summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/Utils/LoopUtils.cpp
blob: 7491a99b03f66ef084bd8371b8cc9bbdd26067ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PriorityWorklist.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstSimplifyFolder.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "loop-utils"

static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
static const char *LLVMLoopDisableLICM = "llvm.licm.disable";

bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
                                   MemorySSAUpdater *MSSAU,
                                   bool PreserveLCSSA) {
  bool Changed = false;

  // We re-use a vector for the in-loop predecesosrs.
  SmallVector<BasicBlock *, 4> InLoopPredecessors;

  auto RewriteExit = [&](BasicBlock *BB) {
    assert(InLoopPredecessors.empty() &&
           "Must start with an empty predecessors list!");
    auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });

    // See if there are any non-loop predecessors of this exit block and
    // keep track of the in-loop predecessors.
    bool IsDedicatedExit = true;
    for (auto *PredBB : predecessors(BB))
      if (L->contains(PredBB)) {
        if (isa<IndirectBrInst>(PredBB->getTerminator()))
          // We cannot rewrite exiting edges from an indirectbr.
          return false;

        InLoopPredecessors.push_back(PredBB);
      } else {
        IsDedicatedExit = false;
      }

    assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");

    // Nothing to do if this is already a dedicated exit.
    if (IsDedicatedExit)
      return false;

    auto *NewExitBB = SplitBlockPredecessors(
        BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);

    if (!NewExitBB)
      LLVM_DEBUG(
          dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
                 << *L << "\n");
    else
      LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
                        << NewExitBB->getName() << "\n");
    return true;
  };

  // Walk the exit blocks directly rather than building up a data structure for
  // them, but only visit each one once.
  SmallPtrSet<BasicBlock *, 4> Visited;
  for (auto *BB : L->blocks())
    for (auto *SuccBB : successors(BB)) {
      // We're looking for exit blocks so skip in-loop successors.
      if (L->contains(SuccBB))
        continue;

      // Visit each exit block exactly once.
      if (!Visited.insert(SuccBB).second)
        continue;

      Changed |= RewriteExit(SuccBB);
    }

  return Changed;
}

/// Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
  SmallVector<Instruction *, 8> UsedOutside;

  for (auto *Block : L->getBlocks())
    // FIXME: I believe that this could use copy_if if the Inst reference could
    // be adapted into a pointer.
    for (auto &Inst : *Block) {
      auto Users = Inst.users();
      if (any_of(Users, [&](User *U) {
            auto *Use = cast<Instruction>(U);
            return !L->contains(Use->getParent());
          }))
        UsedOutside.push_back(&Inst);
    }

  return UsedOutside;
}

void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
  // By definition, all loop passes need the LoopInfo analysis and the
  // Dominator tree it depends on. Because they all participate in the loop
  // pass manager, they must also preserve these.
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addPreserved<DominatorTreeWrapperPass>();
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addPreserved<LoopInfoWrapperPass>();

  // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
  // here because users shouldn't directly get them from this header.
  extern char &LoopSimplifyID;
  extern char &LCSSAID;
  AU.addRequiredID(LoopSimplifyID);
  AU.addPreservedID(LoopSimplifyID);
  AU.addRequiredID(LCSSAID);
  AU.addPreservedID(LCSSAID);
  // This is used in the LPPassManager to perform LCSSA verification on passes
  // which preserve lcssa form
  AU.addRequired<LCSSAVerificationPass>();
  AU.addPreserved<LCSSAVerificationPass>();

  // Loop passes are designed to run inside of a loop pass manager which means
  // that any function analyses they require must be required by the first loop
  // pass in the manager (so that it is computed before the loop pass manager
  // runs) and preserved by all loop pasess in the manager. To make this
  // reasonably robust, the set needed for most loop passes is maintained here.
  // If your loop pass requires an analysis not listed here, you will need to
  // carefully audit the loop pass manager nesting structure that results.
  AU.addRequired<AAResultsWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addPreserved<BasicAAWrapperPass>();
  AU.addPreserved<GlobalsAAWrapperPass>();
  AU.addPreserved<SCEVAAWrapperPass>();
  AU.addRequired<ScalarEvolutionWrapperPass>();
  AU.addPreserved<ScalarEvolutionWrapperPass>();
  // FIXME: When all loop passes preserve MemorySSA, it can be required and
  // preserved here instead of the individual handling in each pass.
}

/// Manually defined generic "LoopPass" dependency initialization. This is used
/// to initialize the exact set of passes from above in \c
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
/// with:
///
///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
///
/// As-if "LoopPass" were a pass.
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
  INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
  INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
}

/// Create MDNode for input string.
static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
  LLVMContext &Context = TheLoop->getHeader()->getContext();
  Metadata *MDs[] = {
      MDString::get(Context, Name),
      ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
  return MDNode::get(Context, MDs);
}

/// Set input string into loop metadata by keeping other values intact.
/// If the string is already in loop metadata update value if it is
/// different.
void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
                                   unsigned V) {
  SmallVector<Metadata *, 4> MDs(1);
  // If the loop already has metadata, retain it.
  MDNode *LoopID = TheLoop->getLoopID();
  if (LoopID) {
    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
      MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
      // If it is of form key = value, try to parse it.
      if (Node->getNumOperands() == 2) {
        MDString *S = dyn_cast<MDString>(Node->getOperand(0));
        if (S && S->getString().equals(StringMD)) {
          ConstantInt *IntMD =
              mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
          if (IntMD && IntMD->getSExtValue() == V)
            // It is already in place. Do nothing.
            return;
          // We need to update the value, so just skip it here and it will
          // be added after copying other existed nodes.
          continue;
        }
      }
      MDs.push_back(Node);
    }
  }
  // Add new metadata.
  MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
  // Replace current metadata node with new one.
  LLVMContext &Context = TheLoop->getHeader()->getContext();
  MDNode *NewLoopID = MDNode::get(Context, MDs);
  // Set operand 0 to refer to the loop id itself.
  NewLoopID->replaceOperandWith(0, NewLoopID);
  TheLoop->setLoopID(NewLoopID);
}

std::optional<ElementCount>
llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
  std::optional<int> Width =
      getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");

  if (Width) {
    std::optional<int> IsScalable = getOptionalIntLoopAttribute(
        TheLoop, "llvm.loop.vectorize.scalable.enable");
    return ElementCount::get(*Width, IsScalable.value_or(false));
  }

  return std::nullopt;
}

std::optional<MDNode *> llvm::makeFollowupLoopID(
    MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
    const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
  if (!OrigLoopID) {
    if (AlwaysNew)
      return nullptr;
    return std::nullopt;
  }

  assert(OrigLoopID->getOperand(0) == OrigLoopID);

  bool InheritAllAttrs = !InheritOptionsExceptPrefix;
  bool InheritSomeAttrs =
      InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
  SmallVector<Metadata *, 8> MDs;
  MDs.push_back(nullptr);

  bool Changed = false;
  if (InheritAllAttrs || InheritSomeAttrs) {
    for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
      MDNode *Op = cast<MDNode>(Existing.get());

      auto InheritThisAttribute = [InheritSomeAttrs,
                                   InheritOptionsExceptPrefix](MDNode *Op) {
        if (!InheritSomeAttrs)
          return false;

        // Skip malformatted attribute metadata nodes.
        if (Op->getNumOperands() == 0)
          return true;
        Metadata *NameMD = Op->getOperand(0).get();
        if (!isa<MDString>(NameMD))
          return true;
        StringRef AttrName = cast<MDString>(NameMD)->getString();

        // Do not inherit excluded attributes.
        return !AttrName.starts_with(InheritOptionsExceptPrefix);
      };

      if (InheritThisAttribute(Op))
        MDs.push_back(Op);
      else
        Changed = true;
    }
  } else {
    // Modified if we dropped at least one attribute.
    Changed = OrigLoopID->getNumOperands() > 1;
  }

  bool HasAnyFollowup = false;
  for (StringRef OptionName : FollowupOptions) {
    MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
    if (!FollowupNode)
      continue;

