID:
  case AMDGPU::AReg_64RegClassID:
  case AMDGPU::SReg_64_XEXECRegClassID:
  case AMDGPU::VReg_64_Align2RegClassID:
  case AMDGPU::AReg_64_Align2RegClassID:
  case AMDGPU::AV_64RegClassID:
  case AMDGPU::AV_64_Align2RegClassID:
    return 64;
  case AMDGPU::SGPR_96RegClassID:
  case AMDGPU::SReg_96RegClassID:
  case AMDGPU::VReg_96RegClassID:
  case AMDGPU::AReg_96RegClassID:
  case AMDGPU::VReg_96_Align2RegClassID:
  case AMDGPU::AReg_96_Align2RegClassID:
  case AMDGPU::AV_96RegClassID:
  case AMDGPU::AV_96_Align2RegClassID:
    return 96;
  case AMDGPU::SGPR_128RegClassID:
  case AMDGPU::SReg_128RegClassID:
  case AMDGPU::VReg_128RegClassID:
  case AMDGPU::AReg_128RegClassID:
  case AMDGPU::VReg_128_Align2RegClassID:
  case AMDGPU::AReg_128_Align2RegClassID:
  case AMDGPU::AV_128RegClassID:
  case AMDGPU::AV_128_Align2RegClassID:
    return 128;
  case AMDGPU::SGPR_160RegClassID:
  case AMDGPU::SReg_160RegClassID:
  case AMDGPU::VReg_160RegClassID:
  case AMDGPU::AReg_160RegClassID:
  case AMDGPU::VReg_160_Align2RegClassID:
  case AMDGPU::AReg_160_Align2RegClassID:
  case AMDGPU::AV_160RegClassID:
  case AMDGPU::AV_160_Align2RegClassID:
    return 160;
  case AMDGPU::SGPR_192RegClassID:
  case AMDGPU::SReg_192RegClassID:
  case AMDGPU::VReg_192RegClassID:
  case AMDGPU::AReg_192RegClassID:
  case AMDGPU::VReg_192_Align2RegClassID:
  case AMDGPU::AReg_192_Align2RegClassID:
  case AMDGPU::AV_192RegClassID:
  case AMDGPU::AV_192_Align2RegClassID:
    return 192;
  case AMDGPU::SGPR_224RegClassID:
  case AMDGPU::SReg_224RegClassID:
  case AMDGPU::VReg_224RegClassID:
  case AMDGPU::AReg_224RegClassID:
  case AMDGPU::VReg_224_Align2RegClassID:
  case AMDGPU::AReg_224_Align2RegClassID:
  case AMDGPU::AV_224RegClassID:
  case AMDGPU::AV_224_Align2RegClassID:
    return 224;
  case AMDGPU::SGPR_256RegClassID:
  case AMDGPU::SReg_256RegClassID:
  case AMDGPU::VReg_256RegClassID:
  case AMDGPU::AReg_256RegClassID:
  case AMDGPU::VReg_256_Align2RegClassID:
  case AMDGPU::AReg_256_Align2RegClassID:
  case AMDGPU::AV_256RegClassID:
  case AMDGPU::AV_256_Align2RegClassID:
    return 256;
  case AMDGPU::SGPR_288RegClassID:
  case AMDGPU::SReg_288RegClassID:
  case AMDGPU::VReg_288RegClassID:
  case AMDGPU::AReg_288RegClassID:
  case AMDGPU::VReg_288_Align2RegClassID:
  case AMDGPU::AReg_288_Align2RegClassID:
  case AMDGPU::AV_288RegClassID:
  case AMDGPU::AV_288_Align2RegClassID:
    return 288;
  case AMDGPU::SGPR_320RegClassID:
  case AMDGPU::SReg_320RegClassID:
  case AMDGPU::VReg_320RegClassID:
  case AMDGPU::AReg_320RegClassID:
  case AMDGPU::VReg_320_Align2RegClassID:
  case AMDGPU::AReg_320_Align2RegClassID:
  case AMDGPU::AV_320RegClassID:
  case AMDGPU::AV_320_Align2RegClassID:
    return 320;
  case AMDGPU::SGPR_352RegClassID:
  case AMDGPU::SReg_352RegClassID:
  case AMDGPU::VReg_352RegClassID:
  case AMDGPU::AReg_352RegClassID:
  case AMDGPU::VReg_352_Align2RegClassID:
  case AMDGPU::AReg_352_Align2RegClassID:
  case AMDGPU::AV_352RegClassID:
  case AMDGPU::AV_352_Align2RegClassID:
    return 352;
  case AMDGPU::SGPR_384RegClassID:
  case AMDGPU::SReg_384RegClassID:
  case AMDGPU::VReg_384RegClassID:
  case AMDGPU::AReg_384RegClassID:
  case AMDGPU::VReg_384_Align2RegClassID:
  case AMDGPU::AReg_384_Align2RegClassID:
  case AMDGPU::AV_384RegClassID:
  case AMDGPU::AV_384_Align2RegClassID:
    return 384;
  case AMDGPU::SGPR_512RegClassID:
  case AMDGPU::SReg_512RegClassID:
  case AMDGPU::VReg_512RegClassID:
  case AMDGPU::AReg_512RegClassID:
  case AMDGPU::VReg_512_Align2RegClassID:
  case AMDGPU::AReg_512_Align2RegClassID:
  case AMDGPU::AV_512RegClassID:
  case AMDGPU::AV_512_Align2RegClassID:
    return 512;
  case AMDGPU::SGPR_1024RegClassID:
  case AMDGPU::SReg_1024RegClassID:
  case AMDGPU::VReg_1024RegClassID:
  case AMDGPU::AReg_1024RegClassID:
  case AMDGPU::VReg_1024_Align2RegClassID:
  case AMDGPU::AReg_1024_Align2RegClassID:
  case AMDGPU::AV_1024RegClassID:
  case AMDGPU::AV_1024_Align2RegClassID:
    return 1024;
  default:
    llvm_unreachable("Unexpected register class");
  }
}

