summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/assembler.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/assembler.cc')
-rw-r--r--src/3rdparty/v8/src/assembler.cc1617
1 files changed, 0 insertions, 1617 deletions
diff --git a/src/3rdparty/v8/src/assembler.cc b/src/3rdparty/v8/src/assembler.cc
deleted file mode 100644
index 2cd9114..0000000
--- a/src/3rdparty/v8/src/assembler.cc
+++ /dev/null
@@ -1,1617 +0,0 @@
-// Copyright (c) 1994-2006 Sun Microsystems Inc.
-// All Rights Reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// - Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-//
-// - Redistribution in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// - Neither the name of Sun Microsystems or the names of contributors may
-// be used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
-// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// The original source code covered by the above license above has been
-// modified significantly by Google Inc.
-// Copyright 2012 the V8 project authors. All rights reserved.
-
-#include "assembler.h"
-
-#include <math.h> // For cos, log, pow, sin, tan, etc.
-#include "api.h"
-#include "builtins.h"
-#include "counters.h"
-#include "cpu.h"
-#include "debug.h"
-#include "deoptimizer.h"
-#include "execution.h"
-#include "ic.h"
-#include "isolate.h"
-#include "jsregexp.h"
-#include "lazy-instance.h"
-#include "platform.h"
-#include "regexp-macro-assembler.h"
-#include "regexp-stack.h"
-#include "runtime.h"
-#include "serialize.h"
-#include "store-buffer-inl.h"
-#include "stub-cache.h"
-#include "token.h"
-
-#if V8_TARGET_ARCH_IA32
-#include "ia32/assembler-ia32-inl.h"
-#elif V8_TARGET_ARCH_X64
-#include "x64/assembler-x64-inl.h"
-#elif V8_TARGET_ARCH_ARM
-#include "arm/assembler-arm-inl.h"
-#elif V8_TARGET_ARCH_MIPS
-#include "mips/assembler-mips-inl.h"
-#else
-#error "Unknown architecture."
-#endif
-
-// Include native regexp-macro-assembler.
-#ifndef V8_INTERPRETED_REGEXP
-#if V8_TARGET_ARCH_IA32
-#include "ia32/regexp-macro-assembler-ia32.h"
-#elif V8_TARGET_ARCH_X64
-#include "x64/regexp-macro-assembler-x64.h"
-#elif V8_TARGET_ARCH_ARM
-#include "arm/regexp-macro-assembler-arm.h"
-#elif V8_TARGET_ARCH_MIPS
-#include "mips/regexp-macro-assembler-mips.h"
-#else // Unknown architecture.
-#error "Unknown architecture."
-#endif // Target architecture.
-#endif // V8_INTERPRETED_REGEXP
-
-namespace v8 {
-namespace internal {
-
-// -----------------------------------------------------------------------------
-// Common double constants.
-
-struct DoubleConstant BASE_EMBEDDED {
- double min_int;
- double one_half;
- double minus_one_half;
- double minus_zero;
- double zero;
- double uint8_max_value;
- double negative_infinity;
- double canonical_non_hole_nan;
- double the_hole_nan;
-};
-
-static DoubleConstant double_constants;
-
-const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
-
-static bool math_exp_data_initialized = false;
-static Mutex* math_exp_data_mutex = NULL;
-static double* math_exp_constants_array = NULL;
-static double* math_exp_log_table_array = NULL;
-
-// -----------------------------------------------------------------------------
-// Implementation of AssemblerBase
-
-AssemblerBase::AssemblerBase(Isolate* isolate, void* buffer, int buffer_size)
- : isolate_(isolate),
- jit_cookie_(0),
- emit_debug_code_(FLAG_debug_code),
- predictable_code_size_(false) {
- if (FLAG_mask_constants_with_cookie && isolate != NULL) {
- jit_cookie_ = V8::RandomPrivate(isolate);
- }
-
- if (buffer == NULL) {
- // Do our own buffer management.
- if (buffer_size <= kMinimalBufferSize) {
- buffer_size = kMinimalBufferSize;
- if (isolate->assembler_spare_buffer() != NULL) {
- buffer = isolate->assembler_spare_buffer();
- isolate->set_assembler_spare_buffer(NULL);
- }
- }
- if (buffer == NULL) buffer = NewArray<byte>(buffer_size);
- own_buffer_ = true;
- } else {
- // Use externally provided buffer instead.
