summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/Utils/CodeExtractor.cpp
blob: ab2d25c3f17c7dbd8373c442ea4462a06023115d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interface to tear out a code region, such as an
// individual loop or a parallel section, into a new function, replacing it with
// a call to the new function.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/CodeExtractor.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>
#include <vector>

using namespace llvm;
using namespace llvm::PatternMatch;
using ProfileCount = Function::ProfileCount;

#define DEBUG_TYPE "code-extractor"

// Provide a command-line option to aggregate function arguments into a struct
// for functions produced by the code extractor. This is useful when converting
// extracted functions to pthread-based code, as only one argument (void*) can
// be passed in to pthread_create().
static cl::opt<bool>
AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
                 cl::desc("Aggregate arguments to code-extracted functions"));

/// Test whether a block is valid for extraction.
static bool isBlockValidForExtraction(const BasicBlock &BB,
                                      const SetVector<BasicBlock *> &Result,
                                      bool AllowVarArgs, bool AllowAlloca) {
  // taking the address of a basic block moved to another function is illegal
  if (BB.hasAddressTaken())
    return false;

  // don't hoist code that uses another basicblock address, as it's likely to
  // lead to unexpected behavior, like cross-function jumps
  SmallPtrSet<User const *, 16> Visited;
  SmallVector<User const *, 16> ToVisit;

  for (Instruction const &Inst : BB)
    ToVisit.push_back(&Inst);

  while (!ToVisit.empty()) {
    User const *Curr = ToVisit.pop_back_val();
    if (!Visited.insert(Curr).second)
      continue;
    if (isa<BlockAddress const>(Curr))
      return false; // even a reference to self is likely to be not compatible

    if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
      continue;

    for (auto const &U : Curr->operands()) {
      if (auto *UU = dyn_cast<User>(U))
        ToVisit.push_back(UU);
    }
  }

  // If explicitly requested, allow vastart and alloca. For invoke instructions
  // verify that extraction is valid.
  for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
    if (isa<AllocaInst>(I)) {
       if (!AllowAlloca)
         return false;
       continue;
    }

    if (const auto *II = dyn_cast<InvokeInst>(I)) {
      // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
      // must be a part of the subgraph which is being extracted.
      if (auto *UBB = II->getUnwindDest())
        if (!Result.count(UBB))
          return false;
      continue;
    }

    // All catch handlers of a catchswitch instruction as well as the unwind
    // destination must be in the subgraph.
    if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
      if (auto *UBB = CSI->getUnwindDest())
        if (!Result.count(UBB))
          return false;
      for (const auto *HBB : CSI->handlers())
        if (!Result.count(const_cast<BasicBlock*>(HBB)))
          return false;
      continue;
    }

    // Make sure that entire catch handler is within subgraph. It is sufficient
    // to check that catch return's block is in the list.
    if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
      for (const auto *U : CPI->users())
        if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
          if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
            return false;
      continue;
    }

    // And do similar checks for cleanup handler - the entire handler must be
    // in subgraph which is going to be extracted. For cleanup return should
    // additionally check that the unwind destination is also in the subgraph.
    if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
      for (const auto *U : CPI->users())
        if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
          if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
            return false;
      continue;
    }
    if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
      if (auto *UBB = CRI->getUnwindDest())
        if (!Result.count(UBB))
          return false;
      continue;
    }

    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
      if (const Function *F = CI->getCalledFunction()) {
        auto IID = F->getIntrinsicID();
        if (IID == Intrinsic::vastart) {
          if (AllowVarArgs)
            continue;
          else
            return false;
        }

        // Currently, we miscompile outlined copies of eh_typid_for. There are
        // proposals for fixing this in llvm.org/PR39545.
        if (IID == Intrinsic::eh_typeid_for)
          return false;
      }
    }
  }

  return true;
}

/// Build a set of blocks to extract if the input blocks are viable.
static SetVector<BasicBlock *>
buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
                        bool AllowVarArgs, bool AllowAlloca) {
  assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
  SetVector<BasicBlock *> Result;

  // Loop over the blocks, adding them to our set-vector, and aborting with an
  // empty set if we encounter invalid blocks.
  for (BasicBlock *BB : BBs) {
    // If this block is dead, don't process it.
    if (DT && !DT->isReachableFromEntry(BB))
      continue;

    if (!Result.insert(BB))
      llvm_unreachable("Repeated basic blocks in extraction input");
  }

  LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
                    << '\n');

  for (auto *BB : Result) {
    if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
      return {};

    // Make sure that the first block is not a landing pad.
    if (BB == Result.front()) {
      if (BB->isEHPad()) {
        LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
        return {};
      }
      continue;
    }

    // All blocks other than the first must not have predecessors outside of
    // the subgraph which is being extracted.
    for (auto *PBB : predecessors(BB))
      if (!Result.count(PBB)) {
        LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
                             "outside the region except for the first block!\n"
                          << "Problematic source BB: " << BB->getName() << "\n"
                          << "Problematic destination BB: " << PBB->getName()
                          << "\n");
        return {};
      }
  }

  return Result;
}

CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
                             bool AggregateArgs, BlockFrequencyInfo *BFI,
                             BranchProbabilityInfo *BPI, AssumptionCache *AC,
                             bool AllowVarArgs, bool AllowAlloca,
                             BasicBlock *AllocationBlock, std::string Suffix,
                             bool ArgsInZeroAddressSpace)
    : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
      BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
      AllowVarArgs(AllowVarArgs),
      Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
      Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {}

CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
                             BlockFrequencyInfo *BFI,
                             BranchProbabilityInfo *BPI, AssumptionCache *AC,
                             std::string Suffix)
    : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
      BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false),
      Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
                                     /* AllowVarArgs */ false,
                                     /* AllowAlloca */ false)),
      Suffix(Suffix) {}

/// definedInRegion - Return true if the specified value is defined in the
/// extracted region.
static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
  if (Instruction *I = dyn_cast<Instruction>(V))
    if (Blocks.count(I->getParent()))
      return true;
  return false;
}

/// definedInCaller - Return true if the specified value is defined in the
/// function being code extracted, but not in the region being extracted.
/// These values must be passed in as live-ins to the function.
static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
  if (isa<Argument>(V)) return true;
  if (Instruction *I = dyn_cast<Instruction>(V))
    if (!Blocks.count(I->getParent()))
      return true;
  return false;
}

static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
  BasicBlock *CommonExitBlock = nullptr;
  auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
    for (auto *Succ : successors(Block)) {
      // Internal edges, ok.
      if (Blocks.count(Succ))
        continue;
      if (!CommonExitBlock) {
        CommonExitBlock = Succ;
        continue;
      }
      if (CommonExitBlock != Succ)
        return true;
    }
    return false;
  };

  if (any_of(Blocks, hasNonCommonExitSucc))
    return nullptr;

  return CommonExitBlock;
}

CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
  for (BasicBlock &BB : F) {
    for (Instruction &II : BB.instructionsWithoutDebug())
      if (auto *AI = dyn_cast<AllocaInst>(&II))
        Allocas.push_back(AI);