    HasAnyFollowup = true;
    for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
      MDs.push_back(Option.get());
      Changed = true;
    }
  }

  // Attributes of the followup loop not specified explicity, so signal to the
  // transformation pass to add suitable attributes.
  if (!AlwaysNew && !HasAnyFollowup)
    return std::nullopt;

  // If no attributes were added or remove, the previous loop Id can be reused.
  if (!AlwaysNew && !Changed)
    return OrigLoopID;

  // No attributes is equivalent to having no !llvm.loop metadata at all.
  if (MDs.size() == 1)
    return nullptr;

  // Build the new loop ID.
  MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
  FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
  return FollowupLoopID;
}

bool llvm::hasDisableAllTransformsHint(const Loop *L) {
  return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
}

bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
  return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
}

TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
    return TM_SuppressedByUser;

  std::optional<int> Count =
      getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
  if (Count)
    return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
    return TM_ForcedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
    return TM_ForcedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
    return TM_SuppressedByUser;

  std::optional<int> Count =
      getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
  if (Count)
    return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
    return TM_ForcedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
  std::optional<bool> Enable =
      getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");

  if (Enable == false)
    return TM_SuppressedByUser;

  std::optional<ElementCount> VectorizeWidth =
      getOptionalElementCountLoopAttribute(L);
  std::optional<int> InterleaveCount =
      getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");

  // 'Forcing' vector width and interleave count to one effectively disables
  // this tranformation.
  if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
      InterleaveCount == 1)
    return TM_SuppressedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
    return TM_Disable;

  if (Enable == true)
    return TM_ForcedByUser;

  if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
    return TM_Disable;

  if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
    return TM_Enable;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
    return TM_ForcedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
    return TM_SuppressedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

/// Does a BFS from a given node to all of its children inside a given loop.
/// The returned vector of nodes includes the starting point.
SmallVector<DomTreeNode *, 16>
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
  SmallVector<DomTreeNode *, 16> Worklist;
  auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
    // Only include subregions in the top level loop.
    BasicBlock *BB = DTN->getBlock();
    if (CurLoop->contains(BB))
      Worklist.push_back(DTN);
  };

  AddRegionToWorklist(N);

  for (size_t I = 0; I < Worklist.size(); I++) {
    for (DomTreeNode *Child : Worklist[I]->children())
      AddRegionToWorklist(Child);
  }

  return Worklist;
}

bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) {
  int LatchIdx = PN->getBasicBlockIndex(LatchBlock);
  assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode");
  Value *IncV = PN->getIncomingValue(LatchIdx);

  for (User *U : PN->users())
    if (U != Cond && U != IncV) return false;

  for (User *U : IncV->users())
    if (U != Cond && U != PN) return false;
  return true;
}


void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
                          LoopInfo *LI, MemorySSA *MSSA) {
  assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
  auto *Preheader = L->getLoopPreheader();
  assert(Preheader && "Preheader should exist!");

  std::unique_ptr<MemorySSAUpdater> MSSAU;
  if (MSSA)
    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);

  // Now that we know the removal is safe, remove the loop by changing the
  // branch from the preheader to go to the single exit block.
  //
  // Because we're deleting a large chunk of code at once, the sequence in which
  // we remove things is very important to avoid invalidation issues.

  // Tell ScalarEvolution that the loop is deleted. Do this before
  // deleting the loop so that ScalarEvolution can look at the loop
  // to determine what it needs to clean up.
  if (SE) {
    SE->forgetLoop(L);
    SE->forgetBlockAndLoopDispositions();
  }

  Instruction *OldTerm = Preheader->getTerminator();
  assert(!OldTerm->mayHaveSideEffects() &&
         "Preheader must end with a side-effect-free terminator");
  assert(OldTerm->getNumSuccessors() == 1 &&
         "Preheader must have a single successor");
  // Connect the preheader to the exit block. Keep the old edge to the header
  // around to perform the dominator tree update in two separate steps
  // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
  // preheader -> header.
  //
  //
  // 0.  Preheader          1.  Preheader           2.  Preheader
  //        |                    |   |                   |
  //        V                    |   V                   |
  //      Header <--\            | Header <--\           | Header <--\
  //       |  |     |            |  |  |     |           |  |  |     |
  //       |  V     |            |  |  V     |           |  |  V     |
  //       | Body --/            |  | Body --/           |  | Body --/
  //       V                     V  V                    V  V
  //      Exit                   Exit                    Exit
  //
  // By doing this is two separate steps we can perform the dominator tree
  // update without using the batch update API.
  //
  // Even when the loop is never executed, we cannot remove the edge from the
  // source block to the exit block. Consider the case where the unexecuted loop
  // branches back to an outer loop. If we deleted the loop and removed the edge
  // coming to this inner loop, this will break the outer loop structure (by
  // deleting the backedge of the outer loop). If the outer loop is indeed a
  // non-loop, it will be deleted in a future iteration of loop deletion pass.
  IRBuilder<> Builder(OldTerm);

  auto *ExitBlock = L->getUniqueExitBlock();
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
  if (ExitBlock) {
    assert(ExitBlock && "Should have a unique exit block!");
    assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");

    Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
    // Remove the old branch. The conditional branch becomes a new terminator.
    OldTerm->eraseFromParent();

    // Rewrite phis in the exit block to get their inputs from the Preheader
    // instead of the exiting block.
    for (PHINode &P : ExitBlock->phis()) {
      // Set the zero'th element of Phi to be from the preheader and remove all
      // other incoming values. Given the loop has dedicated exits, all other
      // incoming values must be from the exiting blocks.
      int PredIndex = 0;
      P.setIncomingBlock(PredIndex, Preheader);
      // Removes all incoming values from all other exiting blocks (including
      // duplicate values from an exiting block).
      // Nuke all entries except the zero'th entry which is the preheader entry.
      P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
                              /* DeletePHIIfEmpty */ false);

      assert((P.getNumIncomingValues() == 1 &&
              P.getIncomingBlock(PredIndex) == Preheader) &&
             "Should have exactly one value and that's from the preheader!");
    }

    if (DT) {
      DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
      if (MSSA) {
        MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
                            *DT);
        if (VerifyMemorySSA)
          MSSA->verifyMemorySSA();
      }
    }

    // Disconnect the loop body by branching directly to its exit.
    Builder.SetInsertPoint(Preheader->getTerminator());
    Builder.CreateBr(ExitBlock);
    // Remove the old branch.
    Preheader->getTerminator()->eraseFromParent();
  } else {
    assert(L->hasNoExitBlocks() &&
           "Loop should have either zero or one exit blocks.");

    Builder.SetInsertPoint(OldTerm);
    Builder.CreateUnreachable();
    Preheader->getTerminator()->eraseFromParent();
  }

  if (DT) {
    DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
    if (MSSA) {
      MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
                          *DT);
      SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
                                                   L->block_end());
      MSSAU->removeBlocks(DeadBlockSet);
      if (VerifyMemorySSA)
        MSSA->verifyMemorySSA();
    }
  }

  // Use a map to unique and a vector to guarantee deterministic ordering.
  llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet;
  llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
  llvm::SmallVector<DPValue *, 4> DeadDPValues;

  if (ExitBlock) {
    // Given LCSSA form is satisfied, we should not have users of instructions
    // within the dead loop outside of the loop. However, LCSSA doesn't take
    // unreachable uses into account. We handle them here.
    // We could do it after drop all references (in this case all users in the
    // loop will be already eliminated and we have less work to do but according
    // to API doc of User::dropAllReferences only valid operation after dropping
    // references, is deletion. So let's substitute all usages of
    // instruction from the loop with poison value of corresponding type first.
    for (auto *Block : L->blocks())
      for (Instruction &I : *Block) {
        auto *Poison = PoisonValue::get(I.getType());
        for (Use &U : llvm::make_early_inc_range(I.uses())) {
          if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
            if (L->contains(Usr->getParent()))
              continue;
          // If we have a DT then we can check that uses outside a loop only in
          // unreachable block.
          if (DT)
            assert(!DT->isReachableFromEntry(U) &&
                   "Unexpected user in reachable block");
          U.set(Poison);
        }