- ASSERT(buffer_size > 0);
- own_buffer_ = false;
- }
- buffer_ = static_cast<byte*>(buffer);
- buffer_size_ = buffer_size;
-
- pc_ = buffer_;
-}
-
-
-AssemblerBase::~AssemblerBase() {
- if (own_buffer_) {
- if (isolate() != NULL &&
- isolate()->assembler_spare_buffer() == NULL &&
- buffer_size_ == kMinimalBufferSize) {
- isolate()->set_assembler_spare_buffer(buffer_);
- } else {
- DeleteArray(buffer_);
- }
- }
-}
-
-
-// -----------------------------------------------------------------------------
-// Implementation of PredictableCodeSizeScope
-
-PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler,
- int expected_size)
- : assembler_(assembler),
- expected_size_(expected_size),
- start_offset_(assembler->pc_offset()),
- old_value_(assembler->predictable_code_size()) {
- assembler_->set_predictable_code_size(true);
-}
-
-
-PredictableCodeSizeScope::~PredictableCodeSizeScope() {
- // TODO(svenpanne) Remove the 'if' when everything works.
- if (expected_size_ >= 0) {
- CHECK_EQ(expected_size_, assembler_->pc_offset() - start_offset_);
- }
- assembler_->set_predictable_code_size(old_value_);
-}
-
-
-// -----------------------------------------------------------------------------
-// Implementation of Label
-
-int Label::pos() const {
- if (pos_ < 0) return -pos_ - 1;
- if (pos_ > 0) return pos_ - 1;
- UNREACHABLE();
- return 0;
-}
-
-
-// -----------------------------------------------------------------------------
-// Implementation of RelocInfoWriter and RelocIterator
-//
-// Relocation information is written backwards in memory, from high addresses
-// towards low addresses, byte by byte. Therefore, in the encodings listed
-// below, the first byte listed it at the highest address, and successive
-// bytes in the record are at progressively lower addresses.
-//
-// Encoding
-//
-// The most common modes are given single-byte encodings. Also, it is
-// easy to identify the type of reloc info and skip unwanted modes in
-// an iteration.
-//
-// The encoding relies on the fact that there are fewer than 14
-// different relocation modes using standard non-compact encoding.
-//
-// The first byte of a relocation record has a tag in its low 2 bits:
-// Here are the record schemes, depending on the low tag and optional higher
-// tags.
-//
-// Low tag:
-// 00: embedded_object: [6-bit pc delta] 00
-//
-// 01: code_target: [6-bit pc delta] 01
-//
-// 10: short_data_record: [6-bit pc delta] 10 followed by
-// [6-bit data delta] [2-bit data type tag]
-//
-// 11: long_record [2-bit high tag][4 bit middle_tag] 11
-// followed by variable data depending on type.
-//
-// 2-bit data type tags, used in short_data_record and data_jump long_record:
-// code_target_with_id: 00
-// position: 01
-// statement_position: 10
-// comment: 11 (not used in short_data_record)
-//
-// Long record format:
-// 4-bit middle_tag:
-// 0000 - 1100 : Short record for RelocInfo::Mode middle_tag + 2
-// (The middle_tag encodes rmode - RelocInfo::LAST_COMPACT_ENUM,
-// and is between 0000 and 1100)
-// The format is:
-// 00 [4 bit middle_tag] 11 followed by
-// 00 [6 bit pc delta]
-//
-// 1101: constant pool. Used on ARM only for now.
-// The format is: 11 1101 11
-// signed int (size of the constant pool).
-// 1110: long_data_record
-// The format is: [2-bit data_type_tag] 1110 11
-// signed intptr_t, lowest byte written first
-// (except data_type code_target_with_id, which
-// is followed by a signed int, not intptr_t.)
-//
-// 1111: long_pc_jump
-// The format is:
-// pc-jump: 00 1111 11,
-// 00 [6 bits pc delta]
-// or
-// pc-jump (variable length):
-// 01 1111 11,
-// [7 bits data] 0
-// ...
-// [7 bits data] 1
-// (Bits 6..31 of pc delta, with leading zeroes
-// dropped, and last non-zero chunk tagged with 1.)