    findSideEffectInfoForBlock(BB);
  }
}

void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
  for (Instruction &II : BB.instructionsWithoutDebug()) {
    unsigned Opcode = II.getOpcode();
    Value *MemAddr = nullptr;
    switch (Opcode) {
    case Instruction::Store:
    case Instruction::Load: {
      if (Opcode == Instruction::Store) {
        StoreInst *SI = cast<StoreInst>(&II);
        MemAddr = SI->getPointerOperand();
      } else {
        LoadInst *LI = cast<LoadInst>(&II);
        MemAddr = LI->getPointerOperand();
      }
      // Global variable can not be aliased with locals.
      if (isa<Constant>(MemAddr))
        break;
      Value *Base = MemAddr->stripInBoundsConstantOffsets();
      if (!isa<AllocaInst>(Base)) {
        SideEffectingBlocks.insert(&BB);
        return;
      }
      BaseMemAddrs[&BB].insert(Base);
      break;
    }
    default: {
      IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
      if (IntrInst) {
        if (IntrInst->isLifetimeStartOrEnd())
          break;
        SideEffectingBlocks.insert(&BB);
        return;
      }
      // Treat all the other cases conservatively if it has side effects.
      if (II.mayHaveSideEffects()) {
        SideEffectingBlocks.insert(&BB);
        return;
      }
    }
    }
  }
}

bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
    BasicBlock &BB, AllocaInst *Addr) const {
  if (SideEffectingBlocks.count(&BB))
    return true;
  auto It = BaseMemAddrs.find(&BB);
  if (It != BaseMemAddrs.end())
    return It->second.count(Addr);
  return false;
}

bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
    const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
  AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
  Function *Func = (*Blocks.begin())->getParent();
  for (BasicBlock &BB : *Func) {
    if (Blocks.count(&BB))
      continue;
    if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
      return false;
  }
  return true;
}

BasicBlock *
CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
  BasicBlock *SinglePredFromOutlineRegion = nullptr;
  assert(!Blocks.count(CommonExitBlock) &&
         "Expect a block outside the region!");
  for (auto *Pred : predecessors(CommonExitBlock)) {
    if (!Blocks.count(Pred))
      continue;
    if (!SinglePredFromOutlineRegion) {
      SinglePredFromOutlineRegion = Pred;
    } else if (SinglePredFromOutlineRegion != Pred) {
      SinglePredFromOutlineRegion = nullptr;
      break;
    }
  }

  if (SinglePredFromOutlineRegion)
    return SinglePredFromOutlineRegion;

#ifndef NDEBUG
  auto getFirstPHI = [](BasicBlock *BB) {
    BasicBlock::iterator I = BB->begin();
    PHINode *FirstPhi = nullptr;
    while (I != BB->end()) {
      PHINode *Phi = dyn_cast<PHINode>(I);
      if (!Phi)
        break;
      if (!FirstPhi) {
        FirstPhi = Phi;
        break;
      }
    }
    return FirstPhi;
  };
  // If there are any phi nodes, the single pred either exists or has already
  // be created before code extraction.
  assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
#endif

  BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
      CommonExitBlock->getFirstNonPHI()->getIterator());

  for (BasicBlock *Pred :
       llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
    if (Blocks.count(Pred))
      continue;
    Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
  }
  // Now add the old exit block to the outline region.
  Blocks.insert(CommonExitBlock);
  OldTargets.push_back(NewExitBlock);
  return CommonExitBlock;
}

// Find the pair of life time markers for address 'Addr' that are either
// defined inside the outline region or can legally be shrinkwrapped into the
// outline region. If there are not other untracked uses of the address, return
// the pair of markers if found; otherwise return a pair of nullptr.
CodeExtractor::LifetimeMarkerInfo
CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
                                  Instruction *Addr,
                                  BasicBlock *ExitBlock) const {
  LifetimeMarkerInfo Info;

  for (User *U : Addr->users()) {
    IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
    if (IntrInst) {
      // We don't model addresses with multiple start/end markers, but the
      // markers do not need to be in the region.
      if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
        if (Info.LifeStart)
          return {};
        Info.LifeStart = IntrInst;
        continue;
      }
      if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
        if (Info.LifeEnd)
          return {};
        Info.LifeEnd = IntrInst;
        continue;
      }
      // At this point, permit debug uses outside of the region.
      // This is fixed in a later call to fixupDebugInfoPostExtraction().
      if (isa<DbgInfoIntrinsic>(IntrInst))
        continue;
    }
    // Find untracked uses of the address, bail.
    if (!definedInRegion(Blocks, U))
      return {};
  }

  if (!Info.LifeStart || !Info.LifeEnd)
    return {};

  Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
  Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
  // Do legality check.
  if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
      !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
    return {};

  // Check to see if we have a place to do hoisting, if not, bail.
  if (Info.HoistLifeEnd && !ExitBlock)
    return {};

  return Info;
}

void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
                                ValueSet &SinkCands, ValueSet &HoistCands,
                                BasicBlock *&ExitBlock) const {
  Function *Func = (*Blocks.begin())->getParent();
  ExitBlock = getCommonExitBlock(Blocks);

  auto moveOrIgnoreLifetimeMarkers =
      [&](const LifetimeMarkerInfo &LMI) -> bool {
    if (!LMI.LifeStart)
      return false;
    if (LMI.SinkLifeStart) {
      LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
                        << "\n");
      SinkCands.insert(LMI.LifeStart);
    }
    if (LMI.HoistLifeEnd) {
      LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
      HoistCands.insert(LMI.LifeEnd);
    }
    return true;
  };

  // Look up allocas in the original function in CodeExtractorAnalysisCache, as
  // this is much faster than walking all the instructions.
  for (AllocaInst *AI : CEAC.getAllocas()) {
    BasicBlock *BB = AI->getParent();
    if (Blocks.count(BB))
      continue;

    // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
    // check whether it is actually still in the original function.
    Function *AIFunc = BB->getParent();
    if (AIFunc != Func)
      continue;

    LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
    bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
    if (Moved) {
      LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
      SinkCands.insert(AI);
      continue;
    }

    // Find bitcasts in the outlined region that have lifetime marker users
    // outside that region. Replace the lifetime marker use with an
    // outside region bitcast to avoid unnecessary alloca/reload instructions
    // and extra lifetime markers.
    SmallVector<Instruction *, 2> LifetimeBitcastUsers;
    for (User *U : AI->users()) {
      if (!definedInRegion(Blocks, U))
        continue;

      if (U->stripInBoundsConstantOffsets() != AI)
        continue;

      Instruction *Bitcast = cast<Instruction>(U);
      for (User *BU : Bitcast->users()) {
        IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
        if (!IntrInst)
          continue;

        if (!IntrInst->isLifetimeStartOrEnd())
          continue;

        if (definedInRegion(Blocks, IntrInst))
          continue;

        LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
                          << *Bitcast << " in out-of-region lifetime marker "
                          << *IntrInst << "\n");
        LifetimeBitcastUsers.push_back(IntrInst);
      }
    }

    for (Instruction *I : LifetimeBitcastUsers) {
      Module *M = AIFunc->getParent();
      LLVMContext &Ctx = M->getContext();
      auto *Int8PtrTy = PointerType::getUnqual(Ctx);
      CastInst *CastI =
          CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I->getIterator());
      I->replaceUsesOfWith(I->getOperand(1), CastI);
    }

