summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/Utils/LoopRotationUtils.cpp
blob: 8c6af7afa875c9e27d5518950efb6aabddf105af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
//===----------------- LoopRotationUtils.cpp -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides utilities to convert a loop into a loop with bottom test.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/LoopRotationUtils.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;

#define DEBUG_TYPE "loop-rotate"

STATISTIC(NumNotRotatedDueToHeaderSize,
          "Number of loops not rotated due to the header size");
STATISTIC(NumInstrsHoisted,
          "Number of instructions hoisted into loop preheader");
STATISTIC(NumInstrsDuplicated,
          "Number of instructions cloned into loop preheader");
STATISTIC(NumRotated, "Number of loops rotated");

static cl::opt<bool>
    MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
                cl::desc("Allow loop rotation multiple times in order to reach "
                         "a better latch exit"));

// Probability that a rotated loop has zero trip count / is never entered.
static constexpr uint32_t ZeroTripCountWeights[] = {1, 127};

namespace {
/// A simple loop rotation transformation.
class LoopRotate {
  const unsigned MaxHeaderSize;
  LoopInfo *LI;
  const TargetTransformInfo *TTI;
  AssumptionCache *AC;
  DominatorTree *DT;
  ScalarEvolution *SE;
  MemorySSAUpdater *MSSAU;
  const SimplifyQuery &SQ;
  bool RotationOnly;
  bool IsUtilMode;
  bool PrepareForLTO;

public:
  LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
             const TargetTransformInfo *TTI, AssumptionCache *AC,
             DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
             const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode,
             bool PrepareForLTO)
      : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
        MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
        IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {}
  bool processLoop(Loop *L);

private:
  bool rotateLoop(Loop *L, bool SimplifiedLatch);
  bool simplifyLoopLatch(Loop *L);
};
} // end anonymous namespace

/// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
/// previously exist in the map, and the value was inserted.
static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
  bool Inserted = VM.insert({K, V}).second;
  assert(Inserted);
  (void)Inserted;
}
/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
/// old header into the preheader.  If there were uses of the values produced by
/// these instruction that were outside of the loop, we have to insert PHI nodes
/// to merge the two values.  Do this now.
static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
                                            BasicBlock *OrigPreheader,
                                            ValueToValueMapTy &ValueMap,
                                            ScalarEvolution *SE,
                                SmallVectorImpl<PHINode*> *InsertedPHIs) {
  // Remove PHI node entries that are no longer live.
  BasicBlock::iterator I, E = OrigHeader->end();
  for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
    PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));

  // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
  // as necessary.
  SSAUpdater SSA(InsertedPHIs);
  for (I = OrigHeader->begin(); I != E; ++I) {
    Value *OrigHeaderVal = &*I;

    // If there are no uses of the value (e.g. because it returns void), there
    // is nothing to rewrite.
    if (OrigHeaderVal->use_empty())
      continue;

    Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);

    // The value now exits in two versions: the initial value in the preheader
    // and the loop "next" value in the original header.
    SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
    // Force re-computation of OrigHeaderVal, as some users now need to use the
    // new PHI node.
    if (SE)
      SE->forgetValue(OrigHeaderVal);
    SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
    SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);

    // Visit each use of the OrigHeader instruction.
    for (Use &U : llvm::make_early_inc_range(OrigHeaderVal->uses())) {
      // SSAUpdater can't handle a non-PHI use in the same block as an
      // earlier def. We can easily handle those cases manually.
      Instruction *UserInst = cast<Instruction>(U.getUser());
      if (!isa<PHINode>(UserInst)) {
        BasicBlock *UserBB = UserInst->getParent();

        // The original users in the OrigHeader are already using the
        // original definitions.
        if (UserBB == OrigHeader)
          continue;

        // Users in the OrigPreHeader need to use the value to which the
        // original definitions are mapped.
        if (UserBB == OrigPreheader) {
          U = OrigPreHeaderVal;
          continue;
        }
      }

      // Anything else can be handled by SSAUpdater.
      SSA.RewriteUse(U);
    }

    // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
    // intrinsics.
    SmallVector<DbgValueInst *, 1> DbgValues;
    SmallVector<DPValue *, 1> DPValues;
    llvm::findDbgValues(DbgValues, OrigHeaderVal, &DPValues);
    for (auto &DbgValue : DbgValues) {
      // The original users in the OrigHeader are already using the original
      // definitions.
      BasicBlock *UserBB = DbgValue->getParent();
      if (UserBB == OrigHeader)
        continue;