-
-
-const int kMaxStandardNonCompactModes = 14;
-
-const int kTagBits = 2;
-const int kTagMask = (1 << kTagBits) - 1;
-const int kExtraTagBits = 4;
-const int kLocatableTypeTagBits = 2;
-const int kSmallDataBits = kBitsPerByte - kLocatableTypeTagBits;
-
-const int kEmbeddedObjectTag = 0;
-const int kCodeTargetTag = 1;
-const int kLocatableTag = 2;
-const int kDefaultTag = 3;
-
-const int kPCJumpExtraTag = (1 << kExtraTagBits) - 1;
-
-const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
-const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
-const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
-
-const int kVariableLengthPCJumpTopTag = 1;
-const int kChunkBits = 7;
-const int kChunkMask = (1 << kChunkBits) - 1;
-const int kLastChunkTagBits = 1;
-const int kLastChunkTagMask = 1;
-const int kLastChunkTag = 1;
-
-
-const int kDataJumpExtraTag = kPCJumpExtraTag - 1;
-
-const int kCodeWithIdTag = 0;
-const int kNonstatementPositionTag = 1;
-const int kStatementPositionTag = 2;
-const int kCommentTag = 3;
-
-const int kConstPoolExtraTag = kPCJumpExtraTag - 2;
-const int kConstPoolTag = 3;
-
-
-uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
- // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
- // Otherwise write a variable length PC jump for the bits that do
- // not fit in the kSmallPCDeltaBits bits.
- if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
- WriteExtraTag(kPCJumpExtraTag, kVariableLengthPCJumpTopTag);
- uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
- ASSERT(pc_jump > 0);
- // Write kChunkBits size chunks of the pc_jump.
- for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
- byte b = pc_jump & kChunkMask;
- *--pos_ = b << kLastChunkTagBits;
- }
- // Tag the last chunk so it can be identified.
- *pos_ = *pos_ | kLastChunkTag;
- // Return the remaining kSmallPCDeltaBits of the pc_delta.
- return pc_delta & kSmallPCDeltaMask;
-}
-
-
-void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
- // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
- pc_delta = WriteVariableLengthPCJump(pc_delta);
- *--pos_ = pc_delta << kTagBits | tag;
-}
-
-
-void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
- *--pos_ = static_cast<byte>(data_delta << kLocatableTypeTagBits | tag);
-}
-
-
-void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
- *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
- extra_tag << kTagBits |
- kDefaultTag);
-}
-
-
-void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
- // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
- pc_delta = WriteVariableLengthPCJump(pc_delta);
- WriteExtraTag(extra_tag, 0);
- *--pos_ = pc_delta;
-}
-
-
-void RelocInfoWriter::WriteExtraTaggedIntData(int data_delta, int top_tag) {
- WriteExtraTag(kDataJumpExtraTag, top_tag);
- for (int i = 0; i < kIntSize; i++) {
- *--pos_ = static_cast<byte>(data_delta);
- // Signed right shift is arithmetic shift. Tested in test-utils.cc.
- data_delta = data_delta >> kBitsPerByte;
- }
-}
-
-void RelocInfoWriter::WriteExtraTaggedConstPoolData(int data) {
- WriteExtraTag(kConstPoolExtraTag, kConstPoolTag);
- for (int i = 0; i < kIntSize; i++) {
- *--pos_ = static_cast<byte>(data);
- // Signed right shift is arithmetic shift. Tested in test-utils.cc.
- data = data >> kBitsPerByte;
- }
-}
-
-void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
- WriteExtraTag(kDataJumpExtraTag, top_tag);
- for (int i = 0; i < kIntptrSize; i++) {
- *--pos_ = static_cast<byte>(data_delta);
- // Signed right shift is arithmetic shift. Tested in test-utils.cc.
- data_delta = data_delta >> kBitsPerByte;
- }
-}
-
-
-void RelocInfoWriter::Write(const RelocInfo* rinfo) {
-#ifdef DEBUG
- byte* begin_pos = pos_;
-#endif
- ASSERT(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES);
- ASSERT(rinfo->pc() - last_pc_ >= 0);
- ASSERT(RelocInfo::LAST_STANDARD_NONCOMPACT_ENUM - RelocInfo::LAST_COMPACT_ENUM
- <= kMaxStandardNonCompactModes);
- // Use unsigned delta-encoding for pc.
- uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
- RelocInfo::Mode rmode = rinfo->rmode();
-
- // The two most common modes are given small tags, and usually fit in a byte.
- if (rmode == RelocInfo::EMBEDDED_OBJECT) {
- WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
- } else if (rmode == RelocInfo::CODE_TARGET) {
- WriteTaggedPC(pc_delta, kCodeTargetTag);
- ASSERT(begin_pos - pos_ <= RelocInfo::kMaxCallSize);
- } else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
- // Use signed delta-encoding for id.
- ASSERT(static_cast<int>(rinfo->data()) == rinfo->data());
- int id_delta = static_cast<int>(rinfo->data()) - last_id_;
- // Check if delta is small enough to fit in a tagged byte.