    // Follow any bitcasts.
    SmallVector<Instruction *, 2> Bitcasts;
    SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
    for (User *U : AI->users()) {
      if (U->stripInBoundsConstantOffsets() == AI) {
        Instruction *Bitcast = cast<Instruction>(U);
        LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
        if (LMI.LifeStart) {
          Bitcasts.push_back(Bitcast);
          BitcastLifetimeInfo.push_back(LMI);
          continue;
        }
      }

      // Found unknown use of AI.
      if (!definedInRegion(Blocks, U)) {
        Bitcasts.clear();
        break;
      }
    }

    // Either no bitcasts reference the alloca or there are unknown uses.
    if (Bitcasts.empty())
      continue;

    LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
    SinkCands.insert(AI);
    for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
      Instruction *BitcastAddr = Bitcasts[I];
      const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
      assert(LMI.LifeStart &&
             "Unsafe to sink bitcast without lifetime markers");
      moveOrIgnoreLifetimeMarkers(LMI);
      if (!definedInRegion(Blocks, BitcastAddr)) {
        LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
                          << "\n");
        SinkCands.insert(BitcastAddr);
      }
    }
  }
}

bool CodeExtractor::isEligible() const {
  if (Blocks.empty())
    return false;
  BasicBlock *Header = *Blocks.begin();
  Function *F = Header->getParent();

  // For functions with varargs, check that varargs handling is only done in the
  // outlined function, i.e vastart and vaend are only used in outlined blocks.
  if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
    auto containsVarArgIntrinsic = [](const Instruction &I) {
      if (const CallInst *CI = dyn_cast<CallInst>(&I))
        if (const Function *Callee = CI->getCalledFunction())
          return Callee->getIntrinsicID() == Intrinsic::vastart ||
                 Callee->getIntrinsicID() == Intrinsic::vaend;
      return false;
    };

    for (auto &BB : *F) {
      if (Blocks.count(&BB))
        continue;
      if (llvm::any_of(BB, containsVarArgIntrinsic))
        return false;
    }
  }
  return true;
}

void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
                                      const ValueSet &SinkCands) const {
  for (BasicBlock *BB : Blocks) {
    // If a used value is defined outside the region, it's an input.  If an
    // instruction is used outside the region, it's an output.
    for (Instruction &II : *BB) {
      for (auto &OI : II.operands()) {
        Value *V = OI;
        if (!SinkCands.count(V) && definedInCaller(Blocks, V))
          Inputs.insert(V);
      }

      for (User *U : II.users())
        if (!definedInRegion(Blocks, U)) {
          Outputs.insert(&II);
          break;
        }
    }
  }
}

/// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
/// of the region, we need to split the entry block of the region so that the
/// PHI node is easier to deal with.
void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
  unsigned NumPredsFromRegion = 0;
  unsigned NumPredsOutsideRegion = 0;

  if (Header != &Header->getParent()->getEntryBlock()) {
    PHINode *PN = dyn_cast<PHINode>(Header->begin());
    if (!PN) return;  // No PHI nodes.

    // If the header node contains any PHI nodes, check to see if there is more
    // than one entry from outside the region.  If so, we need to sever the
    // header block into two.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (Blocks.count(PN->getIncomingBlock(i)))
        ++NumPredsFromRegion;
      else
        ++NumPredsOutsideRegion;

    // If there is one (or fewer) predecessor from outside the region, we don't
    // need to do anything special.
    if (NumPredsOutsideRegion <= 1) return;
  }

  // Otherwise, we need to split the header block into two pieces: one
  // containing PHI nodes merging values from outside of the region, and a
  // second that contains all of the code for the block and merges back any
  // incoming values from inside of the region.
  BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);

  // We only want to code extract the second block now, and it becomes the new
  // header of the region.
  BasicBlock *OldPred = Header;
  Blocks.remove(OldPred);
  Blocks.insert(NewBB);
  Header = NewBB;

  // Okay, now we need to adjust the PHI nodes and any branches from within the
  // region to go to the new header block instead of the old header block.
  if (NumPredsFromRegion) {
    PHINode *PN = cast<PHINode>(OldPred->begin());
    // Loop over all of the predecessors of OldPred that are in the region,
    // changing them to branch to NewBB instead.
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (Blocks.count(PN->getIncomingBlock(i))) {
        Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
        TI->replaceUsesOfWith(OldPred, NewBB);
      }

    // Okay, everything within the region is now branching to the right block, we
    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
    BasicBlock::iterator AfterPHIs;
    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
      PHINode *PN = cast<PHINode>(AfterPHIs);
      // Create a new PHI node in the new region, which has an incoming value
      // from OldPred of PN.
      PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
                                       PN->getName() + ".ce");
      NewPN->insertBefore(NewBB->begin());
      PN->replaceAllUsesWith(NewPN);
      NewPN->addIncoming(PN, OldPred);

      // Loop over all of the incoming value in PN, moving them to NewPN if they
      // are from the extracted region.
      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
        if (Blocks.count(PN->getIncomingBlock(i))) {
          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
          PN->removeIncomingValue(i);
          --i;
        }
      }
    }
  }
}

/// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
/// outlined region, we split these PHIs on two: one with inputs from region
/// and other with remaining incoming blocks; then first PHIs are placed in
/// outlined region.
void CodeExtractor::severSplitPHINodesOfExits(
    const SmallPtrSetImpl<BasicBlock *> &Exits) {
  for (BasicBlock *ExitBB : Exits) {
    BasicBlock *NewBB = nullptr;

    for (PHINode &PN : ExitBB->phis()) {
      // Find all incoming values from the outlining region.
      SmallVector<unsigned, 2> IncomingVals;
      for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
        if (Blocks.count(PN.getIncomingBlock(i)))
          IncomingVals.push_back(i);

      // Do not process PHI if there is one (or fewer) predecessor from region.
      // If PHI has exactly one predecessor from region, only this one incoming
      // will be replaced on codeRepl block, so it should be safe to skip PHI.
      if (IncomingVals.size() <= 1)
        continue;

      // Create block for new PHIs and add it to the list of outlined if it
      // wasn't done before.
      if (!NewBB) {
        NewBB = BasicBlock::Create(ExitBB->getContext(),
                                   ExitBB->getName() + ".split",
                                   ExitBB->getParent(), ExitBB);
        NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat;
        SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
        for (BasicBlock *PredBB : Preds)
          if (Blocks.count(PredBB))
            PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
        BranchInst::Create(ExitBB, NewBB);
        Blocks.insert(NewBB);
      }

      // Split this PHI.
      PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
                                       PN.getName() + ".ce");
      NewPN->insertBefore(NewBB->getFirstNonPHIIt());
      for (unsigned i : IncomingVals)
        NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
      for (unsigned i : reverse(IncomingVals))
        PN.removeIncomingValue(i, false);
      PN.addIncoming(NewPN, NewBB);
    }
  }
}

void CodeExtractor::splitReturnBlocks() {
  for (BasicBlock *Block : Blocks)
    if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
      BasicBlock *New =
          Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
      if (DT) {
        // Old dominates New. New node dominates all other nodes dominated
        // by Old.
        DomTreeNode *OldNode = DT->getNode(Block);
        SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
                                               OldNode->end());

        DomTreeNode *NewNode = DT->addNewBlock(New, Block);

        for (DomTreeNode *I : Children)
          DT->changeImmediateDominator(I, NewNode);
      }
    }
}

