summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/arm/disasm-arm.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/arm/disasm-arm.cc')
-rw-r--r--src/3rdparty/v8/src/arm/disasm-arm.cc1572
1 files changed, 0 insertions, 1572 deletions
diff --git a/src/3rdparty/v8/src/arm/disasm-arm.cc b/src/3rdparty/v8/src/arm/disasm-arm.cc
deleted file mode 100644
index dec62b3..0000000
--- a/src/3rdparty/v8/src/arm/disasm-arm.cc
+++ /dev/null
@@ -1,1572 +0,0 @@
-// Copyright 2011 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// A Disassembler object is used to disassemble a block of code instruction by
-// instruction. The default implementation of the NameConverter object can be
-// overriden to modify register names or to do symbol lookup on addresses.
-//
-// The example below will disassemble a block of code and print it to stdout.
-//
-// NameConverter converter;
-// Disassembler d(converter);
-// for (byte* pc = begin; pc < end;) {
-// v8::internal::EmbeddedVector<char, 256> buffer;
-// byte* prev_pc = pc;
-// pc += d.InstructionDecode(buffer, pc);
-// printf("%p %08x %s\n",
-// prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
-// }
-//
-// The Disassembler class also has a convenience method to disassemble a block
-// of code into a FILE*, meaning that the above functionality could also be
-// achieved by just calling Disassembler::Disassemble(stdout, begin, end);
-
-
-#include <assert.h>
-#include <stdio.h>
-#include <stdarg.h>
-#include <string.h>
-#ifndef WIN32
-#include <stdint.h>
-#endif
-
-#include "v8.h"
-
-#if defined(V8_TARGET_ARCH_ARM)
-
-#include "constants-arm.h"
-#include "disasm.h"
-#include "macro-assembler.h"
-#include "platform.h"
-
-
-namespace v8 {
-namespace internal {
-
-
-//------------------------------------------------------------------------------
-
-// Decoder decodes and disassembles instructions into an output buffer.
-// It uses the converter to convert register names and call destinations into
-// more informative description.
-class Decoder {
- public:
- Decoder(const disasm::NameConverter& converter,
- Vector<char> out_buffer)
- : converter_(converter),
- out_buffer_(out_buffer),
- out_buffer_pos_(0) {
- out_buffer_[out_buffer_pos_] = '\0';
- }
-
- ~Decoder() {}
-
- // Writes one disassembled instruction into 'buffer' (0-terminated).
- // Returns the length of the disassembled machine instruction in bytes.
- int InstructionDecode(byte* instruction);
-
- static bool IsConstantPoolAt(byte* instr_ptr);
- static int ConstantPoolSizeAt(byte* instr_ptr);
-
- private:
- // Bottleneck functions to print into the out_buffer.
- void PrintChar(const char ch);
- void Print(const char* str);
-
- // Printing of common values.
- void PrintRegister(int reg);
- void PrintSRegister(int reg);
- void PrintDRegister(int reg);
- int FormatVFPRegister(Instruction* instr, const char* format);
- void PrintMovwMovt(Instruction* instr);
- int FormatVFPinstruction(Instruction* instr, const char* format);
- void PrintCondition(Instruction* instr);
- void PrintShiftRm(Instruction* instr);
- void PrintShiftImm(Instruction* instr);
- void PrintShiftSat(Instruction* instr);
- void PrintPU(Instruction* instr);
- void PrintSoftwareInterrupt(SoftwareInterruptCodes svc);
-
- // Handle formatting of instructions and their options.
- int FormatRegister(Instruction* instr, const char* option);
- int FormatOption(Instruction* instr, const char* option);
- void Format(Instruction* instr, const char* format);
- void Unknown(Instruction* instr);
-
- // Each of these functions decodes one particular instruction type, a 3-bit
- // field in the instruction encoding.
- // Types 0 and 1 are combined as they are largely the same except for the way
- // they interpret the shifter operand.
- void DecodeType01(Instruction* instr);
- void DecodeType2(Instruction* instr);
- void DecodeType3(Instruction* instr);
- void DecodeType4(Instruction* instr);
- void DecodeType5(Instruction* instr);
- void DecodeType6(Instruction* instr);
- // Type 7 includes special Debugger instructions.
- int DecodeType7(Instruction* instr);
- // For VFP support.
- void DecodeTypeVFP(Instruction* instr);
- void DecodeType6CoprocessorIns(Instruction* instr);
-
- void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
- void DecodeVCMP(Instruction* instr);
- void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
- void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
-
- const disasm::NameConverter& converter_;
- Vector<char> out_buffer_;
- int out_buffer_pos_;
-
- DISALLOW_COPY_AND_ASSIGN(Decoder);
-};
-
-
-// Support for assertions in the Decoder formatting functions.
-#define STRING_STARTS_WITH(string, compare_string) \
- (strncmp(string, compare_string, strlen(compare_string)) == 0)
-
-
-// Append the ch to the output buffer.
-void Decoder::PrintChar(const char ch) {
- out_buffer_[out_buffer_pos_++] = ch;
-}
-
-
-// Append the str to the output buffer.
-void Decoder::Print(const char* str) {
- char cur = *str++;
- while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
- PrintChar(cur);
- cur = *str++;
- }
- out_buffer_[out_buffer_pos_] = 0;
-}
-
-
-// These condition names are defined in a way to match the native disassembler
-// formatting. See for example the command "objdump -d <binary file>".
-static const char* cond_names[kNumberOfConditions] = {
- "eq", "ne", "cs" , "cc" , "mi" , "pl" , "vs" , "vc" ,
- "hi", "ls", "ge", "lt", "gt", "le", "", "invalid",
-};
-
-
-// Print the condition guarding the instruction.
-void Decoder::PrintCondition(Instruction* instr) {
- Print(cond_names[instr->ConditionValue()]);
-}
-
-
-// Print the register name according to the active name converter.