- if (is_intn(id_delta, kSmallDataBits)) {
- WriteTaggedPC(pc_delta, kLocatableTag);
- WriteTaggedData(id_delta, kCodeWithIdTag);
- } else {
- // Otherwise, use costly encoding.
- WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
- WriteExtraTaggedIntData(id_delta, kCodeWithIdTag);
- }
- last_id_ = static_cast<int>(rinfo->data());
- } else if (RelocInfo::IsPosition(rmode)) {
- // Use signed delta-encoding for position.
- ASSERT(static_cast<int>(rinfo->data()) == rinfo->data());
- int pos_delta = static_cast<int>(rinfo->data()) - last_position_;
- int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag
- : kStatementPositionTag;
- // Check if delta is small enough to fit in a tagged byte.
- if (is_intn(pos_delta, kSmallDataBits)) {
- WriteTaggedPC(pc_delta, kLocatableTag);
- WriteTaggedData(pos_delta, pos_type_tag);
- } else {
- // Otherwise, use costly encoding.
- WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
- WriteExtraTaggedIntData(pos_delta, pos_type_tag);
- }
- last_position_ = static_cast<int>(rinfo->data());
- } else if (RelocInfo::IsComment(rmode)) {
- // Comments are normally not generated, so we use the costly encoding.
- WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
- WriteExtraTaggedData(rinfo->data(), kCommentTag);
- ASSERT(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize);
- } else if (RelocInfo::IsConstPool(rmode)) {
- WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
- WriteExtraTaggedConstPoolData(static_cast<int>(rinfo->data()));
- } else {
- ASSERT(rmode > RelocInfo::LAST_COMPACT_ENUM);
- int saved_mode = rmode - RelocInfo::LAST_COMPACT_ENUM;
- // For all other modes we simply use the mode as the extra tag.
- // None of these modes need a data component.
- ASSERT(saved_mode < kPCJumpExtraTag && saved_mode < kDataJumpExtraTag);
- WriteExtraTaggedPC(pc_delta, saved_mode);
- }
- last_pc_ = rinfo->pc();
-#ifdef DEBUG
- ASSERT(begin_pos - pos_ <= kMaxSize);
-#endif
-}
-
-
-inline int RelocIterator::AdvanceGetTag() {
- return *--pos_ & kTagMask;
-}
-
-
-inline int RelocIterator::GetExtraTag() {
- return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
-}
-
-
-inline int RelocIterator::GetTopTag() {
- return *pos_ >> (kTagBits + kExtraTagBits);
-}
-
-
-inline void RelocIterator::ReadTaggedPC() {
- rinfo_.pc_ += *pos_ >> kTagBits;
-}
-
-
-inline void RelocIterator::AdvanceReadPC() {
- rinfo_.pc_ += *--pos_;
-}
-
-
-void RelocIterator::AdvanceReadId() {
- int x = 0;
- for (int i = 0; i < kIntSize; i++) {
- x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
- }
- last_id_ += x;
- rinfo_.data_ = last_id_;
-}
-
-
-void RelocIterator::AdvanceReadConstPoolData() {
- int x = 0;
- for (int i = 0; i < kIntSize; i++) {
- x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
- }
- rinfo_.data_ = x;
-}
-
-
-void RelocIterator::AdvanceReadPosition() {
- int x = 0;
- for (int i = 0; i < kIntSize; i++) {
- x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
- }
- last_position_ += x;
- rinfo_.data_ = last_position_;
-}
-
-
-void RelocIterator::AdvanceReadData() {
- intptr_t x = 0;
- for (int i = 0; i < kIntptrSize; i++) {
- x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
- }
- rinfo_.data_ = x;
-}
-
-
-void RelocIterator::AdvanceReadVariableLengthPCJump() {
- // Read the 32-kSmallPCDeltaBits most significant bits of the
- // pc jump in kChunkBits bit chunks and shift them into place.
- // Stop when the last chunk is encountered.
- uint32_t pc_jump = 0;
- for (int i = 0; i < kIntSize; i++) {
- byte pc_jump_part = *--pos_;
- pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
- if ((pc_jump_part & kLastChunkTagMask) == 1) break;
- }
- // The least significant kSmallPCDeltaBits bits will be added
- // later.
- rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
-}
-
-
-inline int RelocIterator::GetLocatableTypeTag() {
- return *pos_ & ((1 << kLocatableTypeTagBits) - 1);
-}
-
-
-inline void RelocIterator::ReadTaggedId() {
- int8_t signed_b = *pos_;
- // Signed right shift is arithmetic shift. Tested in test-utils.cc.