        // RemoveDIs: do the same as below for DPValues.
        if (Block->IsNewDbgInfoFormat) {
          for (DPValue &DPV : llvm::make_early_inc_range(
                   DPValue::filter(I.getDbgValueRange()))) {
            DebugVariable Key(DPV.getVariable(), DPV.getExpression(),
                              DPV.getDebugLoc().get());
            if (!DeadDebugSet.insert(Key).second)
              continue;
            // Unlinks the DPV from it's container, for later insertion.
            DPV.removeFromParent();
            DeadDPValues.push_back(&DPV);
          }
        }

        // For one of each variable encountered, preserve a debug intrinsic (set
        // to Poison) and transfer it to the loop exit. This terminates any
        // variable locations that were set during the loop.
        auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
        if (!DVI)
          continue;
        if (!DeadDebugSet.insert(DebugVariable(DVI)).second)
          continue;
        DeadDebugInst.push_back(DVI);
      }

    // After the loop has been deleted all the values defined and modified
    // inside the loop are going to be unavailable. Values computed in the
    // loop will have been deleted, automatically causing their debug uses
    // be be replaced with undef. Loop invariant values will still be available.
    // Move dbg.values out the loop so that earlier location ranges are still
    // terminated and loop invariant assignments are preserved.
    DIBuilder DIB(*ExitBlock->getModule());
    BasicBlock::iterator InsertDbgValueBefore =
        ExitBlock->getFirstInsertionPt();
    assert(InsertDbgValueBefore != ExitBlock->end() &&
           "There should be a non-PHI instruction in exit block, else these "
           "instructions will have no parent.");

    for (auto *DVI : DeadDebugInst)
      DVI->moveBefore(*ExitBlock, InsertDbgValueBefore);

    // Due to the "head" bit in BasicBlock::iterator, we're going to insert
    // each DPValue right at the start of the block, wheras dbg.values would be
    // repeatedly inserted before the first instruction. To replicate this
    // behaviour, do it backwards.
    for (DPValue *DPV : llvm::reverse(DeadDPValues))
      ExitBlock->insertDPValueBefore(DPV, InsertDbgValueBefore);
  }

  // Remove the block from the reference counting scheme, so that we can
  // delete it freely later.
  for (auto *Block : L->blocks())
    Block->dropAllReferences();

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  if (LI) {
    // Erase the instructions and the blocks without having to worry
    // about ordering because we already dropped the references.
    // NOTE: This iteration is safe because erasing the block does not remove
    // its entry from the loop's block list.  We do that in the next section.
    for (BasicBlock *BB : L->blocks())
      BB->eraseFromParent();

    // Finally, the blocks from loopinfo.  This has to happen late because
    // otherwise our loop iterators won't work.

    SmallPtrSet<BasicBlock *, 8> blocks;
    blocks.insert(L->block_begin(), L->block_end());
    for (BasicBlock *BB : blocks)
      LI->removeBlock(BB);

    // The last step is to update LoopInfo now that we've eliminated this loop.
    // Note: LoopInfo::erase remove the given loop and relink its subloops with
    // its parent. While removeLoop/removeChildLoop remove the given loop but
    // not relink its subloops, which is what we want.
    if (Loop *ParentLoop = L->getParentLoop()) {
      Loop::iterator I = find(*ParentLoop, L);
      assert(I != ParentLoop->end() && "Couldn't find loop");
      ParentLoop->removeChildLoop(I);
    } else {
      Loop::iterator I = find(*LI, L);
      assert(I != LI->end() && "Couldn't find loop");
      LI->removeLoop(I);
    }
    LI->destroy(L);
  }
}

void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
                             LoopInfo &LI, MemorySSA *MSSA) {
  auto *Latch = L->getLoopLatch();
  assert(Latch && "multiple latches not yet supported");
  auto *Header = L->getHeader();
  Loop *OutermostLoop = L->getOutermostLoop();

  SE.forgetLoop(L);
  SE.forgetBlockAndLoopDispositions();

  std::unique_ptr<MemorySSAUpdater> MSSAU;
  if (MSSA)
    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);

  // Update the CFG and domtree.  We chose to special case a couple of
  // of common cases for code quality and test readability reasons.
  [&]() -> void {
    if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
      if (!BI->isConditional()) {
        DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
        (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
                                  MSSAU.get());
        return;
      }

      // Conditional latch/exit - note that latch can be shared by inner
      // and outer loop so the other target doesn't need to an exit
      if (L->isLoopExiting(Latch)) {
        // TODO: Generalize ConstantFoldTerminator so that it can be used
        // here without invalidating LCSSA or MemorySSA.  (Tricky case for
        // LCSSA: header is an exit block of a preceeding sibling loop w/o
        // dedicated exits.)
        const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
        BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);

        DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
        Header->removePredecessor(Latch, true);

        IRBuilder<> Builder(BI);
        auto *NewBI = Builder.CreateBr(ExitBB);
        // Transfer the metadata to the new branch instruction (minus the
        // loop info since this is no longer a loop)
        NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
                                  LLVMContext::MD_annotation});

        BI->eraseFromParent();
        DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
        if (MSSA)
          MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
        return;
      }
    }

    // General case.  By splitting the backedge, and then explicitly making it
    // unreachable we gracefully handle corner cases such as switch and invoke
    // termiantors.
    auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());

    DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
    (void)changeToUnreachable(BackedgeBB->getTerminator(),
                              /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
  }();

  // Erase (and destroy) this loop instance.  Handles relinking sub-loops
  // and blocks within the loop as needed.
  LI.erase(L);

  // If the loop we broke had a parent, then changeToUnreachable might have
  // caused a block to be removed from the parent loop (see loop_nest_lcssa
  // test case in zero-btc.ll for an example), thus changing the parent's
  // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost
  // loop which might have a had a block removed.
  if (OutermostLoop != L)
    formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
}


/// Checks if \p L has an exiting latch branch.  There may also be other
/// exiting blocks.  Returns branch instruction terminating the loop
/// latch if above check is successful, nullptr otherwise.
static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
  BasicBlock *Latch = L->getLoopLatch();
  if (!Latch)
    return nullptr;

  BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
  if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
    return nullptr;

  assert((LatchBR->getSuccessor(0) == L->getHeader() ||
          LatchBR->getSuccessor(1) == L->getHeader()) &&
         "At least one edge out of the latch must go to the header");

  return LatchBR;
}

/// Return the estimated trip count for any exiting branch which dominates
/// the loop latch.
static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch,
                                                     Loop *L,
                                                     uint64_t &OrigExitWeight) {
  // To estimate the number of times the loop body was executed, we want to
  // know the number of times the backedge was taken, vs. the number of times
  // we exited the loop.
  uint64_t LoopWeight, ExitWeight;
  if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight))
    return std::nullopt;

  if (L->contains(ExitingBranch->getSuccessor(1)))
    std::swap(LoopWeight, ExitWeight);

  if (!ExitWeight)
    // Don't have a way to return predicated infinite
    return std::nullopt;

  OrigExitWeight = ExitWeight;