-void Decoder::PrintRegister(int reg) {
- Print(converter_.NameOfCPURegister(reg));
-}
-
-// Print the VFP S register name according to the active name converter.
-void Decoder::PrintSRegister(int reg) {
- Print(VFPRegisters::Name(reg, false));
-}
-
-// Print the VFP D register name according to the active name converter.
-void Decoder::PrintDRegister(int reg) {
- Print(VFPRegisters::Name(reg, true));
-}
-
-
-// These shift names are defined in a way to match the native disassembler
-// formatting. See for example the command "objdump -d <binary file>".
-static const char* const shift_names[kNumberOfShifts] = {
- "lsl", "lsr", "asr", "ror"
-};
-
-
-// Print the register shift operands for the instruction. Generally used for
-// data processing instructions.
-void Decoder::PrintShiftRm(Instruction* instr) {
- ShiftOp shift = instr->ShiftField();
- int shift_index = instr->ShiftValue();
- int shift_amount = instr->ShiftAmountValue();
- int rm = instr->RmValue();
-
- PrintRegister(rm);
-
- if ((instr->RegShiftValue() == 0) && (shift == LSL) && (shift_amount == 0)) {
- // Special case for using rm only.
- return;
- }
- if (instr->RegShiftValue() == 0) {
- // by immediate
- if ((shift == ROR) && (shift_amount == 0)) {
- Print(", RRX");
- return;
- } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
- shift_amount = 32;
- }
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- ", %s #%d",
- shift_names[shift_index],
- shift_amount);
- } else {
- // by register
- int rs = instr->RsValue();
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- ", %s ", shift_names[shift_index]);
- PrintRegister(rs);
- }
-}
-
-
-// Print the immediate operand for the instruction. Generally used for data
-// processing instructions.
-void Decoder::PrintShiftImm(Instruction* instr) {
- int rotate = instr->RotateValue() * 2;
- int immed8 = instr->Immed8Value();
- int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "#%d", imm);
-}
-
-
-// Print the optional shift and immediate used by saturating instructions.
-void Decoder::PrintShiftSat(Instruction* instr) {
- int shift = instr->Bits(11, 7);
- if (shift > 0) {
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- ", %s #%d",
- shift_names[instr->Bit(6) * 2],
- instr->Bits(11, 7));
- }
-}
-
-
-// Print PU formatting to reduce complexity of FormatOption.
-void Decoder::PrintPU(Instruction* instr) {
- switch (instr->PUField()) {
- case da_x: {
- Print("da");
- break;
- }
- case ia_x: {
- Print("ia");
- break;
- }
- case db_x: {
- Print("db");
- break;
- }
- case ib_x: {
- Print("ib");
- break;
- }
- default: {
- UNREACHABLE();
- break;
- }
- }
-}
-
-
-// Print SoftwareInterrupt codes. Factoring this out reduces the complexity of
-// the FormatOption method.
-void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) {
- switch (svc) {
- case kCallRtRedirected:
- Print("call rt redirected");
- return;
- case kBreakpoint:
- Print("breakpoint");
- return;
- default:
- if (svc >= kStopCode) {
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "%d - 0x%x",
- svc & kStopCodeMask,
- svc & kStopCodeMask);
- } else {
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "%d",
- svc);
- }
- return;
- }
-}
-
-
-// Handle all register based formatting in this function to reduce the
-// complexity of FormatOption.
-int Decoder::FormatRegister(Instruction* instr, const char* format) {
- ASSERT(format[0] == 'r');
- if (format[1] == 'n') { // 'rn: Rn register
- int reg = instr->RnValue();
- PrintRegister(reg);
- return 2;
- } else if (format[1] == 'd') { // 'rd: Rd register
- int reg = instr->RdValue();
- PrintRegister(reg);
- return 2;
- } else if (format[1] == 's') { // 'rs: Rs register
- int reg = instr->RsValue();
- PrintRegister(reg);
- return 2;
- } else if (format[1] == 'm') { // 'rm: Rm register
- int reg = instr->RmValue();
- PrintRegister(reg);
- return 2;
- } else if (format[1] == 't') { // 'rt: Rt register
- int reg = instr->RtValue();
- PrintRegister(reg);
- return 2;
- } else if (format[1] == 'l') {
- // 'rlist: register list for load and store multiple instructions
- ASSERT(STRING_STARTS_WITH(format, "rlist"));
- int rlist = instr->RlistValue();
- int reg = 0;
- Print("{");
- // Print register list in ascending order, by scanning the bit mask.
- while (rlist != 0) {
- if ((rlist & 1) != 0) {
- PrintRegister(reg);
- if ((rlist >> 1) != 0) {
- Print(", ");
- }
- }
- reg++;
- rlist >>= 1;
- }
- Print("}");
- return 5;
- }
- UNREACHABLE();
- return -1;
-}
-
-
-// Handle all VFP register based formatting in this function to reduce the
-// complexity of FormatOption.
-int Decoder::FormatVFPRegister(Instruction* instr, const char* format) {
- ASSERT((format[0] == 'S') || (format[0] == 'D'));
-
- VFPRegPrecision precision =
- format[0] == 'D' ? kDoublePrecision : kSinglePrecision;
-
- int retval = 2;
- int reg = -1;
- if (format[1] == 'n') {
- reg = instr->VFPNRegValue(precision);
- } else if (format[1] == 'm') {
- reg = instr->VFPMRegValue(precision);
- } else if (format[1] == 'd') {
- if ((instr->TypeValue() == 7) &&
- (instr->Bit(24) == 0x0) &&
- (instr->Bits(11, 9) == 0x5) &&
- (instr->Bit(4) == 0x1)) {
- // vmov.32 has Vd in a different place.