/// constructFunction - make a function based on inputs and outputs, as follows:
/// f(in0, ..., inN, out0, ..., outN)
Function *CodeExtractor::constructFunction(const ValueSet &inputs,
                                           const ValueSet &outputs,
                                           BasicBlock *header,
                                           BasicBlock *newRootNode,
                                           BasicBlock *newHeader,
                                           Function *oldFunction,
                                           Module *M) {
  LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
  LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");

  // This function returns unsigned, outputs will go back by reference.
  switch (NumExitBlocks) {
  case 0:
  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
  default: RetTy = Type::getInt16Ty(header->getContext()); break;
  }

  std::vector<Type *> ParamTy;
  std::vector<Type *> AggParamTy;
  ValueSet StructValues;
  const DataLayout &DL = M->getDataLayout();

  // Add the types of the input values to the function's argument list
  for (Value *value : inputs) {
    LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
    if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
      AggParamTy.push_back(value->getType());
      StructValues.insert(value);
    } else
      ParamTy.push_back(value->getType());
  }

  // Add the types of the output values to the function's argument list.
  for (Value *output : outputs) {
    LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
    if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
      AggParamTy.push_back(output->getType());
      StructValues.insert(output);
    } else
      ParamTy.push_back(
          PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
  }

  assert(
      (ParamTy.size() + AggParamTy.size()) ==
          (inputs.size() + outputs.size()) &&
      "Number of scalar and aggregate params does not match inputs, outputs");
  assert((StructValues.empty() || AggregateArgs) &&
         "Expeced StructValues only with AggregateArgs set");

  // Concatenate scalar and aggregate params in ParamTy.
  size_t NumScalarParams = ParamTy.size();
  StructType *StructTy = nullptr;
  if (AggregateArgs && !AggParamTy.empty()) {
    StructTy = StructType::get(M->getContext(), AggParamTy);
    ParamTy.push_back(PointerType::get(
        StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace()));
  }

  LLVM_DEBUG({
    dbgs() << "Function type: " << *RetTy << " f(";
    for (Type *i : ParamTy)
      dbgs() << *i << ", ";
    dbgs() << ")\n";
  });

  FunctionType *funcType = FunctionType::get(
      RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());

  std::string SuffixToUse =
      Suffix.empty()
          ? (header->getName().empty() ? "extracted" : header->getName().str())
          : Suffix;
  // Create the new function
  Function *newFunction = Function::Create(
      funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
      oldFunction->getName() + "." + SuffixToUse, M);
  newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;

  // Inherit all of the target dependent attributes and white-listed
  // target independent attributes.
  //  (e.g. If the extracted region contains a call to an x86.sse
  //  instruction we need to make sure that the extracted region has the
  //  "target-features" attribute allowing it to be lowered.
  // FIXME: This should be changed to check to see if a specific
  //           attribute can not be inherited.
  for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
    if (Attr.isStringAttribute()) {
      if (Attr.getKindAsString() == "thunk")
        continue;
    } else
      switch (Attr.getKindAsEnum()) {
      // Those attributes cannot be propagated safely. Explicitly list them
      // here so we get a warning if new attributes are added.
      case Attribute::AllocSize:
      case Attribute::Builtin:
      case Attribute::Convergent:
      case Attribute::JumpTable:
      case Attribute::Naked:
      case Attribute::NoBuiltin:
      case Attribute::NoMerge:
      case Attribute::NoReturn:
      case Attribute::NoSync:
      case Attribute::ReturnsTwice:
      case Attribute::Speculatable:
      case Attribute::StackAlignment:
      case Attribute::WillReturn:
      case Attribute::AllocKind:
      case Attribute::PresplitCoroutine:
      case Attribute::Memory:
      case Attribute::NoFPClass:
      case Attribute::CoroDestroyOnlyWhenComplete:
        continue;
      // Those attributes should be safe to propagate to the extracted function.
      case Attribute::AlwaysInline:
      case Attribute::Cold:
      case Attribute::DisableSanitizerInstrumentation:
      case Attribute::FnRetThunkExtern:
      case Attribute::Hot:
      case Attribute::NoRecurse:
      case Attribute::InlineHint:
      case Attribute::MinSize:
      case Attribute::NoCallback:
      case Attribute::NoDuplicate:
      case Attribute::NoFree:
      case Attribute::NoImplicitFloat:
      case Attribute::NoInline:
      case Attribute::NonLazyBind:
      case Attribute::NoRedZone:
      case Attribute::NoUnwind:
      case Attribute::NoSanitizeBounds:
      case Attribute::NoSanitizeCoverage:
      case Attribute::NullPointerIsValid:
      case Attribute::OptimizeForDebugging:
      case Attribute::OptForFuzzing:
      case Attribute::OptimizeNone:
      case Attribute::OptimizeForSize:
      case Attribute::SafeStack:
      case Attribute::ShadowCallStack:
      case Attribute::SanitizeAddress:
      case Attribute::SanitizeMemory:
      case Attribute::SanitizeThread:
      case Attribute::SanitizeHWAddress:
      case Attribute::SanitizeMemTag:
      case Attribute::SpeculativeLoadHardening:
      case Attribute::StackProtect:
      case Attribute::StackProtectReq:
      case Attribute::StackProtectStrong:
      case Attribute::StrictFP:
      case Attribute::UWTable:
      case Attribute::VScaleRange:
      case Attribute::NoCfCheck:
      case Attribute::MustProgress:
      case Attribute::NoProfile:
      case Attribute::SkipProfile:
        break;
      // These attributes cannot be applied to functions.
      case Attribute::Alignment:
      case Attribute::AllocatedPointer:
      case Attribute::AllocAlign:
      case Attribute::ByVal:
      case Attribute::Dereferenceable:
      case Attribute::DereferenceableOrNull:
      case Attribute::ElementType:
      case Attribute::InAlloca:
      case Attribute::InReg:
      case Attribute::Nest:
      case Attribute::NoAlias:
      case Attribute::NoCapture:
      case Attribute::NoUndef:
      case Attribute::NonNull:
      case Attribute::Preallocated:
      case Attribute::ReadNone:
      case Attribute::ReadOnly:
      case Attribute::Returned:
      case Attribute::SExt:
      case Attribute::StructRet:
      case Attribute::SwiftError:
      case Attribute::SwiftSelf:
      case Attribute::SwiftAsync:
      case Attribute::ZExt:
      case Attribute::ImmArg:
      case Attribute::ByRef:
      case Attribute::WriteOnly:
      case Attribute::Writable:
      case Attribute::DeadOnUnwind:
      case Attribute::Range:
      //  These are not really attributes.
      case Attribute::None:
      case Attribute::EndAttrKinds:
      case Attribute::EmptyKey:
      case Attribute::TombstoneKey:
        llvm_unreachable("Not a function attribute");
      }

    newFunction->addFnAttr(Attr);
  }
  newFunction->insert(newFunction->end(), newRootNode);

  // Create scalar and aggregate iterators to name all of the arguments we
  // inserted.
  Function::arg_iterator ScalarAI = newFunction->arg_begin();
  Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);