  // Estimated exit count is a ratio of the loop weight by the weight of the
  // edge exiting the loop, rounded to nearest.
  uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
  // Estimated trip count is one plus estimated exit count.
  return ExitCount + 1;
}

std::optional<unsigned>
llvm::getLoopEstimatedTripCount(Loop *L,
                                unsigned *EstimatedLoopInvocationWeight) {
  // Currently we take the estimate exit count only from the loop latch,
  // ignoring other exiting blocks.  This can overestimate the trip count
  // if we exit through another exit, but can never underestimate it.
  // TODO: incorporate information from other exits
  if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) {
    uint64_t ExitWeight;
    if (std::optional<uint64_t> EstTripCount =
            getEstimatedTripCount(LatchBranch, L, ExitWeight)) {
      if (EstimatedLoopInvocationWeight)
        *EstimatedLoopInvocationWeight = ExitWeight;
      return *EstTripCount;
    }
  }
  return std::nullopt;
}

bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
                                     unsigned EstimatedloopInvocationWeight) {
  // At the moment, we currently support changing the estimate trip count of
  // the latch branch only.  We could extend this API to manipulate estimated
  // trip counts for any exit.
  BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
  if (!LatchBranch)
    return false;

  // Calculate taken and exit weights.
  unsigned LatchExitWeight = 0;
  unsigned BackedgeTakenWeight = 0;

  if (EstimatedTripCount > 0) {
    LatchExitWeight = EstimatedloopInvocationWeight;
    BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
  }

  // Make a swap if back edge is taken when condition is "false".
  if (LatchBranch->getSuccessor(0) != L->getHeader())
    std::swap(BackedgeTakenWeight, LatchExitWeight);

  MDBuilder MDB(LatchBranch->getContext());

  // Set/Update profile metadata.
  LatchBranch->setMetadata(
      LLVMContext::MD_prof,
      MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));

  return true;
}

bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
                                              ScalarEvolution &SE) {
  Loop *OuterL = InnerLoop->getParentLoop();
  if (!OuterL)
    return true;

  // Get the backedge taken count for the inner loop
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
  const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
  if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
      !InnerLoopBECountSC->getType()->isIntegerTy())
    return false;

  // Get whether count is invariant to the outer loop
  ScalarEvolution::LoopDisposition LD =
      SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
  if (LD != ScalarEvolution::LoopInvariant)
    return false;

  return true;
}

unsigned llvm::getArithmeticReductionInstruction(Intrinsic::ID RdxID) {
  switch (RdxID) {
  case Intrinsic::vector_reduce_fadd:
    return Instruction::FAdd;
  case Intrinsic::vector_reduce_fmul:
    return Instruction::FMul;
  case Intrinsic::vector_reduce_add:
    return Instruction::Add;
  case Intrinsic::vector_reduce_mul:
    return Instruction::Mul;
  case Intrinsic::vector_reduce_and:
    return Instruction::And;
  case Intrinsic::vector_reduce_or:
    return Instruction::Or;
  case Intrinsic::vector_reduce_xor:
    return Instruction::Xor;
  case Intrinsic::vector_reduce_smax:
  case Intrinsic::vector_reduce_smin:
  case Intrinsic::vector_reduce_umax:
  case Intrinsic::vector_reduce_umin:
    return Instruction::ICmp;
  case Intrinsic::vector_reduce_fmax:
  case Intrinsic::vector_reduce_fmin:
    return Instruction::FCmp;
  default:
    llvm_unreachable("Unexpected ID");
  }
}

Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID) {
  switch (RdxID) {
  default:
    llvm_unreachable("Unknown min/max recurrence kind");
  case Intrinsic::vector_reduce_umin:
    return Intrinsic::umin;
  case Intrinsic::vector_reduce_umax:
    return Intrinsic::umax;
  case Intrinsic::vector_reduce_smin:
    return Intrinsic::smin;
  case Intrinsic::vector_reduce_smax:
    return Intrinsic::smax;
  case Intrinsic::vector_reduce_fmin:
    return Intrinsic::minnum;
  case Intrinsic::vector_reduce_fmax:
    return Intrinsic::maxnum;
  case Intrinsic::vector_reduce_fminimum:
    return Intrinsic::minimum;
  case Intrinsic::vector_reduce_fmaximum:
    return Intrinsic::maximum;
  }
}

Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) {
  switch (RK) {
  default:
    llvm_unreachable("Unknown min/max recurrence kind");
  case RecurKind::UMin:
    return Intrinsic::umin;
  case RecurKind::UMax:
    return Intrinsic::umax;
  case RecurKind::SMin:
    return Intrinsic::smin;
  case RecurKind::SMax:
    return Intrinsic::smax;
  case RecurKind::FMin:
    return Intrinsic::minnum;
  case RecurKind::FMax:
    return Intrinsic::maxnum;
  case RecurKind::FMinimum:
    return Intrinsic::minimum;
  case RecurKind::FMaximum:
    return Intrinsic::maximum;
  }
}

RecurKind llvm::getMinMaxReductionRecurKind(Intrinsic::ID RdxID) {
  switch (RdxID) {
  case Intrinsic::vector_reduce_smax:
    return RecurKind::SMax;
  case Intrinsic::vector_reduce_smin:
    return RecurKind::SMin;
  case Intrinsic::vector_reduce_umax:
    return RecurKind::UMax;
  case Intrinsic::vector_reduce_umin:
    return RecurKind::UMin;
  case Intrinsic::vector_reduce_fmax:
    return RecurKind::FMax;
  case Intrinsic::vector_reduce_fmin:
    return RecurKind::FMin;
  default:
    return RecurKind::None;
  }
}

CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
  switch (RK) {
  default:
    llvm_unreachable("Unknown min/max recurrence kind");
  case RecurKind::UMin:
    return CmpInst::ICMP_ULT;
  case RecurKind::UMax:
    return CmpInst::ICMP_UGT;
  case RecurKind::SMin:
    return CmpInst::ICMP_SLT;
  case RecurKind::SMax:
    return CmpInst::ICMP_SGT;
  case RecurKind::FMin:
    return CmpInst::FCMP_OLT;
  case RecurKind::FMax:
    return CmpInst::FCMP_OGT;
  // We do not add FMinimum/FMaximum recurrence kind here since there is no
  // equivalent predicate which compares signed zeroes according to the
  // semantics of the intrinsics (llvm.minimum/maximum).
  }
}

Value *llvm::createAnyOfOp(IRBuilderBase &Builder, Value *StartVal,
                           RecurKind RK, Value *Left, Value *Right) {
  if (auto VTy = dyn_cast<VectorType>(Left->getType()))
    StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal);
  Value *Cmp =
      Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp");
  return Builder.CreateSelect(Cmp, Left, Right, "rdx.select");
}

Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
                            Value *Right) {
  Type *Ty = Left->getType();
  if (Ty->isIntOrIntVectorTy() ||
      (RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) {
    // TODO: Add float minnum/maxnum support when FMF nnan is set.
    Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK);
    return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
                                   "rdx.minmax");
  }
  CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
  Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
  return Select;
}

// Helper to generate an ordered reduction.
Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
                                 unsigned Op, RecurKind RdxKind) {
  unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();

  // Extract and apply reduction ops in ascending order:
  // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
  Value *Result = Acc;
  for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
    Value *Ext =
        Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));

    if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
      Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
                                   "bin.rdx");
    } else {
      assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
             "Invalid min/max");
      Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
    }
  }

  return Result;
}

// Helper to generate a log2 shuffle reduction.
Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
                                 unsigned Op, RecurKind RdxKind) {
  unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
  // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
  // and vector ops, reducing the set of values being computed by half each
  // round.
  assert(isPowerOf2_32(VF) &&
         "Reduction emission only supported for pow2 vectors!");
  // Note: fast-math-flags flags are controlled by the builder configuration
  // and are assumed to apply to all generated arithmetic instructions.  Other
  // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
  // of the builder configuration, and since they're not passed explicitly,
  // will never be relevant here.  Note that it would be generally unsound to
  // propagate these from an intrinsic call to the expansion anyways as we/
  // change the order of operations.
  Value *TmpVec = Src;
  SmallVector<int, 32> ShuffleMask(VF);
  for (unsigned i = VF; i != 1; i >>= 1) {
    // Move the upper half of the vector to the lower half.
    for (unsigned j = 0; j != i / 2; ++j)
      ShuffleMask[j] = i / 2 + j;