- reg = instr->Bits(19, 16) | (instr->Bit(7) << 4);
- } else {
- reg = instr->VFPDRegValue(precision);
- }
-
- if (format[2] == '+') {
- int immed8 = instr->Immed8Value();
- if (format[0] == 'S') reg += immed8 - 1;
- if (format[0] == 'D') reg += (immed8 / 2 - 1);
- }
- if (format[2] == '+') retval = 3;
- } else {
- UNREACHABLE();
- }
-
- if (precision == kSinglePrecision) {
- PrintSRegister(reg);
- } else {
- PrintDRegister(reg);
- }
-
- return retval;
-}
-
-
-int Decoder::FormatVFPinstruction(Instruction* instr, const char* format) {
- Print(format);
- return 0;
-}
-
-
-// Print the movw or movt instruction.
-void Decoder::PrintMovwMovt(Instruction* instr) {
- int imm = instr->ImmedMovwMovtValue();
- int rd = instr->RdValue();
- PrintRegister(rd);
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- ", #%d", imm);
-}
-
-
-// FormatOption takes a formatting string and interprets it based on
-// the current instructions. The format string points to the first
-// character of the option string (the option escape has already been
-// consumed by the caller.) FormatOption returns the number of
-// characters that were consumed from the formatting string.
-int Decoder::FormatOption(Instruction* instr, const char* format) {
- switch (format[0]) {
- case 'a': { // 'a: accumulate multiplies
- if (instr->Bit(21) == 0) {
- Print("ul");
- } else {
- Print("la");
- }
- return 1;
- }
- case 'b': { // 'b: byte loads or stores
- if (instr->HasB()) {
- Print("b");
- }
- return 1;
- }
- case 'c': { // 'cond: conditional execution
- ASSERT(STRING_STARTS_WITH(format, "cond"));
- PrintCondition(instr);
- return 4;
- }
- case 'd': { // 'd: vmov double immediate.
- double d = instr->DoubleImmedVmov();
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "#%g", d);
- return 1;
- }
- case 'f': { // 'f: bitfield instructions - v7 and above.
- uint32_t lsbit = instr->Bits(11, 7);
- uint32_t width = instr->Bits(20, 16) + 1;
- if (instr->Bit(21) == 0) {
- // BFC/BFI:
- // Bits 20-16 represent most-significant bit. Covert to width.
- width -= lsbit;
- ASSERT(width > 0);
- }
- ASSERT((width + lsbit) <= 32);
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "#%d, #%d", lsbit, width);
- return 1;
- }
- case 'h': { // 'h: halfword operation for extra loads and stores
- if (instr->HasH()) {
- Print("h");
- } else {
- Print("b");
- }
- return 1;
- }
- case 'i': { // 'i: immediate value from adjacent bits.
- // Expects tokens in the form imm%02d@%02d, i.e. imm05@07, imm10@16
- int width = (format[3] - '0') * 10 + (format[4] - '0');
- int lsb = (format[6] - '0') * 10 + (format[7] - '0');
-
- ASSERT((width >= 1) && (width <= 32));
- ASSERT((lsb >= 0) && (lsb <= 31));
- ASSERT((width + lsb) <= 32);
-
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "%d",
- instr->Bits(width + lsb - 1, lsb));
- return 8;
- }
- case 'l': { // 'l: branch and link
- if (instr->HasLink()) {
- Print("l");
- }
- return 1;
- }
- case 'm': {
- if (format[1] == 'w') {
- // 'mw: movt/movw instructions.
- PrintMovwMovt(instr);
- return 2;
- }
- if (format[1] == 'e') { // 'memop: load/store instructions.
- ASSERT(STRING_STARTS_WITH(format, "memop"));
- if (instr->HasL()) {
- Print("ldr");
- } else {
- if ((instr->Bits(27, 25) == 0) && (instr->Bit(20) == 0) &&
- (instr->Bits(7, 6) == 3) && (instr->Bit(4) == 1)) {
- if (instr->Bit(5) == 1) {
- Print("strd");
- } else {
- Print("ldrd");
- }
- return 5;
- }
- Print("str");
- }
- return 5;
- }
- // 'msg: for simulator break instructions
- ASSERT(STRING_STARTS_WITH(format, "msg"));
- byte* str =
- reinterpret_cast<byte*>(instr->InstructionBits() & 0x0fffffff);
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "%s", converter_.NameInCode(str));
- return 3;
- }
- case 'o': {
- if ((format[3] == '1') && (format[4] == '2')) {
- // 'off12: 12-bit offset for load and store instructions
- ASSERT(STRING_STARTS_WITH(format, "off12"));
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "%d", instr->Offset12Value());
- return 5;
- } else if (format[3] == '0') {
- // 'off0to3and8to19 16-bit immediate encoded in bits 19-8 and 3-0.
- ASSERT(STRING_STARTS_WITH(format, "off0to3and8to19"));
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "%d",
- (instr->Bits(19, 8) << 4) +
- instr->Bits(3, 0));
- return 15;
- }
- // 'off8: 8-bit offset for extra load and store instructions
- ASSERT(STRING_STARTS_WITH(format, "off8"));
- int offs8 = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "%d", offs8);
- return 4;
- }
- case 'p': { // 'pu: P and U bits for load and store instructions
- ASSERT(STRING_STARTS_WITH(format, "pu"));
- PrintPU(instr);
- return 2;
- }
- case 'r': {
- return FormatRegister(instr, format);
- }
- case 's': {
- if (format[1] == 'h') { // 'shift_op or 'shift_rm or 'shift_sat.
- if (format[6] == 'o') { // 'shift_op
- ASSERT(STRING_STARTS_WITH(format, "shift_op"));
- if (instr->TypeValue() == 0) {
- PrintShiftRm(instr);
- } else {
- ASSERT(instr->TypeValue() == 1);
- PrintShiftImm(instr);
- }
- return 8;
- } else if (format[6] == 's') { // 'shift_sat.