unsigned getRegBitWidth(const MCRegisterClass &RC) {
  return getRegBitWidth(RC.getID());
}

unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
                           unsigned OpNo) {
  assert(OpNo < Desc.NumOperands);
  unsigned RCID = Desc.operands()[OpNo].RegClass;
  return getRegBitWidth(RCID) / 8;
}

bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
  if (isInlinableIntLiteral(Literal))
    return true;

  uint64_t Val = static_cast<uint64_t>(Literal);
  return (Val == llvm::bit_cast<uint64_t>(0.0)) ||
         (Val == llvm::bit_cast<uint64_t>(1.0)) ||
         (Val == llvm::bit_cast<uint64_t>(-1.0)) ||
         (Val == llvm::bit_cast<uint64_t>(0.5)) ||
         (Val == llvm::bit_cast<uint64_t>(-0.5)) ||
         (Val == llvm::bit_cast<uint64_t>(2.0)) ||
         (Val == llvm::bit_cast<uint64_t>(-2.0)) ||
         (Val == llvm::bit_cast<uint64_t>(4.0)) ||
         (Val == llvm::bit_cast<uint64_t>(-4.0)) ||
         (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
}

bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
  if (isInlinableIntLiteral(Literal))
    return true;

  // The actual type of the operand does not seem to matter as long
  // as the bits match one of the inline immediate values.  For example:
  //
  // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
  // so it is a legal inline immediate.
  //
  // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
  // floating-point, so it is a legal inline immediate.

  uint32_t Val = static_cast<uint32_t>(Literal);
  return (Val == llvm::bit_cast<uint32_t>(0.0f)) ||
         (Val == llvm::bit_cast<uint32_t>(1.0f)) ||
         (Val == llvm::bit_cast<uint32_t>(-1.0f)) ||
         (Val == llvm::bit_cast<uint32_t>(0.5f)) ||
         (Val == llvm::bit_cast<uint32_t>(-0.5f)) ||
         (Val == llvm::bit_cast<uint32_t>(2.0f)) ||
         (Val == llvm::bit_cast<uint32_t>(-2.0f)) ||
         (Val == llvm::bit_cast<uint32_t>(4.0f)) ||
         (Val == llvm::bit_cast<uint32_t>(-4.0f)) ||
         (Val == 0x3e22f983 && HasInv2Pi);
}