    // Fill the rest of the mask with undef.
    std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);

    Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");

    if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
      TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
                                   "bin.rdx");
    } else {
      assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
             "Invalid min/max");
      TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
    }
  }
  // The result is in the first element of the vector.
  return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}

Value *llvm::createAnyOfTargetReduction(IRBuilderBase &Builder, Value *Src,
                                        const RecurrenceDescriptor &Desc,
                                        PHINode *OrigPhi) {
  assert(
      RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) &&
      "Unexpected reduction kind");
  Value *InitVal = Desc.getRecurrenceStartValue();
  Value *NewVal = nullptr;

  // First use the original phi to determine the new value we're trying to
  // select from in the loop.
  SelectInst *SI = nullptr;
  for (auto *U : OrigPhi->users()) {
    if ((SI = dyn_cast<SelectInst>(U)))
      break;
  }
  assert(SI && "One user of the original phi should be a select");

  if (SI->getTrueValue() == OrigPhi)
    NewVal = SI->getFalseValue();
  else {
    assert(SI->getFalseValue() == OrigPhi &&
           "At least one input to the select should be the original Phi");
    NewVal = SI->getTrueValue();
  }

  // Create a splat vector with the new value and compare this to the vector
  // we want to reduce.
  ElementCount EC = cast<VectorType>(Src->getType())->getElementCount();
  Value *Right = Builder.CreateVectorSplat(EC, InitVal);
  Value *Cmp =
      Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp");

  // If any predicate is true it means that we want to select the new value.
  Cmp = Builder.CreateOrReduce(Cmp);
  return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select");
}

Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, Value *Src,
                                         RecurKind RdxKind) {
  auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
  switch (RdxKind) {
  case RecurKind::Add:
    return Builder.CreateAddReduce(Src);
  case RecurKind::Mul:
    return Builder.CreateMulReduce(Src);
  case RecurKind::And:
    return Builder.CreateAndReduce(Src);
  case RecurKind::Or:
    return Builder.CreateOrReduce(Src);
  case RecurKind::Xor:
    return Builder.CreateXorReduce(Src);
  case RecurKind::FMulAdd:
  case RecurKind::FAdd:
    return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
                                    Src);
  case RecurKind::FMul:
    return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
  case RecurKind::SMax:
    return Builder.CreateIntMaxReduce(Src, true);
  case RecurKind::SMin:
    return Builder.CreateIntMinReduce(Src, true);
  case RecurKind::UMax:
    return Builder.CreateIntMaxReduce(Src, false);
  case RecurKind::UMin:
    return Builder.CreateIntMinReduce(Src, false);
  case RecurKind::FMax:
    return Builder.CreateFPMaxReduce(Src);
  case RecurKind::FMin:
    return Builder.CreateFPMinReduce(Src);
  case RecurKind::FMinimum:
    return Builder.CreateFPMinimumReduce(Src);
  case RecurKind::FMaximum:
    return Builder.CreateFPMaximumReduce(Src);
  default:
    llvm_unreachable("Unhandled opcode");
  }
}

Value *llvm::createTargetReduction(IRBuilderBase &B,
                                   const RecurrenceDescriptor &Desc, Value *Src,
                                   PHINode *OrigPhi) {
  // TODO: Support in-order reductions based on the recurrence descriptor.
  // All ops in the reduction inherit fast-math-flags from the recurrence
  // descriptor.
  IRBuilderBase::FastMathFlagGuard FMFGuard(B);
  B.setFastMathFlags(Desc.getFastMathFlags());

  RecurKind RK = Desc.getRecurrenceKind();
  if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK))
    return createAnyOfTargetReduction(B, Src, Desc, OrigPhi);

  return createSimpleTargetReduction(B, Src, RK);
}

Value *llvm::createOrderedReduction(IRBuilderBase &B,
                                    const RecurrenceDescriptor &Desc,
                                    Value *Src, Value *Start) {
  assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
          Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
         "Unexpected reduction kind");
  assert(Src->getType()->isVectorTy() && "Expected a vector type");
  assert(!Start->getType()->isVectorTy() && "Expected a scalar type");

  return B.CreateFAddReduce(Start, Src);
}

void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue,
                            bool IncludeWrapFlags) {
  auto *VecOp = dyn_cast<Instruction>(I);
  if (!VecOp)
    return;
  auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
                                            : dyn_cast<Instruction>(OpValue);
  if (!Intersection)
    return;
  const unsigned Opcode = Intersection->getOpcode();
  VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
  for (auto *V : VL) {
    auto *Instr = dyn_cast<Instruction>(V);
    if (!Instr)
      continue;
    if (OpValue == nullptr || Opcode == Instr->getOpcode())
      VecOp->andIRFlags(V);
  }
}

bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
                                 ScalarEvolution &SE) {
  const SCEV *Zero = SE.getZero(S->getType());
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
}

bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
                                    ScalarEvolution &SE) {
  const SCEV *Zero = SE.getZero(S->getType());
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
}

bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L,
                                 ScalarEvolution &SE) {
  const SCEV *Zero = SE.getZero(S->getType());
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero);
}

bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L,
                                    ScalarEvolution &SE) {
  const SCEV *Zero = SE.getZero(S->getType());
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero);
}

bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
                             bool Signed) {
  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
  APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
    APInt::getMinValue(BitWidth);
  auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, Predicate, S,
                                     SE.getConstant(Min));
}

bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
                             bool Signed) {
  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
  APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
    APInt::getMaxValue(BitWidth);
  auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, Predicate, S,
                                     SE.getConstant(Max));
}

//===----------------------------------------------------------------------===//
// rewriteLoopExitValues - Optimize IV users outside the loop.
// As a side effect, reduces the amount of IV processing within the loop.
//===----------------------------------------------------------------------===//

static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
  SmallPtrSet<const Instruction *, 8> Visited;
  SmallVector<const Instruction *, 8> WorkList;
  Visited.insert(I);
  WorkList.push_back(I);
  while (!WorkList.empty()) {
    const Instruction *Curr = WorkList.pop_back_val();
    // This use is outside the loop, nothing to do.
    if (!L->contains(Curr))
      continue;
    // Do we assume it is a "hard" use which will not be eliminated easily?
    if (Curr->mayHaveSideEffects())
      return true;
    // Otherwise, add all its users to worklist.
    for (const auto *U : Curr->users()) {
      auto *UI = cast<Instruction>(U);
      if (Visited.insert(UI).second)
        WorkList.push_back(UI);
    }
  }
  return false;
}

// Collect information about PHI nodes which can be transformed in
// rewriteLoopExitValues.
struct RewritePhi {
  PHINode *PN;               // For which PHI node is this replacement?
  unsigned Ith;              // For which incoming value?
  const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
  Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
  bool HighCost;               // Is this expansion a high-cost?

  RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
             bool H)
      : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
        HighCost(H) {}
};

// Check whether it is possible to delete the loop after rewriting exit
// value. If it is possible, ignore ReplaceExitValue and do rewriting
// aggressively.
static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
  BasicBlock *Preheader = L->getLoopPreheader();
  // If there is no preheader, the loop will not be deleted.
  if (!Preheader)
    return false;

  // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
  // We obviate multiple ExitingBlocks case for simplicity.
  // TODO: If we see testcase with multiple ExitingBlocks can be deleted
  // after exit value rewriting, we can enhance the logic here.
  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  SmallVector<BasicBlock *, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);
  if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
    return false;

  BasicBlock *ExitBlock = ExitBlocks[0];
  BasicBlock::iterator BI = ExitBlock->begin();
  while (PHINode *P = dyn_cast<PHINode>(BI)) {
    Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);

    // If the Incoming value of P is found in RewritePhiSet, we know it
    // could be rewritten to use a loop invariant value in transformation
    // phase later. Skip it in the loop invariant check below.
    bool found = false;
    for (const RewritePhi &Phi : RewritePhiSet) {
      unsigned i = Phi.Ith;
      if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
        found = true;
        break;
      }
    }

    Instruction *I;
    if (!found && (I = dyn_cast<Instruction>(Incoming)))
      if (!L->hasLoopInvariantOperands(I))
        return false;

    ++BI;
  }

  for (auto *BB : L->blocks())
    if (llvm::any_of(*BB, [](Instruction &I) {
          return I.mayHaveSideEffects();
        }))
      return false;

  return true;
}

/// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
/// and returns true if this Phi is an induction phi in the loop. When
/// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE,
                          InductionDescriptor &ID) {
  if (!Phi)
    return false;
  if (!L->getLoopPreheader())
    return false;
  if (Phi->getParent() != L->getHeader())
    return false;
  return InductionDescriptor::isInductionPHI(Phi, L, SE, ID);
}

int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
                                ScalarEvolution *SE,
                                const TargetTransformInfo *TTI,
                                SCEVExpander &Rewriter, DominatorTree *DT,
                                ReplaceExitVal ReplaceExitValue,
                                SmallVector<WeakTrackingVH, 16> &DeadInsts) {
  // Check a pre-condition.
  assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
         "Indvars did not preserve LCSSA!");

  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);

  SmallVector<RewritePhi, 8> RewritePhiSet;
  // Find all values that are computed inside the loop, but used outside of it.
  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
  // the exit blocks of the loop to find them.
  for (BasicBlock *ExitBB : ExitBlocks) {
    // If there are no PHI nodes in this exit block, then no values defined
    // inside the loop are used on this path, skip it.
    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    if (!PN) continue;

    unsigned NumPreds = PN->getNumIncomingValues();

    // Iterate over all of the PHI nodes.
    BasicBlock::iterator BBI = ExitBB->begin();
    while ((PN = dyn_cast<PHINode>(BBI++))) {
      if (PN->use_empty())
        continue; // dead use, don't replace it

      if (!SE->isSCEVable(PN->getType()))
        continue;

      // Iterate over all of the values in all the PHI nodes.
      for (unsigned i = 0; i != NumPreds; ++i) {
        // If the value being merged in is not integer or is not defined
        // in the loop, skip it.
        Value *InVal = PN->getIncomingValue(i);
        if (!isa<Instruction>(InVal))
          continue;

        // If this pred is for a subloop, not L itself, skip it.
        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
          continue; // The Block is in a subloop, skip it.

        // Check that InVal is defined in the loop.
        Instruction *Inst = cast<Instruction>(InVal);
        if (!L->contains(Inst))
          continue;

        // Find exit values which are induction variables in the loop, and are
        // unused in the loop, with the only use being the exit block PhiNode,
        // and the induction variable update binary operator.
        // The exit value can be replaced with the final value when it is cheap
        // to do so.
        if (ReplaceExitValue == UnusedIndVarInLoop) {
          InductionDescriptor ID;
          PHINode *IndPhi = dyn_cast<PHINode>(Inst);
          if (IndPhi) {
            if (!checkIsIndPhi(IndPhi, L, SE, ID))
              continue;
            // This is an induction PHI. Check that the only users are PHI
            // nodes, and induction variable update binary operators.
            if (llvm::any_of(Inst->users(), [&](User *U) {
                  if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
                    return true;
                  BinaryOperator *B = dyn_cast<BinaryOperator>(U);
                  if (B && B != ID.getInductionBinOp())
                    return true;
                  return false;
                }))
              continue;
          } else {
            // If it is not an induction phi, it must be an induction update
            // binary operator with an induction phi user.
            BinaryOperator *B = dyn_cast<BinaryOperator>(Inst);
            if (!B)
              continue;
            if (llvm::any_of(Inst->users(), [&](User *U) {
                  PHINode *Phi = dyn_cast<PHINode>(U);
                  if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
                    return true;
                  return false;
                }))
              continue;
            if (B != ID.getInductionBinOp())
              continue;
          }
        }

        // Okay, this instruction has a user outside of the current loop
        // and varies predictably *inside* the loop.  Evaluate the value it
        // contains when the loop exits, if possible.  We prefer to start with
        // expressions which are true for all exits (so as to maximize
        // expression reuse by the SCEVExpander), but resort to per-exit
        // evaluation if that fails.
        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
        if (isa<SCEVCouldNotCompute>(ExitValue) ||
            !SE->isLoopInvariant(ExitValue, L) ||
            !Rewriter.isSafeToExpand(ExitValue)) {
          // TODO: This should probably be sunk into SCEV in some way; maybe a
          // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
          // most SCEV expressions and other recurrence types (e.g. shift
          // recurrences).  Is there existing code we can reuse?
          const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
          if (isa<SCEVCouldNotCompute>(ExitCount))
            continue;
          if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
            if (AddRec->getLoop() == L)
              ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
          if (isa<SCEVCouldNotCompute>(ExitValue) ||
              !SE->isLoopInvariant(ExitValue, L) ||
              !Rewriter.isSafeToExpand(ExitValue))
            continue;
        }

        // Computing the value outside of the loop brings no benefit if it is
        // definitely used inside the loop in a way which can not be optimized
        // away. Avoid doing so unless we know we have a value which computes
        // the ExitValue already. TODO: This should be merged into SCEV
        // expander to leverage its knowledge of existing expressions.
        if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
            !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
          continue;

        // Check if expansions of this SCEV would count as being high cost.
        bool HighCost = Rewriter.isHighCostExpansion(
            ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);

        // Note that we must not perform expansions until after
        // we query *all* the costs, because if we perform temporary expansion
        // inbetween, one that we might not intend to keep, said expansion
        // *may* affect cost calculation of the next SCEV's we'll query,
        // and next SCEV may errneously get smaller cost.

        // Collect all the candidate PHINodes to be rewritten.
        Instruction *InsertPt =
          (isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ?
          &*Inst->getParent()->getFirstInsertionPt() : Inst;
        RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
      }
    }
  }

  // TODO: evaluate whether it is beneficial to change how we calculate
  // high-cost: if we have SCEV 'A' which we know we will expand, should we
  // calculate the cost of other SCEV's after expanding SCEV 'A', thus
  // potentially giving cost bonus to those other SCEV's?

  bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
  int NumReplaced = 0;

  // Transformation.
  for (const RewritePhi &Phi : RewritePhiSet) {
    PHINode *PN = Phi.PN;

    // Only do the rewrite when the ExitValue can be expanded cheaply.
    // If LoopCanBeDel is true, rewrite exit value aggressively.
    if ((ReplaceExitValue == OnlyCheapRepl ||
         ReplaceExitValue == UnusedIndVarInLoop) &&
        !LoopCanBeDel && Phi.HighCost)
      continue;

    Value *ExitVal = Rewriter.expandCodeFor(
        Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);

    LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
                      << '\n'
                      << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");

#ifndef NDEBUG
    // If we reuse an instruction from a loop which is neither L nor one of
    // its containing loops, we end up breaking LCSSA form for this loop by
    // creating a new use of its instruction.
    if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
      if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
        if (EVL != L)
          assert(EVL->contains(L) && "LCSSA breach detected!");
#endif

    NumReplaced++;
    Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
    PN->setIncomingValue(Phi.Ith, ExitVal);
    // It's necessary to tell ScalarEvolution about this explicitly so that
    // it can walk the def-use list and forget all SCEVs, as it may not be
    // watching the PHI itself. Once the new exit value is in place, there
    // may not be a def-use connection between the loop and every instruction
    // which got a SCEVAddRecExpr for that loop.
    SE->forgetValue(PN);