- ASSERT(STRING_STARTS_WITH(format, "shift_sat"));
- PrintShiftSat(instr);
- return 9;
- } else { // 'shift_rm
- ASSERT(STRING_STARTS_WITH(format, "shift_rm"));
- PrintShiftRm(instr);
- return 8;
- }
- } else if (format[1] == 'v') { // 'svc
- ASSERT(STRING_STARTS_WITH(format, "svc"));
- PrintSoftwareInterrupt(instr->SvcValue());
- return 3;
- } else if (format[1] == 'i') { // 'sign: signed extra loads and stores
- ASSERT(STRING_STARTS_WITH(format, "sign"));
- if (instr->HasSign()) {
- Print("s");
- }
- return 4;
- }
- // 's: S field of data processing instructions
- if (instr->HasS()) {
- Print("s");
- }
- return 1;
- }
- case 't': { // 'target: target of branch instructions
- ASSERT(STRING_STARTS_WITH(format, "target"));
- int off = (instr->SImmed24Value() << 2) + 8;
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "%+d -> %s",
- off,
- converter_.NameOfAddress(
- reinterpret_cast<byte*>(instr) + off));
- return 6;
- }
- case 'u': { // 'u: signed or unsigned multiplies
- // The manual gets the meaning of bit 22 backwards in the multiply
- // instruction overview on page A3.16.2. The instructions that
- // exist in u and s variants are the following:
- // smull A4.1.87
- // umull A4.1.129
- // umlal A4.1.128
- // smlal A4.1.76
- // For these 0 means u and 1 means s. As can be seen on their individual
- // pages. The other 18 mul instructions have the bit set or unset in
- // arbitrary ways that are unrelated to the signedness of the instruction.
- // None of these 18 instructions exist in both a 'u' and an 's' variant.
-
- if (instr->Bit(22) == 0) {
- Print("u");
- } else {
- Print("s");
- }
- return 1;
- }
- case 'v': {
- return FormatVFPinstruction(instr, format);
- }
- case 'S':
- case 'D': {
- return FormatVFPRegister(instr, format);
- }
- case 'w': { // 'w: W field of load and store instructions
- if (instr->HasW()) {
- Print("!");
- }
- return 1;
- }
- default: {
- UNREACHABLE();
- break;
- }
- }
- UNREACHABLE();
- return -1;
-}
-
-
-// Format takes a formatting string for a whole instruction and prints it into
-// the output buffer. All escaped options are handed to FormatOption to be
-// parsed further.
-void Decoder::Format(Instruction* instr, const char* format) {
- char cur = *format++;
- while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
- if (cur == '\'') { // Single quote is used as the formatting escape.
- format += FormatOption(instr, format);
- } else {
- out_buffer_[out_buffer_pos_++] = cur;
- }
- cur = *format++;
- }
- out_buffer_[out_buffer_pos_] = '\0';
-}
-
-
-// The disassembler may end up decoding data inlined in the code. We do not want
-// it to crash if the data does not ressemble any known instruction.
-#define VERIFY(condition) \
-if(!(condition)) { \
- Unknown(instr); \
- return; \
-}
-
-
-// For currently unimplemented decodings the disassembler calls Unknown(instr)
-// which will just print "unknown" of the instruction bits.
-void Decoder::Unknown(Instruction* instr) {
- Format(instr, "unknown");
-}
-
-
-void Decoder::DecodeType01(Instruction* instr) {
- int type = instr->TypeValue();
- if ((type == 0) && instr->IsSpecialType0()) {
- // multiply instruction or extra loads and stores
- if (instr->Bits(7, 4) == 9) {
- if (instr->Bit(24) == 0) {
- // multiply instructions
- if (instr->Bit(23) == 0) {
- if (instr->Bit(21) == 0) {
- // The MUL instruction description (A 4.1.33) refers to Rd as being
- // the destination for the operation, but it confusingly uses the
- // Rn field to encode it.
- Format(instr, "mul'cond's 'rn, 'rm, 'rs");
- } else {
- if (instr->Bit(22) == 0) {
- // The MLA instruction description (A 4.1.28) refers to the order
- // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
- // Rn field to encode the Rd register and the Rd field to encode
- // the Rn register.
- Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
- } else {
- // The MLS instruction description (A 4.1.29) refers to the order
- // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
- // Rn field to encode the Rd register and the Rd field to encode
- // the Rn register.
- Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd");
- }
- }
- } else {
- // The signed/long multiply instructions use the terms RdHi and RdLo
- // when referring to the target registers. They are mapped to the Rn
- // and Rd fields as follows:
- // RdLo == Rd field
- // RdHi == Rn field
- // The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs>
- Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs");
- }
- } else {
- Unknown(instr); // not used by V8
- }
- } else if ((instr->Bit(20) == 0) && ((instr->Bits(7, 4) & 0xd) == 0xd)) {
- // ldrd, strd
- switch (instr->PUField()) {
- case da_x: {
- if (instr->Bit(22) == 0) {
- Format(instr, "'memop'cond's 'rd, ['rn], -'rm");
- } else {
- Format(instr, "'memop'cond's 'rd, ['rn], #-'off8");
- }
- break;
- }
- case ia_x: {
- if (instr->Bit(22) == 0) {
- Format(instr, "'memop'cond's 'rd, ['rn], +'rm");
- } else {
- Format(instr, "'memop'cond's 'rd, ['rn], #+'off8");
- }
- break;
- }
- case db_x: {
- if (instr->Bit(22) == 0) {
- Format(instr, "'memop'cond's 'rd, ['rn, -'rm]'w");
- } else {
- Format(instr, "'memop'cond's 'rd, ['rn, #-'off8]'w");
- }
- break;
- }
- case ib_x: {
- if (instr->Bit(22) == 0) {
- Format(instr, "'memop'cond's 'rd, ['rn, +'rm]'w");
- } else {
- Format(instr, "'memop'cond's 'rd, ['rn, #+'off8]'w");
- }
- break;
- }
- default: {
- // The PU field is a 2-bit field.