      // Users in the OrigPreHeader need to use the value to which the
      // original definitions are mapped and anything else can be handled by
      // the SSAUpdater. To avoid adding PHINodes, check if the value is
      // available in UserBB, if not substitute undef.
      Value *NewVal;
      if (UserBB == OrigPreheader)
        NewVal = OrigPreHeaderVal;
      else if (SSA.HasValueForBlock(UserBB))
        NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
      else
        NewVal = UndefValue::get(OrigHeaderVal->getType());
      DbgValue->replaceVariableLocationOp(OrigHeaderVal, NewVal);
    }

    // RemoveDIs: duplicate implementation for non-instruction debug-info
    // storage in DPValues.
    for (DPValue *DPV : DPValues) {
      // The original users in the OrigHeader are already using the original
      // definitions.
      BasicBlock *UserBB = DPV->getMarker()->getParent();
      if (UserBB == OrigHeader)
        continue;

      // Users in the OrigPreHeader need to use the value to which the
      // original definitions are mapped and anything else can be handled by
      // the SSAUpdater. To avoid adding PHINodes, check if the value is
      // available in UserBB, if not substitute undef.
      Value *NewVal;
      if (UserBB == OrigPreheader)
        NewVal = OrigPreHeaderVal;
      else if (SSA.HasValueForBlock(UserBB))
        NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
      else
        NewVal = UndefValue::get(OrigHeaderVal->getType());
      DPV->replaceVariableLocationOp(OrigHeaderVal, NewVal);
    }
  }
}

// Assuming both header and latch are exiting, look for a phi which is only
// used outside the loop (via a LCSSA phi) in the exit from the header.
// This means that rotating the loop can remove the phi.
static bool profitableToRotateLoopExitingLatch(Loop *L) {
  BasicBlock *Header = L->getHeader();
  BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
  assert(BI && BI->isConditional() && "need header with conditional exit");
  BasicBlock *HeaderExit = BI->getSuccessor(0);
  if (L->contains(HeaderExit))
    HeaderExit = BI->getSuccessor(1);

  for (auto &Phi : Header->phis()) {
    // Look for uses of this phi in the loop/via exits other than the header.
    if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
          return cast<Instruction>(U)->getParent() != HeaderExit;
        }))
      continue;
    return true;
  }
  return false;
}

// Check that latch exit is deoptimizing (which means - very unlikely to happen)
// and there is another exit from the loop which is non-deoptimizing.
// If we rotate latch to that exit our loop has a better chance of being fully
// canonical.
//
// It can give false positives in some rare cases.
static bool canRotateDeoptimizingLatchExit(Loop *L) {
  BasicBlock *Latch = L->getLoopLatch();
  assert(Latch && "need latch");
  BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
  // Need normal exiting latch.
  if (!BI || !BI->isConditional())
    return false;

  BasicBlock *Exit = BI->getSuccessor(1);
  if (L->contains(Exit))
    Exit = BI->getSuccessor(0);

  // Latch exit is non-deoptimizing, no need to rotate.
  if (!Exit->getPostdominatingDeoptimizeCall())
    return false;

  SmallVector<BasicBlock *, 4> Exits;
  L->getUniqueExitBlocks(Exits);
  if (!Exits.empty()) {
    // There is at least one non-deoptimizing exit.
    //
    // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
    // as it can conservatively return false for deoptimizing exits with
    // complex enough control flow down to deoptimize call.
    //
    // That means here we can report success for a case where
    // all exits are deoptimizing but one of them has complex enough
    // control flow (e.g. with loops).
    //
    // That should be a very rare case and false positives for this function
    // have compile-time effect only.
    return any_of(Exits, [](const BasicBlock *BB) {
      return !BB->getPostdominatingDeoptimizeCall();
    });
  }
  return false;
}

static void updateBranchWeights(BranchInst &PreHeaderBI, BranchInst &LoopBI,
                                bool HasConditionalPreHeader,
                                bool SuccsSwapped) {
  MDNode *WeightMD = getBranchWeightMDNode(PreHeaderBI);
  if (WeightMD == nullptr)
    return;

  // LoopBI should currently be a clone of PreHeaderBI with the same
  // metadata. But we double check to make sure we don't have a degenerate case
  // where instsimplify changed the instructions.
  if (WeightMD != getBranchWeightMDNode(LoopBI))
    return;

  SmallVector<uint32_t, 2> Weights;
  extractFromBranchWeightMD(WeightMD, Weights);
  if (Weights.size() != 2)
    return;
  uint32_t OrigLoopExitWeight = Weights[0];
  uint32_t OrigLoopBackedgeWeight = Weights[1];

  if (SuccsSwapped)
    std::swap(OrigLoopExitWeight, OrigLoopBackedgeWeight);