- last_id_ += signed_b >> kLocatableTypeTagBits;
- rinfo_.data_ = last_id_;
-}
-
-
-inline void RelocIterator::ReadTaggedPosition() {
- int8_t signed_b = *pos_;
- // Signed right shift is arithmetic shift. Tested in test-utils.cc.
- last_position_ += signed_b >> kLocatableTypeTagBits;
- rinfo_.data_ = last_position_;
-}
-
-
-static inline RelocInfo::Mode GetPositionModeFromTag(int tag) {
- ASSERT(tag == kNonstatementPositionTag ||
- tag == kStatementPositionTag);
- return (tag == kNonstatementPositionTag) ?
- RelocInfo::POSITION :
- RelocInfo::STATEMENT_POSITION;
-}
-
-
-void RelocIterator::next() {
- ASSERT(!done());
- // Basically, do the opposite of RelocInfoWriter::Write.
- // Reading of data is as far as possible avoided for unwanted modes,
- // but we must always update the pc.
- //
- // We exit this loop by returning when we find a mode we want.
- while (pos_ > end_) {
- int tag = AdvanceGetTag();
- if (tag == kEmbeddedObjectTag) {
- ReadTaggedPC();
- if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
- } else if (tag == kCodeTargetTag) {
- ReadTaggedPC();
- if (SetMode(RelocInfo::CODE_TARGET)) return;
- } else if (tag == kLocatableTag) {
- ReadTaggedPC();
- Advance();
- int locatable_tag = GetLocatableTypeTag();
- if (locatable_tag == kCodeWithIdTag) {
- if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
- ReadTaggedId();
- return;
- }
- } else {
- // Compact encoding is never used for comments,
- // so it must be a position.
- ASSERT(locatable_tag == kNonstatementPositionTag ||
- locatable_tag == kStatementPositionTag);
- if (mode_mask_ & RelocInfo::kPositionMask) {
- ReadTaggedPosition();
- if (SetMode(GetPositionModeFromTag(locatable_tag))) return;
- }
- }
- } else {
- ASSERT(tag == kDefaultTag);
- int extra_tag = GetExtraTag();
- if (extra_tag == kPCJumpExtraTag) {
- if (GetTopTag() == kVariableLengthPCJumpTopTag) {
- AdvanceReadVariableLengthPCJump();
- } else {
- AdvanceReadPC();
- }
- } else if (extra_tag == kDataJumpExtraTag) {
- int locatable_tag = GetTopTag();
- if (locatable_tag == kCodeWithIdTag) {
- if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
- AdvanceReadId();
- return;
- }
- Advance(kIntSize);
- } else if (locatable_tag != kCommentTag) {
- ASSERT(locatable_tag == kNonstatementPositionTag ||
- locatable_tag == kStatementPositionTag);
- if (mode_mask_ & RelocInfo::kPositionMask) {
- AdvanceReadPosition();
- if (SetMode(GetPositionModeFromTag(locatable_tag))) return;
- } else {
- Advance(kIntSize);
- }
- } else {
- ASSERT(locatable_tag == kCommentTag);
- if (SetMode(RelocInfo::COMMENT)) {
- AdvanceReadData();
- return;
- }
- Advance(kIntptrSize);
- }
- } else if ((extra_tag == kConstPoolExtraTag) &&
- (GetTopTag() == kConstPoolTag)) {
- if (SetMode(RelocInfo::CONST_POOL)) {
- AdvanceReadConstPoolData();
- return;
- }
- Advance(kIntSize);
- } else {
- AdvanceReadPC();
- int rmode = extra_tag + RelocInfo::LAST_COMPACT_ENUM;
- if (SetMode(static_cast<RelocInfo::Mode>(rmode))) return;
- }
- }
- }
- if (code_age_sequence_ != NULL) {
- byte* old_code_age_sequence = code_age_sequence_;
- code_age_sequence_ = NULL;
- if (SetMode(RelocInfo::CODE_AGE_SEQUENCE)) {
- rinfo_.data_ = 0;
- rinfo_.pc_ = old_code_age_sequence;
- return;
- }
- }
- done_ = true;
-}
-
-
-RelocIterator::RelocIterator(Code* code, int mode_mask) {
- rinfo_.host_ = code;
- rinfo_.pc_ = code->instruction_start();
- rinfo_.data_ = 0;
- // Relocation info is read backwards.