  // Rewrite all users of the inputs in the extracted region to use the
  // arguments (or appropriate addressing into struct) instead.
  for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
    Value *RewriteVal;
    if (AggregateArgs && StructValues.contains(inputs[i])) {
      Value *Idx[2];
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
      BasicBlock::iterator TI = newFunction->begin()->getTerminator()->getIterator();
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
      RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
                                "loadgep_" + inputs[i]->getName(), TI);
      ++aggIdx;
    } else
      RewriteVal = &*ScalarAI++;

    std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
    for (User *use : Users)
      if (Instruction *inst = dyn_cast<Instruction>(use))
        if (Blocks.count(inst->getParent()))
          inst->replaceUsesOfWith(inputs[i], RewriteVal);
  }

  // Set names for input and output arguments.
  if (NumScalarParams) {
    ScalarAI = newFunction->arg_begin();
    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
      if (!StructValues.contains(inputs[i]))
        ScalarAI->setName(inputs[i]->getName());
    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
      if (!StructValues.contains(outputs[i]))
        ScalarAI->setName(outputs[i]->getName() + ".out");
  }

  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
  // within the new function. This must be done before we lose track of which
  // blocks were originally in the code region.
  std::vector<User *> Users(header->user_begin(), header->user_end());
  for (auto &U : Users)
    // The BasicBlock which contains the branch is not in the region
    // modify the branch target to a new block
    if (Instruction *I = dyn_cast<Instruction>(U))
      if (I->isTerminator() && I->getFunction() == oldFunction &&
          !Blocks.count(I->getParent()))
        I->replaceUsesOfWith(header, newHeader);

  return newFunction;
}

/// Erase lifetime.start markers which reference inputs to the extraction
/// region, and insert the referenced memory into \p LifetimesStart.
///
/// The extraction region is defined by a set of blocks (\p Blocks), and a set
/// of allocas which will be moved from the caller function into the extracted
/// function (\p SunkAllocas).
static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
                                         const SetVector<Value *> &SunkAllocas,
                                         SetVector<Value *> &LifetimesStart) {
  for (BasicBlock *BB : Blocks) {
    for (Instruction &I : llvm::make_early_inc_range(*BB)) {
      auto *II = dyn_cast<IntrinsicInst>(&I);
      if (!II || !II->isLifetimeStartOrEnd())
        continue;

      // Get the memory operand of the lifetime marker. If the underlying
      // object is a sunk alloca, or is otherwise defined in the extraction
      // region, the lifetime marker must not be erased.
      Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
      if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
        continue;

      if (II->getIntrinsicID() == Intrinsic::lifetime_start)
        LifetimesStart.insert(Mem);
      II->eraseFromParent();
    }
  }
}

/// Insert lifetime start/end markers surrounding the call to the new function
/// for objects defined in the caller.
static void insertLifetimeMarkersSurroundingCall(
    Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
    CallInst *TheCall) {
  LLVMContext &Ctx = M->getContext();
  auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
  Instruction *Term = TheCall->getParent()->getTerminator();

  // Emit lifetime markers for the pointers given in \p Objects. Insert the
  // markers before the call if \p InsertBefore, and after the call otherwise.
  auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
                           bool InsertBefore) {
    for (Value *Mem : Objects) {
      assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
                                            TheCall->getFunction()) &&
             "Input memory not defined in original function");

      Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType());
      auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
      if (InsertBefore)
        Marker->insertBefore(TheCall);
      else
        Marker->insertBefore(Term);
    }
  };

  if (!LifetimesStart.empty()) {
    insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
                  /*InsertBefore=*/true);
  }

  if (!LifetimesEnd.empty()) {
    insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
                  /*InsertBefore=*/false);
  }
}

/// emitCallAndSwitchStatement - This method sets up the caller side by adding
/// the call instruction, splitting any PHI nodes in the header block as
/// necessary.
CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
                                                    BasicBlock *codeReplacer,
                                                    ValueSet &inputs,
                                                    ValueSet &outputs) {
  // Emit a call to the new function, passing in: *pointer to struct (if
  // aggregating parameters), or plan inputs and allocated memory for outputs
  std::vector<Value *> params, ReloadOutputs, Reloads;
  ValueSet StructValues;

  Module *M = newFunction->getParent();
  LLVMContext &Context = M->getContext();
  const DataLayout &DL = M->getDataLayout();
  CallInst *call = nullptr;

  // Add inputs as params, or to be filled into the struct
  unsigned ScalarInputArgNo = 0;
  SmallVector<unsigned, 1> SwiftErrorArgs;
  for (Value *input : inputs) {
    if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
      StructValues.insert(input);
    else {
      params.push_back(input);
      if (input->isSwiftError())
        SwiftErrorArgs.push_back(ScalarInputArgNo);
    }
    ++ScalarInputArgNo;
  }

  // Create allocas for the outputs
  unsigned ScalarOutputArgNo = 0;
  for (Value *output : outputs) {
    if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
      StructValues.insert(output);
    } else {
      AllocaInst *alloca =
        new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
                       nullptr, output->getName() + ".loc",
                       codeReplacer->getParent()->front().begin());
      ReloadOutputs.push_back(alloca);
      params.push_back(alloca);
      ++ScalarOutputArgNo;
    }
  }

  StructType *StructArgTy = nullptr;
  AllocaInst *Struct = nullptr;
  unsigned NumAggregatedInputs = 0;
  if (AggregateArgs && !StructValues.empty()) {
    std::vector<Type *> ArgTypes;
    for (Value *V : StructValues)
      ArgTypes.push_back(V->getType());

    // Allocate a struct at the beginning of this function
    StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
    Struct = new AllocaInst(
        StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
        AllocationBlock ? AllocationBlock->getFirstInsertionPt()
                        : codeReplacer->getParent()->front().begin());

    if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) {
      auto *StructSpaceCast = new AddrSpaceCastInst(
          Struct, PointerType ::get(Context, 0), "structArg.ascast");
      StructSpaceCast->insertAfter(Struct);
      params.push_back(StructSpaceCast);
    } else {
      params.push_back(Struct);
    }
    // Store aggregated inputs in the struct.
    for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
      if (inputs.contains(StructValues[i])) {
        Value *Idx[2];
        Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
        Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
        GetElementPtrInst *GEP = GetElementPtrInst::Create(
            StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
        GEP->insertInto(codeReplacer, codeReplacer->end());
        new StoreInst(StructValues[i], GEP, codeReplacer);
        NumAggregatedInputs++;
      }
    }
  }

  // Emit the call to the function
  call = CallInst::Create(newFunction, params,
                          NumExitBlocks > 1 ? "targetBlock" : "");
  // Add debug location to the new call, if the original function has debug
  // info. In that case, the terminator of the entry block of the extracted
  // function contains the first debug location of the extracted function,
  // set in extractCodeRegion.
  if (codeReplacer->getParent()->getSubprogram()) {
    if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
      call->setDebugLoc(DL);
  }
  call->insertInto(codeReplacer, codeReplacer->end());

  // Set swifterror parameter attributes.
  for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
    call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
    newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
  }

  // Reload the outputs passed in by reference, use the struct if output is in
  // the aggregate or reload from the scalar argument.
  for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
                aggIdx = NumAggregatedInputs;
       i != e; ++i) {
    Value *Output = nullptr;
    if (AggregateArgs && StructValues.contains(outputs[i])) {
      Value *Idx[2];
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
      GEP->insertInto(codeReplacer, codeReplacer->end());
      Output = GEP;
      ++aggIdx;
    } else {
      Output = ReloadOutputs[scalarIdx];
      ++scalarIdx;
    }
    LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
                                  outputs[i]->getName() + ".reload",
                                  codeReplacer);
    Reloads.push_back(load);
    std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
    for (User *U : Users) {
      Instruction *inst = cast<Instruction>(U);
      if (!Blocks.count(inst->getParent()))
        inst->replaceUsesOfWith(outputs[i], load);
    }
  }