  // Update branch weights. Consider the following edge-counts:
  //
  //    |  |--------             |
  //    V  V       |             V
  //   Br i1 ...   |            Br i1 ...
  //   |       |   |            |     |
  //  x|      y|   |  becomes:  |   y0|  |-----
  //   V       V   |            |     V  V    |
  // Exit    Loop  |            |    Loop     |
  //           |   |            |   Br i1 ... |
  //           -----            |   |      |  |
  //                          x0| x1|   y1 |  |
  //                            V   V      ----
  //                            Exit
  //
  // The following must hold:
  //  -  x == x0 + x1        # counts to "exit" must stay the same.
  //  - y0 == x - x0 == x1   # how often loop was entered at all.
  //  - y1 == y - y0         # How often loop was repeated (after first iter.).
  //
  // We cannot generally deduce how often we had a zero-trip count loop so we
  // have to make a guess for how to distribute x among the new x0 and x1.

  uint32_t ExitWeight0;    // aka x0
  uint32_t ExitWeight1;    // aka x1
  uint32_t EnterWeight;    // aka y0
  uint32_t LoopBackWeight; // aka y1
  if (OrigLoopExitWeight > 0 && OrigLoopBackedgeWeight > 0) {
    ExitWeight0 = 0;
    if (HasConditionalPreHeader) {
      // Here we cannot know how many 0-trip count loops we have, so we guess:
      if (OrigLoopBackedgeWeight >= OrigLoopExitWeight) {
        // If the loop count is bigger than the exit count then we set
        // probabilities as if 0-trip count nearly never happens.
        ExitWeight0 = ZeroTripCountWeights[0];
        // Scale up counts if necessary so we can match `ZeroTripCountWeights`
        // for the `ExitWeight0`:`ExitWeight1` (aka `x0`:`x1` ratio`) ratio.
        while (OrigLoopExitWeight < ZeroTripCountWeights[1] + ExitWeight0) {
          // ... but don't overflow.
          uint32_t const HighBit = uint32_t{1} << (sizeof(uint32_t) * 8 - 1);
          if ((OrigLoopBackedgeWeight & HighBit) != 0 ||
              (OrigLoopExitWeight & HighBit) != 0)
            break;
          OrigLoopBackedgeWeight <<= 1;
          OrigLoopExitWeight <<= 1;
        }
      } else {
        // If there's a higher exit-count than backedge-count then we set
        // probabilities as if there are only 0-trip and 1-trip cases.
        ExitWeight0 = OrigLoopExitWeight - OrigLoopBackedgeWeight;
      }
    }
    ExitWeight1 = OrigLoopExitWeight - ExitWeight0;
    EnterWeight = ExitWeight1;
    LoopBackWeight = OrigLoopBackedgeWeight - EnterWeight;
  } else if (OrigLoopExitWeight == 0) {
    if (OrigLoopBackedgeWeight == 0) {
      // degenerate case... keep everything zero...
      ExitWeight0 = 0;
      ExitWeight1 = 0;
      EnterWeight = 0;
      LoopBackWeight = 0;
    } else {
      // Special case "LoopExitWeight == 0" weights which behaves like an
      // endless where we don't want loop-enttry (y0) to be the same as
      // loop-exit (x1).
      ExitWeight0 = 0;
      ExitWeight1 = 0;
      EnterWeight = 1;
      LoopBackWeight = OrigLoopBackedgeWeight;
    }
  } else {
    // loop is never entered.
    assert(OrigLoopBackedgeWeight == 0 && "remaining case is backedge zero");
    ExitWeight0 = 1;
    ExitWeight1 = 1;
    EnterWeight = 0;
    LoopBackWeight = 0;
  }

  const uint32_t LoopBIWeights[] = {
      SuccsSwapped ? LoopBackWeight : ExitWeight1,
      SuccsSwapped ? ExitWeight1 : LoopBackWeight,
  };
  setBranchWeights(LoopBI, LoopBIWeights);
  if (HasConditionalPreHeader) {
    const uint32_t PreHeaderBIWeights[] = {
        SuccsSwapped ? EnterWeight : ExitWeight0,
        SuccsSwapped ? ExitWeight0 : EnterWeight,
    };
    setBranchWeights(PreHeaderBI, PreHeaderBIWeights);
  }
}

/// Rotate loop LP. Return true if the loop is rotated.
///
/// \param SimplifiedLatch is true if the latch was just folded into the final
/// loop exit. In this case we may want to rotate even though the new latch is
/// now an exiting branch. This rotation would have happened had the latch not
/// been simplified. However, if SimplifiedLatch is false, then we avoid
/// rotating loops in which the latch exits to avoid excessive or endless
/// rotation. LoopRotate should be repeatable and converge to a canonical
/// form. This property is satisfied because simplifying the loop latch can only
/// happen once across multiple invocations of the LoopRotate pass.
///
/// If -loop-rotate-multi is enabled we can do multiple rotations in one go
/// so to reach a suitable (non-deoptimizing) exit.
bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
  // If the loop has only one block then there is not much to rotate.
  if (L->getBlocks().size() == 1)
    return false;

  bool Rotated = false;
  do {
    BasicBlock *OrigHeader = L->getHeader();
    BasicBlock *OrigLatch = L->getLoopLatch();

    BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
    if (!BI || BI->isUnconditional())
      return Rotated;

    // If the loop header is not one of the loop exiting blocks then
    // either this loop is already rotated or it is not
    // suitable for loop rotation transformations.
    if (!L->isLoopExiting(OrigHeader))
      return Rotated;

    // If the loop latch already contains a branch that leaves the loop then the
    // loop is already rotated.
    if (!OrigLatch)
      return Rotated;

    // Rotate if either the loop latch does *not* exit the loop, or if the loop
    // latch was just simplified. Or if we think it will be profitable.
    if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
        !profitableToRotateLoopExitingLatch(L) &&
        !canRotateDeoptimizingLatchExit(L))
      return Rotated;

    // Check size of original header and reject loop if it is very big or we can't
    // duplicate blocks inside it.
    {
      SmallPtrSet<const Value *, 32> EphValues;
      CodeMetrics::collectEphemeralValues(L, AC, EphValues);

      CodeMetrics Metrics;
      Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues, PrepareForLTO);
      if (Metrics.notDuplicatable) {
        LLVM_DEBUG(
                   dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
                   << " instructions: ";
                   L->dump());
        return Rotated;
      }
      if (Metrics.convergent) {
        LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
                   "instructions: ";
                   L->dump());
        return Rotated;
      }
      if (!Metrics.NumInsts.isValid()) {
        LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains instructions"
                   " with invalid cost: ";
                   L->dump());
        return Rotated;
      }
      if (Metrics.NumInsts > MaxHeaderSize) {
        LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains "
                          << Metrics.NumInsts
                          << " instructions, which is more than the threshold ("
                          << MaxHeaderSize << " instructions): ";
                   L->dump());
        ++NumNotRotatedDueToHeaderSize;
        return Rotated;
      }

      // When preparing for LTO, avoid rotating loops with calls that could be
      // inlined during the LTO stage.
      if (PrepareForLTO && Metrics.NumInlineCandidates > 0)
        return Rotated;
    }

    // Now, this loop is suitable for rotation.
    BasicBlock *OrigPreheader = L->getLoopPreheader();

    // If the loop could not be converted to canonical form, it must have an
    // indirectbr in it, just give up.
    if (!OrigPreheader || !L->hasDedicatedExits())
      return Rotated;

    // Anything ScalarEvolution may know about this loop or the PHI nodes
    // in its header will soon be invalidated. We should also invalidate
    // all outer loops because insertion and deletion of blocks that happens
    // during the rotation may violate invariants related to backedge taken
    // infos in them.
    if (SE) {
      SE->forgetTopmostLoop(L);
      // We may hoist some instructions out of loop. In case if they were cached
      // as "loop variant" or "loop computable", these caches must be dropped.
      // We also may fold basic blocks, so cached block dispositions also need
      // to be dropped.
      SE->forgetBlockAndLoopDispositions();
    }

    LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
    if (MSSAU && VerifyMemorySSA)
      MSSAU->getMemorySSA()->verifyMemorySSA();

    // Find new Loop header. NewHeader is a Header's one and only successor
    // that is inside loop.  Header's other successor is outside the
    // loop.  Otherwise loop is not suitable for rotation.
    BasicBlock *Exit = BI->getSuccessor(0);
    BasicBlock *NewHeader = BI->getSuccessor(1);
    bool BISuccsSwapped = L->contains(Exit);
    if (BISuccsSwapped)
      std::swap(Exit, NewHeader);
    assert(NewHeader && "Unable to determine new loop header");
    assert(L->contains(NewHeader) && !L->contains(Exit) &&
           "Unable to determine loop header and exit blocks");

    // This code assumes that the new header has exactly one predecessor.
    // Remove any single-entry PHI nodes in it.
    assert(NewHeader->getSinglePredecessor() &&
           "New header doesn't have one pred!");
    FoldSingleEntryPHINodes(NewHeader);

    // Begin by walking OrigHeader and populating ValueMap with an entry for
    // each Instruction.
    BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
    ValueToValueMapTy ValueMap, ValueMapMSSA;

    // For PHI nodes, the value available in OldPreHeader is just the
    // incoming value from OldPreHeader.
    for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
      InsertNewValueIntoMap(ValueMap, PN,
                            PN->getIncomingValueForBlock(OrigPreheader));

    // For the rest of the instructions, either hoist to the OrigPreheader if
    // possible or create a clone in the OldPreHeader if not.
    Instruction *LoopEntryBranch = OrigPreheader->getTerminator();