    // If this instruction is dead now, delete it. Don't do it now to avoid
    // invalidating iterators.
    if (isInstructionTriviallyDead(Inst, TLI))
      DeadInsts.push_back(Inst);

    // Replace PN with ExitVal if that is legal and does not break LCSSA.
    if (PN->getNumIncomingValues() == 1 &&
        LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
      PN->replaceAllUsesWith(ExitVal);
      PN->eraseFromParent();
    }
  }

  // The insertion point instruction may have been deleted; clear it out
  // so that the rewriter doesn't trip over it later.
  Rewriter.clearInsertPoint();
  return NumReplaced;
}

/// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
/// \p OrigLoop.
void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
                                        Loop *RemainderLoop, uint64_t UF) {
  assert(UF > 0 && "Zero unrolled factor is not supported");
  assert(UnrolledLoop != RemainderLoop &&
         "Unrolled and Remainder loops are expected to distinct");

  // Get number of iterations in the original scalar loop.
  unsigned OrigLoopInvocationWeight = 0;
  std::optional<unsigned> OrigAverageTripCount =
      getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
  if (!OrigAverageTripCount)
    return;

  // Calculate number of iterations in unrolled loop.
  unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
  // Calculate number of iterations for remainder loop.
  unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;

  setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
                            OrigLoopInvocationWeight);
  setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
                            OrigLoopInvocationWeight);
}

/// Utility that implements appending of loops onto a worklist.
/// Loops are added in preorder (analogous for reverse postorder for trees),
/// and the worklist is processed LIFO.
template <typename RangeT>
void llvm::appendReversedLoopsToWorklist(
    RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
  // We use an internal worklist to build up the preorder traversal without
  // recursion.
  SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;

  // We walk the initial sequence of loops in reverse because we generally want
  // to visit defs before uses and the worklist is LIFO.
  for (Loop *RootL : Loops) {
    assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
    assert(PreOrderWorklist.empty() &&
           "Must start with an empty preorder walk worklist.");
    PreOrderWorklist.push_back(RootL);
    do {
      Loop *L = PreOrderWorklist.pop_back_val();
      PreOrderWorklist.append(L->begin(), L->end());
      PreOrderLoops.push_back(L);
    } while (!PreOrderWorklist.empty());

    Worklist.insert(std::move(PreOrderLoops));
    PreOrderLoops.clear();
  }
}

template <typename RangeT>
void llvm::appendLoopsToWorklist(RangeT &&Loops,
                                 SmallPriorityWorklist<Loop *, 4> &Worklist) {
  appendReversedLoopsToWorklist(reverse(Loops), Worklist);
}

template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
    ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);

template void
llvm::appendLoopsToWorklist<Loop &>(Loop &L,
                                    SmallPriorityWorklist<Loop *, 4> &Worklist);

void llvm::appendLoopsToWorklist(LoopInfo &LI,
                                 SmallPriorityWorklist<Loop *, 4> &Worklist) {
  appendReversedLoopsToWorklist(LI, Worklist);
}

Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
                      LoopInfo *LI, LPPassManager *LPM) {
  Loop &New = *LI->AllocateLoop();
  if (PL)
    PL->addChildLoop(&New);
  else
    LI->addTopLevelLoop(&New);

  if (LPM)
    LPM->addLoop(New);

  // Add all of the blocks in L to the new loop.
  for (BasicBlock *BB : L->blocks())
    if (LI->getLoopFor(BB) == L)
      New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);

  // Add all of the subloops to the new loop.
  for (Loop *I : *L)
    cloneLoop(I, &New, VM, LI, LPM);

  return &New;
}

/// IR Values for the lower and upper bounds of a pointer evolution.  We
/// need to use value-handles because SCEV expansion can invalidate previously
/// expanded values.  Thus expansion of a pointer can invalidate the bounds for
/// a previous one.
struct PointerBounds {
  TrackingVH<Value> Start;
  TrackingVH<Value> End;
  Value *StrideToCheck;
};

/// Expand code for the lower and upper bound of the pointer group \p CG
/// in \p TheLoop.  \return the values for the bounds.
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
                                  Loop *TheLoop, Instruction *Loc,
                                  SCEVExpander &Exp, bool HoistRuntimeChecks) {
  LLVMContext &Ctx = Loc->getContext();
  Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace);

  Value *Start = nullptr, *End = nullptr;
  LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
  const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr;

  // If the Low and High values are themselves loop-variant, then we may want
  // to expand the range to include those covered by the outer loop as well.
  // There is a trade-off here with the advantage being that creating checks
  // using the expanded range permits the runtime memory checks to be hoisted
  // out of the outer loop. This reduces the cost of entering the inner loop,
  // which can be significant for low trip counts. The disadvantage is that
  // there is a chance we may now never enter the vectorized inner loop,
  // whereas using a restricted range check could have allowed us to enter at
  // least once. This is why the behaviour is not currently the default and is
  // controlled by the parameter 'HoistRuntimeChecks'.
  if (HoistRuntimeChecks && TheLoop->getParentLoop() &&
      isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) {
    auto *HighAR = cast<SCEVAddRecExpr>(High);
    auto *LowAR = cast<SCEVAddRecExpr>(Low);
    const Loop *OuterLoop = TheLoop->getParentLoop();
    const SCEV *Recur = LowAR->getStepRecurrence(*Exp.getSE());
    if (Recur == HighAR->getStepRecurrence(*Exp.getSE()) &&
        HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
      BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
      const SCEV *OuterExitCount =
          Exp.getSE()->getExitCount(OuterLoop, OuterLoopLatch);
      if (!isa<SCEVCouldNotCompute>(OuterExitCount) &&
          OuterExitCount->getType()->isIntegerTy()) {
        const SCEV *NewHigh = cast<SCEVAddRecExpr>(High)->evaluateAtIteration(
            OuterExitCount, *Exp.getSE());
        if (!isa<SCEVCouldNotCompute>(NewHigh)) {
          LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
                               "outer loop in order to permit hoisting\n");
          High = NewHigh;
          Low = cast<SCEVAddRecExpr>(Low)->getStart();
          // If there is a possibility that the stride is negative then we have
          // to generate extra checks to ensure the stride is positive.
          if (!Exp.getSE()->isKnownNonNegative(Recur)) {
            Stride = Recur;
            LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
                                 "positive: "
                              << *Stride << '\n');
          }
        }
      }
    }
  }

  Start = Exp.expandCodeFor(Low, PtrArithTy, Loc);
  End = Exp.expandCodeFor(High, PtrArithTy, Loc);
  if (CG->NeedsFreeze) {
    IRBuilder<> Builder(Loc);
    Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
    End = Builder.CreateFreeze(End, End->getName() + ".fr");
  }
  Value *StrideVal =
      Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr;
  LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n");
  return {Start, End, StrideVal};
}

/// Turns a collection of checks into a collection of expanded upper and
/// lower bounds for both pointers in the check.
static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
             Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) {
  SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;

  // Here we're relying on the SCEV Expander's cache to only emit code for the
  // same bounds once.
  transform(PointerChecks, std::back_inserter(ChecksWithBounds),
            [&](const RuntimePointerCheck &Check) {
              PointerBounds First = expandBounds(Check.first, L, Loc, Exp,
                                                 HoistRuntimeChecks),
                            Second = expandBounds(Check.second, L, Loc, Exp,
                                                  HoistRuntimeChecks);
              return std::make_pair(First, Second);
            });

  return ChecksWithBounds;
}

Value *llvm::addRuntimeChecks(
    Instruction *Loc, Loop *TheLoop,
    const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
    SCEVExpander &Exp, bool HoistRuntimeChecks) {
  // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
  // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
  auto ExpandedChecks =
      expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks);