- pos_ = code->relocation_start() + code->relocation_size();
- end_ = code->relocation_start();
- done_ = false;
- mode_mask_ = mode_mask;
- last_id_ = 0;
- last_position_ = 0;
- byte* sequence = code->FindCodeAgeSequence();
- if (sequence != NULL && !Code::IsYoungSequence(sequence)) {
- code_age_sequence_ = sequence;
- } else {
- code_age_sequence_ = NULL;
- }
- if (mode_mask_ == 0) pos_ = end_;
- next();
-}
-
-
-RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
- rinfo_.pc_ = desc.buffer;
- rinfo_.data_ = 0;
- // Relocation info is read backwards.
- pos_ = desc.buffer + desc.buffer_size;
- end_ = pos_ - desc.reloc_size;
- done_ = false;
- mode_mask_ = mode_mask;
- last_id_ = 0;
- last_position_ = 0;
- code_age_sequence_ = NULL;
- if (mode_mask_ == 0) pos_ = end_;
- next();
-}
-
-
-// -----------------------------------------------------------------------------
-// Implementation of RelocInfo
-
-
-#ifdef DEBUG
-bool RelocInfo::RequiresRelocation(const CodeDesc& desc) {
- // Ensure there are no code targets or embedded objects present in the
- // deoptimization entries, they would require relocation after code
- // generation.
- int mode_mask = RelocInfo::kCodeTargetMask |
- RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
- RelocInfo::ModeMask(RelocInfo::GLOBAL_PROPERTY_CELL) |
- RelocInfo::kApplyMask;
- RelocIterator it(desc, mode_mask);
- return !it.done();
-}
-#endif
-
-
-#ifdef ENABLE_DISASSEMBLER
-const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
- switch (rmode) {
- case RelocInfo::NONE32:
- return "no reloc 32";
- case RelocInfo::NONE64:
- return "no reloc 64";
- case RelocInfo::EMBEDDED_OBJECT:
- return "embedded object";
- case RelocInfo::CONSTRUCT_CALL:
- return "code target (js construct call)";
- case RelocInfo::CODE_TARGET_CONTEXT:
- return "code target (context)";
- case RelocInfo::DEBUG_BREAK:
-#ifndef ENABLE_DEBUGGER_SUPPORT
- UNREACHABLE();
-#endif
- return "debug break";
- case RelocInfo::CODE_TARGET:
- return "code target";
- case RelocInfo::CODE_TARGET_WITH_ID:
- return "code target with id";
- case RelocInfo::GLOBAL_PROPERTY_CELL:
- return "global property cell";
- case RelocInfo::RUNTIME_ENTRY:
- return "runtime entry";
- case RelocInfo::JS_RETURN:
- return "js return";
- case RelocInfo::COMMENT:
- return "comment";
- case RelocInfo::POSITION:
- return "position";
- case RelocInfo::STATEMENT_POSITION:
- return "statement position";
- case RelocInfo::EXTERNAL_REFERENCE:
- return "external reference";
- case RelocInfo::INTERNAL_REFERENCE:
- return "internal reference";
- case RelocInfo::CONST_POOL:
- return "constant pool";
- case RelocInfo::DEBUG_BREAK_SLOT:
-#ifndef ENABLE_DEBUGGER_SUPPORT
- UNREACHABLE();
-#endif
- return "debug break slot";
- case RelocInfo::CODE_AGE_SEQUENCE:
- return "code_age_sequence";
- case RelocInfo::NUMBER_OF_MODES:
- UNREACHABLE();
- return "number_of_modes";
- }
- return "unknown relocation type";
-}
-
-
-void RelocInfo::Print(FILE* out) {
- FPrintF(out, "%p %s", pc_, RelocModeName(rmode_));
- if (IsComment(rmode_)) {
- FPrintF(out, " (%s)", reinterpret_cast<char*>(data_));
- } else if (rmode_ == EMBEDDED_OBJECT) {
- FPrintF(out, " (");
- target_object()->ShortPrint(out);
- FPrintF(out, ")");
- } else if (rmode_ == EXTERNAL_REFERENCE) {
- ExternalReferenceEncoder ref_encoder;
- FPrintF(out, " (%s) (%p)",
- ref_encoder.NameOfAddress(*target_reference_address()),
- *target_reference_address());
- } else if (IsCodeTarget(rmode_)) {
- Code* code = Code::GetCodeFromTargetAddress(target_address());
- FPrintF(out, " (%s) (%p)", Code::Kind2String(code->kind()),
- target_address());
- if (rmode_ == CODE_TARGET_WITH_ID) {
- PrintF(" (id=%d)", static_cast<int>(data_));
- }
- } else if (IsPosition(rmode_)) {
- FPrintF(out, " (%" V8_PTR_PREFIX "d)", data());
- } else if (rmode_ == RelocInfo::RUNTIME_ENTRY &&
- Isolate::Current()->deoptimizer_data() != NULL) {
- // Depotimization bailouts are stored as runtime entries.