    // Record all debug intrinsics preceding LoopEntryBranch to avoid
    // duplication.
    using DbgIntrinsicHash =
        std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>;
    auto makeHash = [](auto *D) -> DbgIntrinsicHash {
      auto VarLocOps = D->location_ops();
      return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()),
               D->getVariable()},
              D->getExpression()};
    };

    SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
    for (Instruction &I : llvm::drop_begin(llvm::reverse(*OrigPreheader))) {
      if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
        DbgIntrinsics.insert(makeHash(DII));
        // Until RemoveDIs supports dbg.declares in DPValue format, we'll need
        // to collect DPValues attached to any other debug intrinsics.
        for (const DPValue &DPV : DPValue::filter(DII->getDbgRecordRange()))
          DbgIntrinsics.insert(makeHash(&DPV));
      } else {
        break;
      }
    }

    // Build DPValue hashes for DPValues attached to the terminator, which isn't
    // considered in the loop above.
    for (const DPValue &DPV :
         DPValue::filter(OrigPreheader->getTerminator()->getDbgRecordRange()))
      DbgIntrinsics.insert(makeHash(&DPV));

    // Remember the local noalias scope declarations in the header. After the
    // rotation, they must be duplicated and the scope must be cloned. This
    // avoids unwanted interaction across iterations.
    SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions;
    for (Instruction &I : *OrigHeader)
      if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
        NoAliasDeclInstructions.push_back(Decl);

    Module *M = OrigHeader->getModule();

    // Track the next DPValue to clone. If we have a sequence where an
    // instruction is hoisted instead of being cloned:
    //    DPValue blah
    //    %foo = add i32 0, 0
    //    DPValue xyzzy
    //    %bar = call i32 @foobar()
    // where %foo is hoisted, then the DPValue "blah" will be seen twice, once
    // attached to %foo, then when %foo his hoisted it will "fall down" onto the
    // function call:
    //    DPValue blah
    //    DPValue xyzzy
    //    %bar = call i32 @foobar()
    // causing it to appear attached to the call too.
    //
    // To avoid this, cloneDebugInfoFrom takes an optional "start cloning from
    // here" position to account for this behaviour. We point it at any DPValues
    // on the next instruction, here labelled xyzzy, before we hoist %foo.
    // Later, we only only clone DPValues from that position (xyzzy) onwards,
    // which avoids cloning DPValue "blah" multiple times.
    // (Stored as a range because it gives us a natural way of testing whether
    //  there were DPValues on the next instruction before we hoisted things).
    iterator_range<DPValue::self_iterator> NextDbgInsts =
        (I != E) ? I->getDbgRecordRange() : DPMarker::getEmptyDbgRecordRange();

    while (I != E) {
      Instruction *Inst = &*I++;

      // If the instruction's operands are invariant and it doesn't read or write
      // memory, then it is safe to hoist.  Doing this doesn't change the order of
      // execution in the preheader, but does prevent the instruction from
      // executing in each iteration of the loop.  This means it is safe to hoist
      // something that might trap, but isn't safe to hoist something that reads
      // memory (without proving that the loop doesn't write).
      if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
          !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
          !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst) &&
          // It is not safe to hoist the value of these instructions in
          // coroutines, as the addresses of otherwise eligible variables (e.g.
          // thread-local variables and errno) may change if the coroutine is
          // resumed in a different thread.Therefore, we disable this
          // optimization for correctness. However, this may block other correct
          // optimizations.
          // FIXME: This should be reverted once we have a better model for
          // memory access in coroutines.
          !Inst->getFunction()->isPresplitCoroutine()) {

        if (LoopEntryBranch->getParent()->IsNewDbgInfoFormat &&
            !NextDbgInsts.empty()) {
          auto DbgValueRange =
              LoopEntryBranch->cloneDebugInfoFrom(Inst, NextDbgInsts.begin());
          RemapDPValueRange(M, DbgValueRange, ValueMap,
                            RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
          // Erase anything we've seen before.
          for (DPValue &DPV :
               make_early_inc_range(DPValue::filter(DbgValueRange)))
            if (DbgIntrinsics.count(makeHash(&DPV)))
              DPV.eraseFromParent();
        }

        NextDbgInsts = I->getDbgRecordRange();

        Inst->moveBefore(LoopEntryBranch);

        ++NumInstrsHoisted;
        continue;
      }

      // Otherwise, create a duplicate of the instruction.
      Instruction *C = Inst->clone();
      C->insertBefore(LoopEntryBranch);

      ++NumInstrsDuplicated;

      if (LoopEntryBranch->getParent()->IsNewDbgInfoFormat &&
          !NextDbgInsts.empty()) {
        auto Range = C->cloneDebugInfoFrom(Inst, NextDbgInsts.begin());
        RemapDPValueRange(M, Range, ValueMap,
                          RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
        NextDbgInsts = DPMarker::getEmptyDbgRecordRange();
        // Erase anything we've seen before.
        for (DPValue &DPV : make_early_inc_range(DPValue::filter(Range)))
          if (DbgIntrinsics.count(makeHash(&DPV)))
            DPV.eraseFromParent();
      }