bool isInlinableLiteralBF16(int16_t Literal, bool HasInv2Pi) {
  if (!HasInv2Pi)
    return false;
  if (isInlinableIntLiteral(Literal))
    return true;
  uint16_t Val = static_cast<uint16_t>(Literal);
  return Val == 0x3F00 || // 0.5
         Val == 0xBF00 || // -0.5
         Val == 0x3F80 || // 1.0
         Val == 0xBF80 || // -1.0
         Val == 0x4000 || // 2.0
         Val == 0xC000 || // -2.0
         Val == 0x4080 || // 4.0
         Val == 0xC080 || // -4.0
         Val == 0x3E22;   // 1.0 / (2.0 * pi)
}

bool isInlinableLiteralI16(int32_t Literal, bool HasInv2Pi) {
  return isInlinableLiteral32(Literal, HasInv2Pi);
}

bool isInlinableLiteralFP16(int16_t Literal, bool HasInv2Pi) {
  if (!HasInv2Pi)
    return false;
  if (isInlinableIntLiteral(Literal))
    return true;
  uint16_t Val = static_cast<uint16_t>(Literal);
  return Val == 0x3C00 || // 1.0
         Val == 0xBC00 || // -1.0
         Val == 0x3800 || // 0.5
         Val == 0xB800 || // -0.5
         Val == 0x4000 || // 2.0
         Val == 0xC000 || // -2.0
         Val == 0x4400 || // 4.0
         Val == 0xC400 || // -4.0
         Val == 0x3118;   // 1/2pi
}

std::optional<unsigned> getInlineEncodingV216(bool IsFloat, uint32_t Literal) {
  // Unfortunately, the Instruction Set Architecture Reference Guide is
  // misleading about how the inline operands work for (packed) 16-bit
  // instructions. In a nutshell, the actual HW behavior is:
  //
  //  - integer encodings (-16 .. 64) are always produced as sign-extended
  //    32-bit values
  //  - float encodings are produced as:
  //    - for F16 instructions: corresponding half-precision float values in
  //      the LSBs, 0 in the MSBs
  //    - for UI16 instructions: corresponding single-precision float value
  int32_t Signed = static_cast<int32_t>(Literal);
  if (Signed >= 0 && Signed <= 64)
    return 128 + Signed;

  if (Signed >= -16 && Signed <= -1)
    return 192 + std::abs(Signed);

  if (IsFloat) {
    // clang-format off
    switch (Literal) {
    case 0x3800: return 240; // 0.5
    case 0xB800: return 241; // -0.5
    case 0x3C00: return 242; // 1.0
    case 0xBC00: return 243; // -1.0
    case 0x4000: return 244; // 2.0
    case 0xC000: return 245; // -2.0
    case 0x4400: return 246; // 4.0
    case 0xC400: return 247; // -4.0
    case 0x3118: return 248; // 1.0 / (2.0 * pi)
    default: break;
    }
    // clang-format on
  } else {
    // clang-format off
    switch (Literal) {
    case 0x3F000000: return 240; // 0.5
    case 0xBF000000: return 241; // -0.5
    case 0x3F800000: return 242; // 1.0
    case 0xBF800000: return 243; // -1.0
    case 0x40000000: return 244; // 2.0
    case 0xC0000000: return 245; // -2.0
    case 0x40800000: return 246; // 4.0
    case 0xC0800000: return 247; // -4.0
    case 0x3E22F983: return 248; // 1.0 / (2.0 * pi)
    default: break;
    }
    // clang-format on
  }

  return {};
}

// Encoding of the literal as an inline constant for a V_PK_*_IU16 instruction
// or nullopt.
std::optional<unsigned> getInlineEncodingV2I16(uint32_t Literal) {
  return getInlineEncodingV216(false, Literal);
}

// Encoding of the literal as an inline constant for a V_PK_*_BF16 instruction
// or nullopt.
std::optional<unsigned> getInlineEncodingV2BF16(uint32_t Literal) {
  int32_t Signed = static_cast<int32_t>(Literal);
  if (Signed >= 0 && Signed <= 64)
    return 128 + Signed;

  if (Signed >= -16 && Signed <= -1)
    return 192 + std::abs(Signed);