- int id = Deoptimizer::GetDeoptimizationId(
- target_address(), Deoptimizer::EAGER);
- if (id != Deoptimizer::kNotDeoptimizationEntry) {
- FPrintF(out, " (deoptimization bailout %d)", id);
- }
- }
-
- FPrintF(out, "\n");
-}
-#endif // ENABLE_DISASSEMBLER
-
-
-#ifdef VERIFY_HEAP
-void RelocInfo::Verify() {
- switch (rmode_) {
- case EMBEDDED_OBJECT:
- Object::VerifyPointer(target_object());
- break;
- case GLOBAL_PROPERTY_CELL:
- Object::VerifyPointer(target_cell());
- break;
- case DEBUG_BREAK:
-#ifndef ENABLE_DEBUGGER_SUPPORT
- UNREACHABLE();
- break;
-#endif
- case CONSTRUCT_CALL:
- case CODE_TARGET_CONTEXT:
- case CODE_TARGET_WITH_ID:
- case CODE_TARGET: {
- // convert inline target address to code object
- Address addr = target_address();
- CHECK(addr != NULL);
- // Check that we can find the right code object.
- Code* code = Code::GetCodeFromTargetAddress(addr);
- Object* found = HEAP->FindCodeObject(addr);
- CHECK(found->IsCode());
- CHECK(code->address() == HeapObject::cast(found)->address());
- break;
- }
- case RUNTIME_ENTRY:
- case JS_RETURN:
- case COMMENT:
- case POSITION:
- case STATEMENT_POSITION:
- case EXTERNAL_REFERENCE:
- case INTERNAL_REFERENCE:
- case CONST_POOL:
- case DEBUG_BREAK_SLOT:
- case NONE32:
- case NONE64:
- break;
- case NUMBER_OF_MODES:
- UNREACHABLE();
- break;
- case CODE_AGE_SEQUENCE:
- ASSERT(Code::IsYoungSequence(pc_) || code_age_stub()->IsCode());
- break;
- }
-}
-#endif // VERIFY_HEAP
-
-
-// -----------------------------------------------------------------------------
-// Implementation of ExternalReference
-
-void ExternalReference::SetUp() {
- double_constants.min_int = kMinInt;
- double_constants.one_half = 0.5;
- double_constants.minus_one_half = -0.5;
- double_constants.minus_zero = -0.0;
- double_constants.uint8_max_value = 255;
- double_constants.zero = 0.0;
- double_constants.canonical_non_hole_nan = OS::nan_value();
- double_constants.the_hole_nan = BitCast<double>(kHoleNanInt64);
- double_constants.negative_infinity = -V8_INFINITY;
-
- math_exp_data_mutex = OS::CreateMutex();
-}
-
-
-void ExternalReference::InitializeMathExpData() {
- // Early return?
- if (math_exp_data_initialized) return;
-
- math_exp_data_mutex->Lock();
- if (!math_exp_data_initialized) {
- // If this is changed, generated code must be adapted too.
- const int kTableSizeBits = 11;
- const int kTableSize = 1 << kTableSizeBits;
- const double kTableSizeDouble = static_cast<double>(kTableSize);
-
- math_exp_constants_array = new double[9];
- // Input values smaller than this always return 0.
- math_exp_constants_array[0] = -708.39641853226408;
- // Input values larger than this always return +Infinity.