      // Eagerly remap the operands of the instruction.
      RemapInstruction(C, ValueMap,
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);

      // Avoid inserting the same intrinsic twice.
      if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
        if (DbgIntrinsics.count(makeHash(DII))) {
          C->eraseFromParent();
          continue;
        }

      // With the operands remapped, see if the instruction constant folds or is
      // otherwise simplifyable.  This commonly occurs because the entry from PHI
      // nodes allows icmps and other instructions to fold.
      Value *V = simplifyInstruction(C, SQ);
      if (V && LI->replacementPreservesLCSSAForm(C, V)) {
        // If so, then delete the temporary instruction and stick the folded value
        // in the map.
        InsertNewValueIntoMap(ValueMap, Inst, V);
        if (!C->mayHaveSideEffects()) {
          C->eraseFromParent();
          C = nullptr;
        }
      } else {
        InsertNewValueIntoMap(ValueMap, Inst, C);
      }
      if (C) {
        // Otherwise, stick the new instruction into the new block!
        C->setName(Inst->getName());

        if (auto *II = dyn_cast<AssumeInst>(C))
          AC->registerAssumption(II);
        // MemorySSA cares whether the cloned instruction was inserted or not, and
        // not whether it can be remapped to a simplified value.
        if (MSSAU)
          InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
      }
    }

    if (!NoAliasDeclInstructions.empty()) {
      // There are noalias scope declarations:
      // (general):
      // Original:    OrigPre              { OrigHeader NewHeader ... Latch }
      // after:      (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader }
      //
      // with D: llvm.experimental.noalias.scope.decl,
      //      U: !noalias or !alias.scope depending on D
      //       ... { D U1 U2 }   can transform into:
      // (0) : ... { D U1 U2 }        // no relevant rotation for this part
      // (1) : ... D' { U1 U2 D }     // D is part of OrigHeader
      // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader
      //
      // We now want to transform:
      // (1) -> : ... D' { D U1 U2 D'' }
      // (2) -> : ... D' U1' { D U2 D'' U1'' }
      // D: original llvm.experimental.noalias.scope.decl
      // D', U1': duplicate with replaced scopes
      // D'', U1'': different duplicate with replaced scopes
      // This ensures a safe fallback to 'may_alias' introduced by the rotate,
      // as U1'' and U1' scopes will not be compatible wrt to the local restrict

      // Clone the llvm.experimental.noalias.decl again for the NewHeader.
      BasicBlock::iterator NewHeaderInsertionPoint =
          NewHeader->getFirstNonPHIIt();
      for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) {
        LLVM_DEBUG(dbgs() << "  Cloning llvm.experimental.noalias.scope.decl:"
                          << *NAD << "\n");
        Instruction *NewNAD = NAD->clone();
        NewNAD->insertBefore(*NewHeader, NewHeaderInsertionPoint);
      }

      // Scopes must now be duplicated, once for OrigHeader and once for
      // OrigPreHeader'.
      {
        auto &Context = NewHeader->getContext();

        SmallVector<MDNode *, 8> NoAliasDeclScopes;
        for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions)
          NoAliasDeclScopes.push_back(NAD->getScopeList());

        LLVM_DEBUG(dbgs() << "  Updating OrigHeader scopes\n");
        cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, {OrigHeader}, Context,
                                   "h.rot");
        LLVM_DEBUG(OrigHeader->dump());

        // Keep the compile time impact low by only adapting the inserted block
        // of instructions in the OrigPreHeader. This might result in slightly
        // more aliasing between these instructions and those that were already
        // present, but it will be much faster when the original PreHeader is
        // large.
        LLVM_DEBUG(dbgs() << "  Updating part of OrigPreheader scopes\n");
        auto *FirstDecl =
            cast<Instruction>(ValueMap[*NoAliasDeclInstructions.begin()]);
        auto *LastInst = &OrigPreheader->back();
        cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, FirstDecl, LastInst,
                                   Context, "pre.rot");
        LLVM_DEBUG(OrigPreheader->dump());

        LLVM_DEBUG(dbgs() << "  Updated NewHeader:\n");
        LLVM_DEBUG(NewHeader->dump());
      }
    }

    // Along with all the other instructions, we just cloned OrigHeader's
    // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
    // successors by duplicating their incoming values for OrigHeader.
    for (BasicBlock *SuccBB : successors(OrigHeader))
      for (BasicBlock::iterator BI = SuccBB->begin();
           PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
        PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);

    // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
    // OrigPreHeader's old terminator (the original branch into the loop), and
    // remove the corresponding incoming values from the PHI nodes in OrigHeader.
    LoopEntryBranch->eraseFromParent();
    OrigPreheader->flushTerminatorDbgValues();

    // Update MemorySSA before the rewrite call below changes the 1:1
    // instruction:cloned_instruction_or_value mapping.
    if (MSSAU) {
      InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
      MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
                                          ValueMapMSSA);
    }

    SmallVector<PHINode*, 2> InsertedPHIs;
    // If there were any uses of instructions in the duplicated block outside the
    // loop, update them, inserting PHI nodes as required
    RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE,
                                    &InsertedPHIs);

    // Attach dbg.value intrinsics to the new phis if that phi uses a value that
    // previously had debug metadata attached. This keeps the debug info
    // up-to-date in the loop body.
    if (!InsertedPHIs.empty())
      insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);

    // NewHeader is now the header of the loop.
    L->moveToHeader(NewHeader);
    assert(L->getHeader() == NewHeader && "Latch block is our new header");

    // Inform DT about changes to the CFG.
    if (DT) {
      // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
      // the DT about the removed edge to the OrigHeader (that got removed).
      SmallVector<DominatorTree::UpdateType, 3> Updates;
      Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
      Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
      Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});

      if (MSSAU) {
        MSSAU->applyUpdates(Updates, *DT, /*UpdateDT=*/true);
        if (VerifyMemorySSA)
          MSSAU->getMemorySSA()->verifyMemorySSA();
      } else {
        DT->applyUpdates(Updates);
      }
    }

    // At this point, we've finished our major CFG changes.  As part of cloning
    // the loop into the preheader we've simplified instructions and the
    // duplicated conditional branch may now be branching on a constant.  If it is
    // branching on a constant and if that constant means that we enter the loop,
    // then we fold away the cond branch to an uncond branch.  This simplifies the
    // loop in cases important for nested loops, and it also means we don't have
    // to split as many edges.
    BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
    assert(PHBI->isConditional() && "Should be clone of BI condbr!");
    const Value *Cond = PHBI->getCondition();
    const bool HasConditionalPreHeader =
        !isa<ConstantInt>(Cond) ||
        PHBI->getSuccessor(cast<ConstantInt>(Cond)->isZero()) != NewHeader;

    updateBranchWeights(*PHBI, *BI, HasConditionalPreHeader, BISuccsSwapped);

    if (HasConditionalPreHeader) {
      // The conditional branch can't be folded, handle the general case.
      // Split edges as necessary to preserve LoopSimplify form.

      // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
      // thus is not a preheader anymore.
      // Split the edge to form a real preheader.
      BasicBlock *NewPH = SplitCriticalEdge(
                                            OrigPreheader, NewHeader,
                                            CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
      NewPH->setName(NewHeader->getName() + ".lr.ph");

      // Preserve canonical loop form, which means that 'Exit' should have only
      // one predecessor. Note that Exit could be an exit block for multiple
      // nested loops, causing both of the edges to now be critical and need to
      // be split.
      SmallVector<BasicBlock *, 4> ExitPreds(predecessors(Exit));
      bool SplitLatchEdge = false;
      for (BasicBlock *ExitPred : ExitPreds) {
        // We only need to split loop exit edges.
        Loop *PredLoop = LI->getLoopFor(ExitPred);
        if (!PredLoop || PredLoop->contains(Exit) ||
            isa<IndirectBrInst>(ExitPred->getTerminator()))
          continue;
        SplitLatchEdge |= L->getLoopLatch() == ExitPred;
        BasicBlock *ExitSplit = SplitCriticalEdge(
                                                  ExitPred, Exit,
                                                  CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
        ExitSplit->moveBefore(Exit);
      }
      assert(SplitLatchEdge &&
             "Despite splitting all preds, failed to split latch exit?");
      (void)SplitLatchEdge;
    } else {
      // We can fold the conditional branch in the preheader, this makes things
      // simpler. The first step is to remove the extra edge to the Exit block.
      Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
      BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI->getIterator());
      NewBI->setDebugLoc(PHBI->getDebugLoc());
      PHBI->eraseFromParent();

      // With our CFG finalized, update DomTree if it is available.
      if (DT) DT->deleteEdge(OrigPreheader, Exit);

      // Update MSSA too, if available.
      if (MSSAU)
        MSSAU->removeEdge(OrigPreheader, Exit);
    }

    assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
    assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");

    if (MSSAU && VerifyMemorySSA)
      MSSAU->getMemorySSA()->verifyMemorySSA();