- UNREACHABLE();
- break;
- }
- }
- } else {
- // extra load/store instructions
- switch (instr->PUField()) {
- case da_x: {
- if (instr->Bit(22) == 0) {
- Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
- } else {
- Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
- }
- break;
- }
- case ia_x: {
- if (instr->Bit(22) == 0) {
- Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
- } else {
- Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
- }
- break;
- }
- case db_x: {
- if (instr->Bit(22) == 0) {
- Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
- } else {
- Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
- }
- break;
- }
- case ib_x: {
- if (instr->Bit(22) == 0) {
- Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
- } else {
- Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
- }
- break;
- }
- default: {
- // The PU field is a 2-bit field.
- UNREACHABLE();
- break;
- }
- }
- return;
- }
- } else if ((type == 0) && instr->IsMiscType0()) {
- if (instr->Bits(22, 21) == 1) {
- switch (instr->BitField(7, 4)) {
- case BX:
- Format(instr, "bx'cond 'rm");
- break;
- case BLX:
- Format(instr, "blx'cond 'rm");
- break;
- case BKPT:
- Format(instr, "bkpt 'off0to3and8to19");
- break;
- default:
- Unknown(instr); // not used by V8
- break;
- }
- } else if (instr->Bits(22, 21) == 3) {
- switch (instr->BitField(7, 4)) {
- case CLZ:
- Format(instr, "clz'cond 'rd, 'rm");
- break;
- default:
- Unknown(instr); // not used by V8
- break;
- }
- } else {
- Unknown(instr); // not used by V8
- }
- } else if ((type == 1) && instr->IsNopType1()) {
- Format(instr, "nop'cond");
- } else {
- switch (instr->OpcodeField()) {
- case AND: {
- Format(instr, "and'cond's 'rd, 'rn, 'shift_op");
- break;
- }
- case EOR: {
- Format(instr, "eor'cond's 'rd, 'rn, 'shift_op");
- break;
- }
- case SUB: {
- Format(instr, "sub'cond's 'rd, 'rn, 'shift_op");
- break;
- }
- case RSB: {
- Format(instr, "rsb'cond's 'rd, 'rn, 'shift_op");
- break;
- }
- case ADD: {
- Format(instr, "add'cond's 'rd, 'rn, 'shift_op");
- break;
- }
- case ADC: {
- Format(instr, "adc'cond's 'rd, 'rn, 'shift_op");
- break;
- }
- case SBC: {
- Format(instr, "sbc'cond's 'rd, 'rn, 'shift_op");
- break;
- }
- case RSC: {
- Format(instr, "rsc'cond's 'rd, 'rn, 'shift_op");
- break;
- }
- case TST: {
- if (instr->HasS()) {
- Format(instr, "tst'cond 'rn, 'shift_op");
- } else {
- Format(instr, "movw'cond 'mw");
- }
- break;
- }
- case TEQ: {
- if (instr->HasS()) {
- Format(instr, "teq'cond 'rn, 'shift_op");
- } else {
- // Other instructions matching this pattern are handled in the
- // miscellaneous instructions part above.
- UNREACHABLE();
- }
- break;
- }
- case CMP: {
- if (instr->HasS()) {
- Format(instr, "cmp'cond 'rn, 'shift_op");
- } else {
- Format(instr, "movt'cond 'mw");
- }
- break;
- }
- case CMN: {
- if (instr->HasS()) {
- Format(instr, "cmn'cond 'rn, 'shift_op");
- } else {
- // Other instructions matching this pattern are handled in the
- // miscellaneous instructions part above.
- UNREACHABLE();
- }
- break;
- }
- case ORR: {
- Format(instr, "orr'cond's 'rd, 'rn, 'shift_op");
- break;
- }
- case MOV: {
- Format(instr, "mov'cond's 'rd, 'shift_op");
- break;
- }
- case BIC: {
- Format(instr, "bic'cond's 'rd, 'rn, 'shift_op");
- break;
- }
- case MVN: {
- Format(instr, "mvn'cond's 'rd, 'shift_op");
- break;
- }
- default: {
- // The Opcode field is a 4-bit field.
- UNREACHABLE();
- break;
- }
- }
- }
-}
-
-
-void Decoder::DecodeType2(Instruction* instr) {
- switch (instr->PUField()) {
- case da_x: {
- if (instr->HasW()) {
- Unknown(instr); // not used in V8
- return;
- }
- Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
- break;
- }
- case ia_x: {
- if (instr->HasW()) {
- Unknown(instr); // not used in V8
- return;
- }
- Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
- break;
- }
- case db_x: {
- Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
- break;
- }
- case ib_x: {
- Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
- break;
- }
- default: {
- // The PU field is a 2-bit field.
- UNREACHABLE();
- break;
- }
- }
-}
-
-
-void Decoder::DecodeType3(Instruction* instr) {
- switch (instr->PUField()) {
- case da_x: {
- VERIFY(!instr->HasW());
- Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
- break;
- }
- case ia_x: {
- if (instr->HasW()) {
- VERIFY(instr->Bits(5, 4) == 0x1);
- if (instr->Bit(22) == 0x1) {
- Format(instr, "usat 'rd, #'imm05@16, 'rm'shift_sat");
- } else {
- UNREACHABLE(); // SSAT.