  // clang-format off
  switch (Literal) {
  case 0x3F00: return 240; // 0.5
  case 0xBF00: return 241; // -0.5
  case 0x3F80: return 242; // 1.0
  case 0xBF80: return 243; // -1.0
  case 0x4000: return 244; // 2.0
  case 0xC000: return 245; // -2.0
  case 0x4080: return 246; // 4.0
  case 0xC080: return 247; // -4.0
  case 0x3E22: return 248; // 1.0 / (2.0 * pi)
  default: break;
  }
  // clang-format on

  return std::nullopt;
}

// Encoding of the literal as an inline constant for a V_PK_*_F16 instruction
// or nullopt.
std::optional<unsigned> getInlineEncodingV2F16(uint32_t Literal) {
  return getInlineEncodingV216(true, Literal);
}

// Whether the given literal can be inlined for a V_PK_* instruction.
bool isInlinableLiteralV216(uint32_t Literal, uint8_t OpType) {
  switch (OpType) {
  case AMDGPU::OPERAND_REG_IMM_V2INT16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
  case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
    return getInlineEncodingV216(false, Literal).has_value();
  case AMDGPU::OPERAND_REG_IMM_V2FP16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
  case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
    return getInlineEncodingV216(true, Literal).has_value();
  case AMDGPU::OPERAND_REG_IMM_V2BF16:
  case AMDGPU::OPERAND_REG_INLINE_C_V2BF16:
  case AMDGPU::OPERAND_REG_INLINE_AC_V2BF16:
    return isInlinableLiteralV2BF16(Literal);
  default:
    llvm_unreachable("bad packed operand type");
  }
}

// Whether the given literal can be inlined for a V_PK_*_IU16 instruction.
bool isInlinableLiteralV2I16(uint32_t Literal) {
  return getInlineEncodingV2I16(Literal).has_value();
}

// Whether the given literal can be inlined for a V_PK_*_BF16 instruction.
bool isInlinableLiteralV2BF16(uint32_t Literal) {
  return getInlineEncodingV2BF16(Literal).has_value();
}

// Whether the given literal can be inlined for a V_PK_*_F16 instruction.
bool isInlinableLiteralV2F16(uint32_t Literal) {
  return getInlineEncodingV2F16(Literal).has_value();
}

bool isValid32BitLiteral(uint64_t Val, bool IsFP64) {
  if (IsFP64)
    return !(Val & 0xffffffffu);

  return isUInt<32>(Val) || isInt<32>(Val);
}

bool isArgPassedInSGPR(const Argument *A) {
  const Function *F = A->getParent();

  // Arguments to compute shaders are never a source of divergence.
  CallingConv::ID CC = F->getCallingConv();
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
    return true;
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_LS:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
  case CallingConv::AMDGPU_Gfx:
  case CallingConv::AMDGPU_CS_Chain:
  case CallingConv::AMDGPU_CS_ChainPreserve:
    // For non-compute shaders, SGPR inputs are marked with either inreg or
    // byval. Everything else is in VGPRs.
    return A->hasAttribute(Attribute::InReg) ||
           A->hasAttribute(Attribute::ByVal);
  default:
    // TODO: treat i1 as divergent?
    return A->hasAttribute(Attribute::InReg);
  }
}

bool isArgPassedInSGPR(const CallBase *CB, unsigned ArgNo) {
  // Arguments to compute shaders are never a source of divergence.
  CallingConv::ID CC = CB->getCallingConv();
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
    return true;
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_LS:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
  case CallingConv::AMDGPU_Gfx:
  case CallingConv::AMDGPU_CS_Chain:
  case CallingConv::AMDGPU_CS_ChainPreserve:
    // For non-compute shaders, SGPR inputs are marked with either inreg or
    // byval. Everything else is in VGPRs.
    return CB->paramHasAttr(ArgNo, Attribute::InReg) ||
           CB->paramHasAttr(ArgNo, Attribute::ByVal);
  default:
    return CB->paramHasAttr(ArgNo, Attribute::InReg);
  }
}

static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
  return isGCN3Encoding(ST) || isGFX10Plus(ST);
}

static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
  return isGFX9Plus(ST);
}

bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
                                      int64_t EncodedOffset) {
  if (isGFX12Plus(ST))
    return isUInt<23>(EncodedOffset);

  return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
                               : isUInt<8>(EncodedOffset);
}

bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
                                    int64_t EncodedOffset,
                                    bool IsBuffer) {
  if (isGFX12Plus(ST))
    return isInt<24>(EncodedOffset);

  return !IsBuffer &&
         hasSMRDSignedImmOffset(ST) &&
         isInt<21>(EncodedOffset);
}

static bool isDwordAligned(uint64_t ByteOffset) {
  return (ByteOffset & 3) == 0;
}

uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
                                uint64_t ByteOffset) {
  if (hasSMEMByteOffset(ST))
    return ByteOffset;

  assert(isDwordAligned(ByteOffset));
  return ByteOffset >> 2;
}

std::optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
                                            int64_t ByteOffset, bool IsBuffer) {
  if (isGFX12Plus(ST)) // 24 bit signed offsets
    return isInt<24>(ByteOffset) ? std::optional<int64_t>(ByteOffset)
                                 : std::nullopt;