  // Now we can emit a switch statement using the call as a value.
  SwitchInst *TheSwitch =
      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
                         codeReplacer, 0, codeReplacer);

  // Since there may be multiple exits from the original region, make the new
  // function return an unsigned, switch on that number.  This loop iterates
  // over all of the blocks in the extracted region, updating any terminator
  // instructions in the to-be-extracted region that branch to blocks that are
  // not in the region to be extracted.
  std::map<BasicBlock *, BasicBlock *> ExitBlockMap;

  // Iterate over the previously collected targets, and create new blocks inside
  // the function to branch to.
  unsigned switchVal = 0;
  for (BasicBlock *OldTarget : OldTargets) {
    if (Blocks.count(OldTarget))
      continue;
    BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
    if (NewTarget)
      continue;

    // If we don't already have an exit stub for this non-extracted
    // destination, create one now!
    NewTarget = BasicBlock::Create(Context,
                                    OldTarget->getName() + ".exitStub",
                                    newFunction);
    unsigned SuccNum = switchVal++;

    Value *brVal = nullptr;
    assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
    switch (NumExitBlocks) {
    case 0:
    case 1: break;  // No value needed.
    case 2:         // Conditional branch, return a bool
      brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
      break;
    default:
      brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
      break;
    }

    ReturnInst::Create(Context, brVal, NewTarget);

    // Update the switch instruction.
    TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
                                        SuccNum),
                        OldTarget);
  }

  for (BasicBlock *Block : Blocks) {
    Instruction *TI = Block->getTerminator();
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
      if (Blocks.count(TI->getSuccessor(i)))
        continue;
      BasicBlock *OldTarget = TI->getSuccessor(i);
      // add a new basic block which returns the appropriate value
      BasicBlock *NewTarget = ExitBlockMap[OldTarget];
      assert(NewTarget && "Unknown target block!");

      // rewrite the original branch instruction with this new target
      TI->setSuccessor(i, NewTarget);
   }
  }

  // Store the arguments right after the definition of output value.
  // This should be proceeded after creating exit stubs to be ensure that invoke
  // result restore will be placed in the outlined function.
  Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
  std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
  Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
  std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);

  for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
       ++i) {
    auto *OutI = dyn_cast<Instruction>(outputs[i]);
    if (!OutI)
      continue;

    // Find proper insertion point.
    BasicBlock::iterator InsertPt;
    // In case OutI is an invoke, we insert the store at the beginning in the
    // 'normal destination' BB. Otherwise we insert the store right after OutI.
    if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
      InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
    else if (auto *Phi = dyn_cast<PHINode>(OutI))
      InsertPt = Phi->getParent()->getFirstInsertionPt();
    else
      InsertPt = std::next(OutI->getIterator());

    assert((InsertPt->getFunction() == newFunction ||
            Blocks.count(InsertPt->getParent())) &&
           "InsertPt should be in new function");
    if (AggregateArgs && StructValues.contains(outputs[i])) {
      assert(AggOutputArgBegin != newFunction->arg_end() &&
             "Number of aggregate output arguments should match "
             "the number of defined values");
      Value *Idx[2];
      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
          InsertPt);
      new StoreInst(outputs[i], GEP, InsertPt);
      ++aggIdx;
      // Since there should be only one struct argument aggregating
      // all the output values, we shouldn't increment AggOutputArgBegin, which
      // always points to the struct argument, in this case.
    } else {
      assert(ScalarOutputArgBegin != newFunction->arg_end() &&
             "Number of scalar output arguments should match "
             "the number of defined values");
      new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertPt);
      ++ScalarOutputArgBegin;
    }
  }

  // Now that we've done the deed, simplify the switch instruction.
  Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
  switch (NumExitBlocks) {
  case 0:
    // There are no successors (the block containing the switch itself), which
    // means that previously this was the last part of the function, and hence
    // this should be rewritten as a `ret'

    // Check if the function should return a value
    if (OldFnRetTy->isVoidTy()) {
      ReturnInst::Create(Context, nullptr, TheSwitch->getIterator());  // Return void
    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
      // return what we have
      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch->getIterator());
    } else {
      // Otherwise we must have code extracted an unwind or something, just
      // return whatever we want.
      ReturnInst::Create(Context,
                         Constant::getNullValue(OldFnRetTy), TheSwitch->getIterator());
    }

    TheSwitch->eraseFromParent();
    break;
  case 1:
    // Only a single destination, change the switch into an unconditional
    // branch.
    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getIterator());
    TheSwitch->eraseFromParent();
    break;
  case 2:
    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
                       call, TheSwitch->getIterator());
    TheSwitch->eraseFromParent();
    break;
  default:
    // Otherwise, make the default destination of the switch instruction be one
    // of the other successors.
    TheSwitch->setCondition(call);
    TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
    // Remove redundant case
    TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
    break;
  }

  // Insert lifetime markers around the reloads of any output values. The
  // allocas output values are stored in are only in-use in the codeRepl block.
  insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);

  return call;
}

void CodeExtractor::moveCodeToFunction(Function *newFunction) {
  auto newFuncIt = newFunction->front().getIterator();
  for (BasicBlock *Block : Blocks) {
    // Delete the basic block from the old function, and the list of blocks
    Block->removeFromParent();

    // Insert this basic block into the new function
    // Insert the original blocks after the entry block created
    // for the new function. The entry block may be followed
    // by a set of exit blocks at this point, but these exit
    // blocks better be placed at the end of the new function.
    newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
  }
}

void CodeExtractor::calculateNewCallTerminatorWeights(
    BasicBlock *CodeReplacer,
    DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
    BranchProbabilityInfo *BPI) {
  using Distribution = BlockFrequencyInfoImplBase::Distribution;
  using BlockNode = BlockFrequencyInfoImplBase::BlockNode;

  // Update the branch weights for the exit block.
  Instruction *TI = CodeReplacer->getTerminator();
  SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);

  // Block Frequency distribution with dummy node.
  Distribution BranchDist;

  SmallVector<BranchProbability, 4> EdgeProbabilities(
      TI->getNumSuccessors(), BranchProbability::getUnknown());

  // Add each of the frequencies of the successors.
  for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
    BlockNode ExitNode(i);
    uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
    if (ExitFreq != 0)
      BranchDist.addExit(ExitNode, ExitFreq);
    else
      EdgeProbabilities[i] = BranchProbability::getZero();
  }

  // Check for no total weight.
  if (BranchDist.Total == 0) {
    BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
    return;
  }

  // Normalize the distribution so that they can fit in unsigned.
  BranchDist.normalize();

  // Create normalized branch weights and set the metadata.
  for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
    const auto &Weight = BranchDist.Weights[I];

    // Get the weight and update the current BFI.
    BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
    BranchProbability BP(Weight.Amount, BranchDist.Total);
    EdgeProbabilities[Weight.TargetNode.Index] = BP;
  }
  BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
  TI->setMetadata(
      LLVMContext::MD_prof,
      MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
}