- }
- } else {
- Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
- }
- break;
- }
- case db_x: {
- if (FLAG_enable_sudiv) {
- if (!instr->HasW()) {
- if (instr->Bits(5, 4) == 0x1) {
- if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) {
- // SDIV (in V8 notation matching ARM ISA format) rn = rm/rs
- Format(instr, "sdiv'cond'b 'rn, 'rm, 'rs");
- break;
- }
- }
- }
- }
- Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
- break;
- }
- case ib_x: {
- if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
- uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
- uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
- uint32_t msbit = widthminus1 + lsbit;
- if (msbit <= 31) {
- if (instr->Bit(22)) {
- Format(instr, "ubfx'cond 'rd, 'rm, 'f");
- } else {
- Format(instr, "sbfx'cond 'rd, 'rm, 'f");
- }
- } else {
- UNREACHABLE();
- }
- } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
- uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
- uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
- if (msbit >= lsbit) {
- if (instr->RmValue() == 15) {
- Format(instr, "bfc'cond 'rd, 'f");
- } else {
- Format(instr, "bfi'cond 'rd, 'rm, 'f");
- }
- } else {
- UNREACHABLE();
- }
- } else {
- Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
- }
- break;
- }
- default: {
- // The PU field is a 2-bit field.
- UNREACHABLE();
- break;
- }
- }
-}
-
-
-void Decoder::DecodeType4(Instruction* instr) {
- if (instr->Bit(22) != 0) {
- // Privileged mode currently not supported.
- Unknown(instr);
- } else {
- if (instr->HasL()) {
- Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
- } else {
- Format(instr, "stm'cond'pu 'rn'w, 'rlist");
- }
- }
-}
-
-
-void Decoder::DecodeType5(Instruction* instr) {
- Format(instr, "b'l'cond 'target");
-}
-
-
-void Decoder::DecodeType6(Instruction* instr) {
- DecodeType6CoprocessorIns(instr);
-}
-
-
-int Decoder::DecodeType7(Instruction* instr) {
- if (instr->Bit(24) == 1) {
- if (instr->SvcValue() >= kStopCode) {
- Format(instr, "stop'cond 'svc");
- // Also print the stop message. Its address is encoded
- // in the following 4 bytes.
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "\n %p %08x stop message: %s",
- reinterpret_cast<int32_t*>(instr
- + Instruction::kInstrSize),
- *reinterpret_cast<char**>(instr
- + Instruction::kInstrSize),
- *reinterpret_cast<char**>(instr
- + Instruction::kInstrSize));
- // We have decoded 2 * Instruction::kInstrSize bytes.
- return 2 * Instruction::kInstrSize;
- } else {
- Format(instr, "svc'cond 'svc");
- }
- } else {
- DecodeTypeVFP(instr);
- }
- return Instruction::kInstrSize;
-}
-
-
-// void Decoder::DecodeTypeVFP(Instruction* instr)
-// vmov: Sn = Rt
-// vmov: Rt = Sn
-// vcvt: Dd = Sm
-// vcvt: Sd = Dm
-// Dd = vabs(Dm)
-// Dd = vneg(Dm)
-// Dd = vadd(Dn, Dm)
-// Dd = vsub(Dn, Dm)
-// Dd = vmul(Dn, Dm)
-// Dd = vmla(Dn, Dm)
-// Dd = vmls(Dn, Dm)
-// Dd = vdiv(Dn, Dm)
-// vcmp(Dd, Dm)
-// vmrs
-// vmsr
-// Dd = vsqrt(Dm)
-void Decoder::DecodeTypeVFP(Instruction* instr) {
- VERIFY((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) );
- VERIFY(instr->Bits(11, 9) == 0x5);
-
- if (instr->Bit(4) == 0) {
- if (instr->Opc1Value() == 0x7) {
- // Other data processing instructions
- if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
- // vmov register to register.
- if (instr->SzValue() == 0x1) {
- Format(instr, "vmov'cond.f64 'Dd, 'Dm");
- } else {
- Format(instr, "vmov'cond.f32 'Sd, 'Sm");
- }
- } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
- // vabs
- Format(instr, "vabs'cond.f64 'Dd, 'Dm");
- } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
- // vneg
- Format(instr, "vneg'cond.f64 'Dd, 'Dm");
- } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
- DecodeVCVTBetweenDoubleAndSingle(instr);
- } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
- DecodeVCVTBetweenFloatingPointAndInteger(instr);
- } else if (((instr->Opc2Value() >> 1) == 0x6) &&
- (instr->Opc3Value() & 0x1)) {
- DecodeVCVTBetweenFloatingPointAndInteger(instr);
- } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
- (instr->Opc3Value() & 0x1)) {
- DecodeVCMP(instr);
- } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
- Format(instr, "vsqrt'cond.f64 'Dd, 'Dm");
- } else if (instr->Opc3Value() == 0x0) {
- if (instr->SzValue() == 0x1) {
- Format(instr, "vmov'cond.f64 'Dd, 'd");
- } else {
- Unknown(instr); // Not used by V8.
- }
- } else {
- Unknown(instr); // Not used by V8.
- }
- } else if (instr->Opc1Value() == 0x3) {
- if (instr->SzValue() == 0x1) {
- if (instr->Opc3Value() & 0x1) {
- Format(instr, "vsub'cond.f64 'Dd, 'Dn, 'Dm");
- } else {
- Format(instr, "vadd'cond.f64 'Dd, 'Dn, 'Dm");
- }
- } else {
- Unknown(instr); // Not used by V8.
- }
- } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
- if (instr->SzValue() == 0x1) {
- Format(instr, "vmul'cond.f64 'Dd, 'Dn, 'Dm");
- } else {
- Unknown(instr); // Not used by V8.
- }
- } else if ((instr->Opc1Value() == 0x0) && !(instr->Opc3Value() & 0x1)) {
- if (instr->SzValue() == 0x1) {
- Format(instr, "vmla'cond.f64 'Dd, 'Dn, 'Dm");
- } else {
- Unknown(instr); // Not used by V8.