    // Now that the CFG and DomTree are in a consistent state again, try to merge
    // the OrigHeader block into OrigLatch.  This will succeed if they are
    // connected by an unconditional branch.  This is just a cleanup so the
    // emitted code isn't too gross in this common case.
    DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
    BasicBlock *PredBB = OrigHeader->getUniquePredecessor();
    bool DidMerge = MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
    if (DidMerge)
      RemoveRedundantDbgInstrs(PredBB);

    if (MSSAU && VerifyMemorySSA)
      MSSAU->getMemorySSA()->verifyMemorySSA();

    LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());

    ++NumRotated;

    Rotated = true;
    SimplifiedLatch = false;

    // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
    // Deoptimizing latch exit is not a generally typical case, so we just loop over.
    // TODO: if it becomes a performance bottleneck extend rotation algorithm
    // to handle multiple rotations in one go.
  } while (MultiRotate && canRotateDeoptimizingLatchExit(L));


  return true;
}

/// Determine whether the instructions in this range may be safely and cheaply
/// speculated. This is not an important enough situation to develop complex
/// heuristics. We handle a single arithmetic instruction along with any type
/// conversions.
static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
                                  BasicBlock::iterator End, Loop *L) {
  bool seenIncrement = false;
  bool MultiExitLoop = false;

  if (!L->getExitingBlock())
    MultiExitLoop = true;

  for (BasicBlock::iterator I = Begin; I != End; ++I) {

    if (!isSafeToSpeculativelyExecute(&*I))
      return false;

    if (isa<DbgInfoIntrinsic>(I))
      continue;

    switch (I->getOpcode()) {
    default:
      return false;
    case Instruction::GetElementPtr:
      // GEPs are cheap if all indices are constant.
      if (!cast<GEPOperator>(I)->hasAllConstantIndices())
        return false;
      // fall-thru to increment case
      [[fallthrough]];
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr: {
      Value *IVOpnd =
          !isa<Constant>(I->getOperand(0))
              ? I->getOperand(0)
              : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
      if (!IVOpnd)
        return false;

      // If increment operand is used outside of the loop, this speculation
      // could cause extra live range interference.
      if (MultiExitLoop) {
        for (User *UseI : IVOpnd->users()) {
          auto *UserInst = cast<Instruction>(UseI);
          if (!L->contains(UserInst))
            return false;
        }
      }

      if (seenIncrement)
        return false;
      seenIncrement = true;
      break;
    }
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
      // ignore type conversions
      break;
    }
  }
  return true;
}

/// Fold the loop tail into the loop exit by speculating the loop tail
/// instructions. Typically, this is a single post-increment. In the case of a
/// simple 2-block loop, hoisting the increment can be much better than
/// duplicating the entire loop header. In the case of loops with early exits,
/// rotation will not work anyway, but simplifyLoopLatch will put the loop in
/// canonical form so downstream passes can handle it.
///
/// I don't believe this invalidates SCEV.
bool LoopRotate::simplifyLoopLatch(Loop *L) {
  BasicBlock *Latch = L->getLoopLatch();
  if (!Latch || Latch->hasAddressTaken())
    return false;

  BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
  if (!Jmp || !Jmp->isUnconditional())
    return false;

  BasicBlock *LastExit = Latch->getSinglePredecessor();
  if (!LastExit || !L->isLoopExiting(LastExit))
    return false;

  BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
  if (!BI)
    return false;

  if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
    return false;

  LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
                    << LastExit->getName() << "\n");

  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
  MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
                            /*PredecessorWithTwoSuccessors=*/true);

    if (SE) {
      // Merging blocks may remove blocks reference in the block disposition cache. Clear the cache.
      SE->forgetBlockAndLoopDispositions();
    }

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  return true;
}

/// Rotate \c L, and return true if any modification was made.
bool LoopRotate::processLoop(Loop *L) {
  // Save the loop metadata.
  MDNode *LoopMD = L->getLoopID();

  bool SimplifiedLatch = false;

  // Simplify the loop latch before attempting to rotate the header
  // upward. Rotation may not be needed if the loop tail can be folded into the
  // loop exit.
  if (!RotationOnly)
    SimplifiedLatch = simplifyLoopLatch(L);

  bool MadeChange = rotateLoop(L, SimplifiedLatch);
  assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
         "Loop latch should be exiting after loop-rotate.");

  // Restore the loop metadata.
  // NB! We presume LoopRotation DOESN'T ADD its own metadata.
  if ((MadeChange || SimplifiedLatch) && LoopMD)
    L->setLoopID(LoopMD);

  return MadeChange || SimplifiedLatch;
}


/// The utility to convert a loop into a loop with bottom test.
bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
                        AssumptionCache *AC, DominatorTree *DT,
                        ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
                        const SimplifyQuery &SQ, bool RotationOnly = true,
                        unsigned Threshold = unsigned(-1),
                        bool IsUtilMode = true, bool PrepareForLTO) {
  LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
                IsUtilMode, PrepareForLTO);
  return LR.processLoop(L);
}