/// Erase debug info intrinsics which refer to values in \p F but aren't in
/// \p F.
static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
  for (Instruction &I : instructions(F)) {
    SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
    SmallVector<DPValue *, 4> DPValues;
    findDbgUsers(DbgUsers, &I, &DPValues);
    for (DbgVariableIntrinsic *DVI : DbgUsers)
      if (DVI->getFunction() != &F)
        DVI->eraseFromParent();
    for (DPValue *DPV : DPValues)
      if (DPV->getFunction() != &F)
        DPV->eraseFromParent();
  }
}

/// Fix up the debug info in the old and new functions by pointing line
/// locations and debug intrinsics to the new subprogram scope, and by deleting
/// intrinsics which point to values outside of the new function.
static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
                                         CallInst &TheCall) {
  DISubprogram *OldSP = OldFunc.getSubprogram();
  LLVMContext &Ctx = OldFunc.getContext();

  if (!OldSP) {
    // Erase any debug info the new function contains.
    stripDebugInfo(NewFunc);
    // Make sure the old function doesn't contain any non-local metadata refs.
    eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
    return;
  }

  // Create a subprogram for the new function. Leave out a description of the
  // function arguments, as the parameters don't correspond to anything at the
  // source level.
  assert(OldSP->getUnit() && "Missing compile unit for subprogram");
  DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
                OldSP->getUnit());
  auto SPType =
      DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt));
  DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
                                    DISubprogram::SPFlagOptimized |
                                    DISubprogram::SPFlagLocalToUnit;
  auto NewSP = DIB.createFunction(
      OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
      /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
  NewFunc.setSubprogram(NewSP);

  auto IsInvalidLocation = [&NewFunc](Value *Location) {
    // Location is invalid if it isn't a constant or an instruction, or is an
    // instruction but isn't in the new function.
    if (!Location ||
        (!isa<Constant>(Location) && !isa<Instruction>(Location)))
      return true;
    Instruction *LocationInst = dyn_cast<Instruction>(Location);
    return LocationInst && LocationInst->getFunction() != &NewFunc;
  };

  // Debug intrinsics in the new function need to be updated in one of two
  // ways:
  //  1) They need to be deleted, because they describe a value in the old
  //     function.
  //  2) They need to point to fresh metadata, e.g. because they currently
  //     point to a variable in the wrong scope.
  SmallDenseMap<DINode *, DINode *> RemappedMetadata;
  SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
  SmallVector<DPValue *, 4> DPVsToDelete;
  DenseMap<const MDNode *, MDNode *> Cache;

  auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) {
    DINode *&NewVar = RemappedMetadata[OldVar];
    if (!NewVar) {
      DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
          *OldVar->getScope(), *NewSP, Ctx, Cache);
      NewVar = DIB.createAutoVariable(
          NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
          OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
          OldVar->getAlignInBits());
    }
    return cast<DILocalVariable>(NewVar);
  };

  auto UpdateDbgLabel = [&](auto *LabelRecord) {
    // Point the label record to a fresh label within the new function if
    // the record was not inlined from some other function.
    if (LabelRecord->getDebugLoc().getInlinedAt())
      return;
    DILabel *OldLabel = LabelRecord->getLabel();
    DINode *&NewLabel = RemappedMetadata[OldLabel];
    if (!NewLabel) {
      DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
          *OldLabel->getScope(), *NewSP, Ctx, Cache);
      NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
                              OldLabel->getFile(), OldLabel->getLine());
    }
    LabelRecord->setLabel(cast<DILabel>(NewLabel));
  };

  auto UpdateDbgRecordsOnInst = [&](Instruction &I) -> void {
    for (DbgRecord &DR : I.getDbgValueRange()) {
      if (DPLabel *DPL = dyn_cast<DPLabel>(&DR)) {
        UpdateDbgLabel(DPL);
        continue;
      }

      DPValue &DPV = cast<DPValue>(DR);
      // Apply the two updates that dbg.values get: invalid operands, and
      // variable metadata fixup.
      if (any_of(DPV.location_ops(), IsInvalidLocation)) {
        DPVsToDelete.push_back(&DPV);
        continue;
      }
      if (DPV.isDbgAssign() && IsInvalidLocation(DPV.getAddress())) {
        DPVsToDelete.push_back(&DPV);
        continue;
      }
      if (!DPV.getDebugLoc().getInlinedAt())
        DPV.setVariable(GetUpdatedDIVariable(DPV.getVariable()));
    }
  };

  for (Instruction &I : instructions(NewFunc)) {
    UpdateDbgRecordsOnInst(I);

    auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
    if (!DII)
      continue;

    // Point the intrinsic to a fresh label within the new function if the
    // intrinsic was not inlined from some other function.
    if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
      UpdateDbgLabel(DLI);
      continue;
    }

    auto *DVI = cast<DbgVariableIntrinsic>(DII);
    // If any of the used locations are invalid, delete the intrinsic.
    if (any_of(DVI->location_ops(), IsInvalidLocation)) {
      DebugIntrinsicsToDelete.push_back(DVI);
      continue;
    }
    // DbgAssign intrinsics have an extra Value argument:
    if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
        DAI && IsInvalidLocation(DAI->getAddress())) {
      DebugIntrinsicsToDelete.push_back(DVI);
      continue;
    }
    // If the variable was in the scope of the old function, i.e. it was not
    // inlined, point the intrinsic to a fresh variable within the new function.
    if (!DVI->getDebugLoc().getInlinedAt())
      DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable()));
  }

  for (auto *DII : DebugIntrinsicsToDelete)
    DII->eraseFromParent();
  for (auto *DPV : DPVsToDelete)
    DPV->getMarker()->MarkedInstr->dropOneDbgValue(DPV);
  DIB.finalizeSubprogram(NewSP);

  // Fix up the scope information attached to the line locations in the new
  // function.
  for (Instruction &I : instructions(NewFunc)) {
    if (const DebugLoc &DL = I.getDebugLoc())
      I.setDebugLoc(
          DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
    for (DbgRecord &DR : I.getDbgValueRange())
      DR.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DR.getDebugLoc(),
                                                          *NewSP, Ctx, Cache));

    // Loop info metadata may contain line locations. Fix them up.
    auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
      if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
        return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
      return MD;
    };
    updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
  }
  if (!TheCall.getDebugLoc())
    TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));

  eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
}

Function *
CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
  ValueSet Inputs, Outputs;
  return extractCodeRegion(CEAC, Inputs, Outputs);
}

Function *
CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
                                 ValueSet &inputs, ValueSet &outputs) {
  if (!isEligible())
    return nullptr;

  // Assumption: this is a single-entry code region, and the header is the first
  // block in the region.
  BasicBlock *header = *Blocks.begin();
  Function *oldFunction = header->getParent();

  // Calculate the entry frequency of the new function before we change the root
  //   block.
  BlockFrequency EntryFreq;
  if (BFI) {
    assert(BPI && "Both BPI and BFI are required to preserve profile info");
    for (BasicBlock *Pred : predecessors(header)) {
      if (Blocks.count(Pred))
        continue;
      EntryFreq +=
          BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
    }
  }