  // The signed version is always a byte offset.
  if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
    assert(hasSMEMByteOffset(ST));
    return isInt<20>(ByteOffset) ? std::optional<int64_t>(ByteOffset)
                                 : std::nullopt;
  }

  if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
    return std::nullopt;

  int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
  return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
             ? std::optional<int64_t>(EncodedOffset)
             : std::nullopt;
}

std::optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
                                                     int64_t ByteOffset) {
  if (!isCI(ST) || !isDwordAligned(ByteOffset))
    return std::nullopt;

  int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
  return isUInt<32>(EncodedOffset) ? std::optional<int64_t>(EncodedOffset)
                                   : std::nullopt;
}

unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST) {
  if (AMDGPU::isGFX10(ST))
    return 12;

  if (AMDGPU::isGFX12(ST))
    return 24;
  return 13;
}

namespace {

struct SourceOfDivergence {
  unsigned Intr;
};
const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);

struct AlwaysUniform {
  unsigned Intr;
};
const AlwaysUniform *lookupAlwaysUniform(unsigned Intr);

#define GET_SourcesOfDivergence_IMPL
#define GET_UniformIntrinsics_IMPL
#define GET_Gfx9BufferFormat_IMPL
#define GET_Gfx10BufferFormat_IMPL
#define GET_Gfx11PlusBufferFormat_IMPL
#include "AMDGPUGenSearchableTables.inc"

} // end anonymous namespace

bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
  return lookupSourceOfDivergence(IntrID);
}

bool isIntrinsicAlwaysUniform(unsigned IntrID) {
  return lookupAlwaysUniform(IntrID);
}

const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
                                                  uint8_t NumComponents,
                                                  uint8_t NumFormat,
                                                  const MCSubtargetInfo &STI) {
  return isGFX11Plus(STI)
             ? getGfx11PlusBufferFormatInfo(BitsPerComp, NumComponents,
                                            NumFormat)
             : isGFX10(STI) ? getGfx10BufferFormatInfo(BitsPerComp,
                                                       NumComponents, NumFormat)
                            : getGfx9BufferFormatInfo(BitsPerComp,
                                                      NumComponents, NumFormat);
}

const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
                                                  const MCSubtargetInfo &STI) {
  return isGFX11Plus(STI) ? getGfx11PlusBufferFormatInfo(Format)
                          : isGFX10(STI) ? getGfx10BufferFormatInfo(Format)
                                         : getGfx9BufferFormatInfo(Format);
}

bool hasAny64BitVGPROperands(const MCInstrDesc &OpDesc) {
  for (auto OpName : { OpName::vdst, OpName::src0, OpName::src1,
                       OpName::src2 }) {
    int Idx = getNamedOperandIdx(OpDesc.getOpcode(), OpName);
    if (Idx == -1)
      continue;

    if (OpDesc.operands()[Idx].RegClass == AMDGPU::VReg_64RegClassID ||
        OpDesc.operands()[Idx].RegClass == AMDGPU::VReg_64_Align2RegClassID)
      return true;
  }

  return false;
}

bool isDPALU_DPP(const MCInstrDesc &OpDesc) {
  return hasAny64BitVGPROperands(OpDesc);
}

} // namespace AMDGPU

raw_ostream &operator<<(raw_ostream &OS,
                        const AMDGPU::IsaInfo::TargetIDSetting S) {
  switch (S) {
  case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
    OS << "Unsupported";
    break;
  case (AMDGPU::IsaInfo::TargetIDSetting::Any):
    OS << "Any";
    break;
  case (AMDGPU::IsaInfo::TargetIDSetting::Off):
    OS << "Off";
    break;
  case (AMDGPU::IsaInfo::TargetIDSetting::On):
    OS << "On";
    break;
  }
  return OS;
}

} // namespace llvm