- }
- } else if ((instr->Opc1Value() == 0x0) && (instr->Opc3Value() & 0x1)) {
- if (instr->SzValue() == 0x1) {
- Format(instr, "vmls'cond.f64 'Dd, 'Dn, 'Dm");
- } else {
- Unknown(instr); // Not used by V8.
- }
- } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
- if (instr->SzValue() == 0x1) {
- Format(instr, "vdiv'cond.f64 'Dd, 'Dn, 'Dm");
- } else {
- Unknown(instr); // Not used by V8.
- }
- } else {
- Unknown(instr); // Not used by V8.
- }
- } else {
- if ((instr->VCValue() == 0x0) &&
- (instr->VAValue() == 0x0)) {
- DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
- } else if ((instr->VLValue() == 0x0) &&
- (instr->VCValue() == 0x1) &&
- (instr->Bit(23) == 0x0)) {
- if (instr->Bit(21) == 0x0) {
- Format(instr, "vmov'cond.32 'Dd[0], 'rt");
- } else {
- Format(instr, "vmov'cond.32 'Dd[1], 'rt");
- }
- } else if ((instr->VCValue() == 0x0) &&
- (instr->VAValue() == 0x7) &&
- (instr->Bits(19, 16) == 0x1)) {
- if (instr->VLValue() == 0) {
- if (instr->Bits(15, 12) == 0xF) {
- Format(instr, "vmsr'cond FPSCR, APSR");
- } else {
- Format(instr, "vmsr'cond FPSCR, 'rt");
- }
- } else {
- if (instr->Bits(15, 12) == 0xF) {
- Format(instr, "vmrs'cond APSR, FPSCR");
- } else {
- Format(instr, "vmrs'cond 'rt, FPSCR");
- }
- }
- }
- }
-}
-
-
-void Decoder::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
- Instruction* instr) {
- VERIFY((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
- (instr->VAValue() == 0x0));
-
- bool to_arm_register = (instr->VLValue() == 0x1);
-
- if (to_arm_register) {
- Format(instr, "vmov'cond 'rt, 'Sn");
- } else {
- Format(instr, "vmov'cond 'Sn, 'rt");
- }
-}
-
-
-void Decoder::DecodeVCMP(Instruction* instr) {
- VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
- VERIFY(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
- (instr->Opc3Value() & 0x1));
-
- // Comparison.
- bool dp_operation = (instr->SzValue() == 1);
- bool raise_exception_for_qnan = (instr->Bit(7) == 0x1);
-
- if (dp_operation && !raise_exception_for_qnan) {
- if (instr->Opc2Value() == 0x4) {
- Format(instr, "vcmp'cond.f64 'Dd, 'Dm");
- } else if (instr->Opc2Value() == 0x5) {
- Format(instr, "vcmp'cond.f64 'Dd, #0.0");
- } else {
- Unknown(instr); // invalid
- }
- } else {
- Unknown(instr); // Not used by V8.
- }
-}
-
-
-void Decoder::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
- VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
- VERIFY((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
-
- bool double_to_single = (instr->SzValue() == 1);
-
- if (double_to_single) {
- Format(instr, "vcvt'cond.f32.f64 'Sd, 'Dm");
- } else {
- Format(instr, "vcvt'cond.f64.f32 'Dd, 'Sm");
- }
-}
-
-
-void Decoder::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
- VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
- VERIFY(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
- (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
-
- bool to_integer = (instr->Bit(18) == 1);
- bool dp_operation = (instr->SzValue() == 1);
- if (to_integer) {
- bool unsigned_integer = (instr->Bit(16) == 0);
-
- if (dp_operation) {
- if (unsigned_integer) {
- Format(instr, "vcvt'cond.u32.f64 'Sd, 'Dm");
- } else {
- Format(instr, "vcvt'cond.s32.f64 'Sd, 'Dm");
- }
- } else {
- if (unsigned_integer) {
- Format(instr, "vcvt'cond.u32.f32 'Sd, 'Sm");
- } else {
- Format(instr, "vcvt'cond.s32.f32 'Sd, 'Sm");
- }
- }
- } else {
- bool unsigned_integer = (instr->Bit(7) == 0);
-
- if (dp_operation) {
- if (unsigned_integer) {
- Format(instr, "vcvt'cond.f64.u32 'Dd, 'Sm");
- } else {
- Format(instr, "vcvt'cond.f64.s32 'Dd, 'Sm");
- }
- } else {
- if (unsigned_integer) {
- Format(instr, "vcvt'cond.f32.u32 'Sd, 'Sm");
- } else {
- Format(instr, "vcvt'cond.f32.s32 'Sd, 'Sm");
- }
- }
- }
-}
-
-
-// Decode Type 6 coprocessor instructions.
-// Dm = vmov(Rt, Rt2)
-// <Rt, Rt2> = vmov(Dm)
-// Ddst = MEM(Rbase + 4*offset).
-// MEM(Rbase + 4*offset) = Dsrc.
-void Decoder::DecodeType6CoprocessorIns(Instruction* instr) {
- VERIFY(instr->TypeValue() == 6);
-
- if (instr->CoprocessorValue() == 0xA) {
- switch (instr->OpcodeValue()) {
- case 0x8:
- case 0xA:
- if (instr->HasL()) {
- Format(instr, "vldr'cond 'Sd, ['rn - 4*'imm08@00]");
- } else {
- Format(instr, "vstr'cond 'Sd, ['rn - 4*'imm08@00]");
- }
- break;
- case 0xC:
- case 0xE:
- if (instr->HasL()) {
- Format(instr, "vldr'cond 'Sd, ['rn + 4*'imm08@00]");
- } else {
- Format(instr, "vstr'cond 'Sd, ['rn + 4*'imm08@00]");
- }
- break;
- case 0x4:
- case 0x5:
- case 0x6:
- case 0x7:
- case 0x9:
- case 0xB: {
- bool to_vfp_register = (instr->VLValue() == 0x1);
- if (to_vfp_register) {
- Format(instr, "vldm'cond'pu 'rn'w, {'Sd-'Sd+}");
- } else {
- Format(instr, "vstm'cond'pu 'rn'w, {'Sd-'Sd+}");
- }
- break;
- }
- default:
- Unknown(instr); // Not used by V8.