  LLVMContext &Ctx = Loc->getContext();
  IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
                                           Loc->getModule()->getDataLayout());
  ChkBuilder.SetInsertPoint(Loc);
  // Our instructions might fold to a constant.
  Value *MemoryRuntimeCheck = nullptr;

  for (const auto &Check : ExpandedChecks) {
    const PointerBounds &A = Check.first, &B = Check.second;
    // Check if two pointers (A and B) conflict where conflict is computed as:
    // start(A) <= end(B) && start(B) <= end(A)

    assert((A.Start->getType()->getPointerAddressSpace() ==
            B.End->getType()->getPointerAddressSpace()) &&
           (B.Start->getType()->getPointerAddressSpace() ==
            A.End->getType()->getPointerAddressSpace()) &&
           "Trying to bounds check pointers with different address spaces");

    // [A|B].Start points to the first accessed byte under base [A|B].
    // [A|B].End points to the last accessed byte, plus one.
    // There is no conflict when the intervals are disjoint:
    // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
    //
    // bound0 = (B.Start < A.End)
    // bound1 = (A.Start < B.End)
    //  IsConflict = bound0 & bound1
    Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0");
    Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1");
    Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
    if (A.StrideToCheck) {
      Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
          A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0),
          "stride.check");
      IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
    }
    if (B.StrideToCheck) {
      Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
          B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0),
          "stride.check");
      IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
    }
    if (MemoryRuntimeCheck) {
      IsConflict =
          ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
    }
    MemoryRuntimeCheck = IsConflict;
  }

  return MemoryRuntimeCheck;
}

Value *llvm::addDiffRuntimeChecks(
    Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
    function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {

  LLVMContext &Ctx = Loc->getContext();
  IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
                                           Loc->getModule()->getDataLayout());
  ChkBuilder.SetInsertPoint(Loc);
  // Our instructions might fold to a constant.
  Value *MemoryRuntimeCheck = nullptr;

  auto &SE = *Expander.getSE();
  // Map to keep track of created compares, The key is the pair of operands for
  // the compare, to allow detecting and re-using redundant compares.
  DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares;
  for (const auto &C : Checks) {
    Type *Ty = C.SinkStart->getType();
    // Compute VF * IC * AccessSize.
    auto *VFTimesUFTimesSize =
        ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
                             ConstantInt::get(Ty, IC * C.AccessSize));
    Value *Diff = Expander.expandCodeFor(
        SE.getMinusSCEV(C.SinkStart, C.SrcStart), Ty, Loc);

    // Check if the same compare has already been created earlier. In that case,
    // there is no need to check it again.
    Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize});
    if (IsConflict)
      continue;

    IsConflict =
        ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check");
    SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict});
    if (C.NeedsFreeze)
      IsConflict =
          ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr");
    if (MemoryRuntimeCheck) {
      IsConflict =
          ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
    }
    MemoryRuntimeCheck = IsConflict;
  }

  return MemoryRuntimeCheck;
}

std::optional<IVConditionInfo>
llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold,
                            const MemorySSA &MSSA, AAResults &AA) {
  auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
  if (!TI || !TI->isConditional())
    return {};

  auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
  // The case with the condition outside the loop should already be handled
  // earlier.
  if (!CondI || !L.contains(CondI))
    return {};

  SmallVector<Instruction *> InstToDuplicate;
  InstToDuplicate.push_back(CondI);

  SmallVector<Value *, 4> WorkList;
  WorkList.append(CondI->op_begin(), CondI->op_end());

  SmallVector<MemoryAccess *, 4> AccessesToCheck;
  SmallVector<MemoryLocation, 4> AccessedLocs;
  while (!WorkList.empty()) {
    Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
    if (!I || !L.contains(I))
      continue;

    // TODO: support additional instructions.
    if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
      return {};

    // Do not duplicate volatile and atomic loads.
    if (auto *LI = dyn_cast<LoadInst>(I))
      if (LI->isVolatile() || LI->isAtomic())
        return {};

    InstToDuplicate.push_back(I);
    if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
      if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
        // Queue the defining access to check for alias checks.
        AccessesToCheck.push_back(MemUse->getDefiningAccess());
        AccessedLocs.push_back(MemoryLocation::get(I));
      } else {
        // MemoryDefs may clobber the location or may be atomic memory
        // operations. Bail out.
        return {};
      }
    }
    WorkList.append(I->op_begin(), I->op_end());
  }

  if (InstToDuplicate.empty())
    return {};

  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L.getExitingBlocks(ExitingBlocks);
  auto HasNoClobbersOnPath =
      [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
       MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
                      SmallVector<MemoryAccess *, 4> AccessesToCheck)
      -> std::optional<IVConditionInfo> {
    IVConditionInfo Info;
    // First, collect all blocks in the loop that are on a patch from Succ
    // to the header.
    SmallVector<BasicBlock *, 4> WorkList;
    WorkList.push_back(Succ);
    WorkList.push_back(Header);
    SmallPtrSet<BasicBlock *, 4> Seen;
    Seen.insert(Header);
    Info.PathIsNoop &=
        all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });

    while (!WorkList.empty()) {
      BasicBlock *Current = WorkList.pop_back_val();
      if (!L.contains(Current))
        continue;
      const auto &SeenIns = Seen.insert(Current);
      if (!SeenIns.second)
        continue;

      Info.PathIsNoop &= all_of(
          *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
      WorkList.append(succ_begin(Current), succ_end(Current));
    }

    // Require at least 2 blocks on a path through the loop. This skips
    // paths that directly exit the loop.
    if (Seen.size() < 2)
      return {};

    // Next, check if there are any MemoryDefs that are on the path through
    // the loop (in the Seen set) and they may-alias any of the locations in
    // AccessedLocs. If that is the case, they may modify the condition and
    // partial unswitching is not possible.
    SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
    while (!AccessesToCheck.empty()) {
      MemoryAccess *Current = AccessesToCheck.pop_back_val();
      auto SeenI = SeenAccesses.insert(Current);
      if (!SeenI.second || !Seen.contains(Current->getBlock()))
        continue;

      // Bail out if exceeded the threshold.
      if (SeenAccesses.size() >= MSSAThreshold)
        return {};

      // MemoryUse are read-only accesses.
      if (isa<MemoryUse>(Current))
        continue;

      // For a MemoryDef, check if is aliases any of the location feeding
      // the original condition.
      if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
        if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
              return isModSet(
                  AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
            }))
          return {};
      }

      for (Use &U : Current->uses())
        AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
    }

    // We could also allow loops with known trip counts without mustprogress,
    // but ScalarEvolution may not be available.
    Info.PathIsNoop &= isMustProgress(&L);

    // If the path is considered a no-op so far, check if it reaches a
    // single exit block without any phis. This ensures no values from the
    // loop are used outside of the loop.
    if (Info.PathIsNoop) {
      for (auto *Exiting : ExitingBlocks) {
        if (!Seen.contains(Exiting))
          continue;
        for (auto *Succ : successors(Exiting)) {
          if (L.contains(Succ))
            continue;

          Info.PathIsNoop &= Succ->phis().empty() &&
                             (!Info.ExitForPath || Info.ExitForPath == Succ);
          if (!Info.PathIsNoop)
            break;
          assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
                 "cannot have multiple exit blocks");
          Info.ExitForPath = Succ;
        }
      }
    }
    if (!Info.ExitForPath)
      Info.PathIsNoop = false;

    Info.InstToDuplicate = InstToDuplicate;
    return Info;
  };

  // If we branch to the same successor, partial unswitching will not be
  // beneficial.
  if (TI->getSuccessor(0) == TI->getSuccessor(1))
    return {};

  if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
                                      AccessesToCheck)) {
    Info->KnownValue = ConstantInt::getTrue(TI->getContext());
    return Info;
  }
  if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
                                      AccessesToCheck)) {
    Info->KnownValue = ConstantInt::getFalse(TI->getContext());
    return Info;
  }

  return {};
}