  // Remove @llvm.assume calls that will be moved to the new function from the
  // old function's assumption cache.
  for (BasicBlock *Block : Blocks) {
    for (Instruction &I : llvm::make_early_inc_range(*Block)) {
      if (auto *AI = dyn_cast<AssumeInst>(&I)) {
        if (AC)
          AC->unregisterAssumption(AI);
        AI->eraseFromParent();
      }
    }
  }

  // If we have any return instructions in the region, split those blocks so
  // that the return is not in the region.
  splitReturnBlocks();

  // Calculate the exit blocks for the extracted region and the total exit
  // weights for each of those blocks.
  DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
  SmallPtrSet<BasicBlock *, 1> ExitBlocks;
  for (BasicBlock *Block : Blocks) {
    for (BasicBlock *Succ : successors(Block)) {
      if (!Blocks.count(Succ)) {
        // Update the branch weight for this successor.
        if (BFI) {
          BlockFrequency &BF = ExitWeights[Succ];
          BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
        }
        ExitBlocks.insert(Succ);
      }
    }
  }
  NumExitBlocks = ExitBlocks.size();

  for (BasicBlock *Block : Blocks) {
    for (BasicBlock *OldTarget : successors(Block))
      if (!Blocks.contains(OldTarget))
        OldTargets.push_back(OldTarget);
  }

  // If we have to split PHI nodes of the entry or exit blocks, do so now.
  severSplitPHINodesOfEntry(header);
  severSplitPHINodesOfExits(ExitBlocks);

  // This takes place of the original loop
  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
                                                "codeRepl", oldFunction,
                                                header);
  codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;

  // The new function needs a root node because other nodes can branch to the
  // head of the region, but the entry node of a function cannot have preds.
  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
                                               "newFuncRoot");
  newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;

  auto *BranchI = BranchInst::Create(header);
  // If the original function has debug info, we have to add a debug location
  // to the new branch instruction from the artificial entry block.
  // We use the debug location of the first instruction in the extracted
  // blocks, as there is no other equivalent line in the source code.
  if (oldFunction->getSubprogram()) {
    any_of(Blocks, [&BranchI](const BasicBlock *BB) {
      return any_of(*BB, [&BranchI](const Instruction &I) {
        if (!I.getDebugLoc())
          return false;
        // Don't use source locations attached to debug-intrinsics: they could
        // be from completely unrelated scopes.
        if (isa<DbgInfoIntrinsic>(I))
          return false;
        BranchI->setDebugLoc(I.getDebugLoc());
        return true;
      });
    });
  }
  BranchI->insertInto(newFuncRoot, newFuncRoot->end());

  ValueSet SinkingCands, HoistingCands;
  BasicBlock *CommonExit = nullptr;
  findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
  assert(HoistingCands.empty() || CommonExit);

  // Find inputs to, outputs from the code region.
  findInputsOutputs(inputs, outputs, SinkingCands);

  // Now sink all instructions which only have non-phi uses inside the region.
  // Group the allocas at the start of the block, so that any bitcast uses of
  // the allocas are well-defined.
  AllocaInst *FirstSunkAlloca = nullptr;
  for (auto *II : SinkingCands) {
    if (auto *AI = dyn_cast<AllocaInst>(II)) {
      AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
      if (!FirstSunkAlloca)
        FirstSunkAlloca = AI;
    }
  }
  assert((SinkingCands.empty() || FirstSunkAlloca) &&
         "Did not expect a sink candidate without any allocas");
  for (auto *II : SinkingCands) {
    if (!isa<AllocaInst>(II)) {
      cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
    }
  }

  if (!HoistingCands.empty()) {
    auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
    Instruction *TI = HoistToBlock->getTerminator();
    for (auto *II : HoistingCands)
      cast<Instruction>(II)->moveBefore(TI);
  }

  // Collect objects which are inputs to the extraction region and also
  // referenced by lifetime start markers within it. The effects of these
  // markers must be replicated in the calling function to prevent the stack
  // coloring pass from merging slots which store input objects.
  ValueSet LifetimesStart;
  eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);

  // Construct new function based on inputs/outputs & add allocas for all defs.
  Function *newFunction =
      constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
                        oldFunction, oldFunction->getParent());

  // Update the entry count of the function.
  if (BFI) {
    auto Count = BFI->getProfileCountFromFreq(EntryFreq);
    if (Count)
      newFunction->setEntryCount(
          ProfileCount(*Count, Function::PCT_Real)); // FIXME
    BFI->setBlockFreq(codeReplacer, EntryFreq);
  }

  CallInst *TheCall =
      emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);

  moveCodeToFunction(newFunction);

  // Replicate the effects of any lifetime start/end markers which referenced
  // input objects in the extraction region by placing markers around the call.
  insertLifetimeMarkersSurroundingCall(
      oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);

  // Propagate personality info to the new function if there is one.
  if (oldFunction->hasPersonalityFn())
    newFunction->setPersonalityFn(oldFunction->getPersonalityFn());

  // Update the branch weights for the exit block.
  if (BFI && NumExitBlocks > 1)
    calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);

  // Loop over all of the PHI nodes in the header and exit blocks, and change
  // any references to the old incoming edge to be the new incoming edge.
  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      if (!Blocks.count(PN->getIncomingBlock(i)))
        PN->setIncomingBlock(i, newFuncRoot);
  }

  for (BasicBlock *ExitBB : ExitBlocks)
    for (PHINode &PN : ExitBB->phis()) {
      Value *IncomingCodeReplacerVal = nullptr;
      for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
        // Ignore incoming values from outside of the extracted region.
        if (!Blocks.count(PN.getIncomingBlock(i)))
          continue;

        // Ensure that there is only one incoming value from codeReplacer.
        if (!IncomingCodeReplacerVal) {
          PN.setIncomingBlock(i, codeReplacer);
          IncomingCodeReplacerVal = PN.getIncomingValue(i);
        } else
          assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
                 "PHI has two incompatbile incoming values from codeRepl");
      }
    }

  fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);

  // Mark the new function `noreturn` if applicable. Terminators which resume
  // exception propagation are treated as returning instructions. This is to
  // avoid inserting traps after calls to outlined functions which unwind.
  bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
    const Instruction *Term = BB.getTerminator();
    return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
  });
  if (doesNotReturn)
    newFunction->setDoesNotReturn();

  LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
    newFunction->dump();
    report_fatal_error("verification of newFunction failed!");
  });
  LLVM_DEBUG(if (verifyFunction(*oldFunction))
             report_fatal_error("verification of oldFunction failed!"));
  LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
                 report_fatal_error("Stale Asumption cache for old Function!"));
  return newFunction;
}

bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
                                          const Function &NewFunc,
                                          AssumptionCache *AC) {
  for (auto AssumeVH : AC->assumptions()) {
    auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
    if (!I)
      continue;

    // There shouldn't be any llvm.assume intrinsics in the new function.
    if (I->getFunction() != &OldFunc)
      return true;

    // There shouldn't be any stale affected values in the assumption cache
    // that were previously in the old function, but that have now been moved
    // to the new function.
    for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
      auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
      if (!AffectedCI)
        continue;
      if (AffectedCI->getFunction() != &OldFunc)
        return true;
      auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
      if (AssumedInst->getFunction() != &OldFunc)
        return true;
    }
  }
  return false;
}

void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
  ExcludeArgsFromAggregate.insert(Arg);
}