- }
- } else if (instr->CoprocessorValue() == 0xB) {
- switch (instr->OpcodeValue()) {
- case 0x2:
- // Load and store double to two GP registers
- if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) {
- Unknown(instr); // Not used by V8.
- } else if (instr->HasL()) {
- Format(instr, "vmov'cond 'rt, 'rn, 'Dm");
- } else {
- Format(instr, "vmov'cond 'Dm, 'rt, 'rn");
- }
- break;
- case 0x8:
- case 0xA:
- if (instr->HasL()) {
- Format(instr, "vldr'cond 'Dd, ['rn - 4*'imm08@00]");
- } else {
- Format(instr, "vstr'cond 'Dd, ['rn - 4*'imm08@00]");
- }
- break;
- case 0xC:
- case 0xE:
- if (instr->HasL()) {
- Format(instr, "vldr'cond 'Dd, ['rn + 4*'imm08@00]");
- } else {
- Format(instr, "vstr'cond 'Dd, ['rn + 4*'imm08@00]");
- }
- break;
- case 0x4:
- case 0x5:
- case 0x6:
- case 0x7:
- case 0x9:
- case 0xB: {
- bool to_vfp_register = (instr->VLValue() == 0x1);
- if (to_vfp_register) {
- Format(instr, "vldm'cond'pu 'rn'w, {'Dd-'Dd+}");
- } else {
- Format(instr, "vstm'cond'pu 'rn'w, {'Dd-'Dd+}");
- }
- break;
- }
- default:
- Unknown(instr); // Not used by V8.
- }
- } else {
- Unknown(instr); // Not used by V8.
- }
-}
-
-#undef VERIFIY
-
-bool Decoder::IsConstantPoolAt(byte* instr_ptr) {
- int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
- return (instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker;
-}
-
-
-int Decoder::ConstantPoolSizeAt(byte* instr_ptr) {
- if (IsConstantPoolAt(instr_ptr)) {
- int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
- return DecodeConstantPoolLength(instruction_bits);
- } else {
- return -1;
- }
-}
-
-
-// Disassemble the instruction at *instr_ptr into the output buffer.
-int Decoder::InstructionDecode(byte* instr_ptr) {
- Instruction* instr = Instruction::At(instr_ptr);
- // Print raw instruction bytes.
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "%08x ",
- instr->InstructionBits());
- if (instr->ConditionField() == kSpecialCondition) {
- Unknown(instr);
- return Instruction::kInstrSize;
- }
- int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
- if ((instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker) {
- out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
- "constant pool begin (length %d)",
- DecodeConstantPoolLength(instruction_bits));
- return Instruction::kInstrSize;
- }
- switch (instr->TypeValue()) {
- case 0:
- case 1: {
- DecodeType01(instr);
- break;
- }
- case 2: {
- DecodeType2(instr);
- break;
- }
- case 3: {
- DecodeType3(instr);
- break;
- }
- case 4: {
- DecodeType4(instr);
- break;
- }
- case 5: {
- DecodeType5(instr);
- break;
- }
- case 6: {
- DecodeType6(instr);
- break;
- }
- case 7: {
- return DecodeType7(instr);
- }
- default: {
- // The type field is 3-bits in the ARM encoding.
- UNREACHABLE();
- break;
- }
- }
- return Instruction::kInstrSize;
-}
-
-
-} } // namespace v8::internal
-
-
-
-//------------------------------------------------------------------------------
-
-namespace disasm {
-
-
-const char* NameConverter::NameOfAddress(byte* addr) const {
- v8::internal::OS::SNPrintF(tmp_buffer_, "%p", addr);
- return tmp_buffer_.start();
-}
-
-
-const char* NameConverter::NameOfConstant(byte* addr) const {
- return NameOfAddress(addr);
-}
-
-
-const char* NameConverter::NameOfCPURegister(int reg) const {
- return v8::internal::Registers::Name(reg);
-}
-
-
-const char* NameConverter::NameOfByteCPURegister(int reg) const {
- UNREACHABLE(); // ARM does not have the concept of a byte register
- return "nobytereg";
-}
-
-
-const char* NameConverter::NameOfXMMRegister(int reg) const {
- UNREACHABLE(); // ARM does not have any XMM registers
- return "noxmmreg";
-}
-
-
-const char* NameConverter::NameInCode(byte* addr) const {
- // The default name converter is called for unknown code. So we will not try
- // to access any memory.
- return "";
-}
-
-
-//------------------------------------------------------------------------------
-
-Disassembler::Disassembler(const NameConverter& converter)
- : converter_(converter) {}
-
-
-Disassembler::~Disassembler() {}
-
-
-int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
- byte* instruction) {
- v8::internal::Decoder d(converter_, buffer);
- return d.InstructionDecode(instruction);
-}
-
-
-int Disassembler::ConstantPoolSizeAt(byte* instruction) {
- return v8::internal::Decoder::ConstantPoolSizeAt(instruction);
-}
-
-
-void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
- NameConverter converter;
- Disassembler d(converter);
- for (byte* pc = begin; pc < end;) {
- v8::internal::EmbeddedVector<char, 128> buffer;
- buffer[0] = '\0';
- byte* prev_pc = pc;
- pc += d.InstructionDecode(buffer, pc);
- fprintf(f, "%p %08x %s\n",
- prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer.start());
- }
-}
-
-
-} // namespace disasm
-
-#endif // V8_TARGET_ARCH_ARM