- math_exp_constants_array[1] = 709.78271289338397;
- math_exp_constants_array[2] = V8_INFINITY;
- // The rest is black magic. Do not attempt to understand it. It is
- // loosely based on the "expd" function published at:
- // http://herumi.blogspot.com/2011/08/fast-double-precision-exponential.html
- const double constant3 = (1 << kTableSizeBits) / log(2.0);
- math_exp_constants_array[3] = constant3;
- math_exp_constants_array[4] =
- static_cast<double>(static_cast<int64_t>(3) << 51);
- math_exp_constants_array[5] = 1 / constant3;
- math_exp_constants_array[6] = 3.0000000027955394;
- math_exp_constants_array[7] = 0.16666666685227835;
- math_exp_constants_array[8] = 1;
-
- math_exp_log_table_array = new double[kTableSize];
- for (int i = 0; i < kTableSize; i++) {
- double value = pow(2, i / kTableSizeDouble);
-
- uint64_t bits = BitCast<uint64_t, double>(value);
- bits &= (static_cast<uint64_t>(1) << 52) - 1;
- double mantissa = BitCast<double, uint64_t>(bits);
-
- // <just testing>
- uint64_t doublebits;
- memcpy(&doublebits, &value, sizeof doublebits);
- doublebits &= (static_cast<uint64_t>(1) << 52) - 1;
- double mantissa2;
- memcpy(&mantissa2, &doublebits, sizeof mantissa2);
- CHECK_EQ(mantissa, mantissa2);
- // </just testing>
-
- math_exp_log_table_array[i] = mantissa;
- }
-
- math_exp_data_initialized = true;
- }
- math_exp_data_mutex->Unlock();
-}
-
-
-void ExternalReference::TearDownMathExpData() {
- delete[] math_exp_constants_array;
- delete[] math_exp_log_table_array;
- delete math_exp_data_mutex;
-}
-
-
-ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate)
- : address_(Redirect(isolate, Builtins::c_function_address(id))) {}
-
-
-ExternalReference::ExternalReference(
- ApiFunction* fun,
- Type type = ExternalReference::BUILTIN_CALL,
- Isolate* isolate = NULL)
- : address_(Redirect(isolate, fun->address(), type)) {}
-
-
-ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate)
- : address_(isolate->builtins()->builtin_address(name)) {}
-
-
-ExternalReference::ExternalReference(Runtime::FunctionId id,
- Isolate* isolate)
- : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {}
-
-
-ExternalReference::ExternalReference(const Runtime::Function* f,
- Isolate* isolate)
- : address_(Redirect(isolate, f->entry)) {}
-
-
-ExternalReference ExternalReference::isolate_address() {
- return ExternalReference(Isolate::Current());
-}
-
-
-ExternalReference::ExternalReference(const IC_Utility& ic_utility,
- Isolate* isolate)
- : address_(Redirect(isolate, ic_utility.address())) {}
-
-#ifdef ENABLE_DEBUGGER_SUPPORT
-ExternalReference::ExternalReference(const Debug_Address& debug_address,
- Isolate* isolate)
- : address_(debug_address.address(isolate)) {}
-#endif
-
-ExternalReference::ExternalReference(StatsCounter* counter)
- : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
-
-
-ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate)
- : address_(isolate->get_address_from_id(id)) {}
-
-
-ExternalReference::ExternalReference(const SCTableReference& table_ref)
- : address_(table_ref.address()) {}
-
-
-ExternalReference ExternalReference::
- incremental_marking_record_write_function(Isolate* isolate) {
- return ExternalReference(Redirect(
- isolate,
- FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode)));
-}
-
-
-ExternalReference ExternalReference::
- incremental_evacuation_record_write_function(Isolate* isolate) {
- return ExternalReference(Redirect(
- isolate,
- FUNCTION_ADDR(IncrementalMarking::RecordWriteForEvacuationFromCode)));
-}
-
-
-ExternalReference ExternalReference::
- store_buffer_overflow_function(Isolate* isolate) {
- return ExternalReference(Redirect(
- isolate,
- FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow)));
-}
-
-
-ExternalReference ExternalReference::flush_icache_function(Isolate* isolate) {
- return ExternalReference(Redirect(isolate, FUNCTION_ADDR(CPU::FlushICache)));
-}
-
-
-ExternalReference ExternalReference::perform_gc_function(Isolate* isolate) {
- return
- ExternalReference(Redirect(isolate, FUNCTION_ADDR(Runtime::PerformGC)));
-}
-
-
-ExternalReference ExternalReference::fill_heap_number_with_random_function(
- Isolate* isolate) {
- return ExternalReference(Redirect(
- isolate,
- FUNCTION_ADDR(V8::FillHeapNumberWithRandom)));
-}
-
-
-ExternalReference ExternalReference::delete_handle_scope_extensions(
- Isolate* isolate) {
- return ExternalReference(Redirect(
- isolate,
- FUNCTION_ADDR(HandleScope::DeleteExtensions)));
-}
-
-
-ExternalReference ExternalReference::random_uint32_function(
- Isolate* isolate) {
- return ExternalReference(Redirect(isolate, FUNCTION_ADDR(V8::Random)));
-}
-
-
-ExternalReference ExternalReference::get_date_field_function(
- Isolate* isolate) {
- return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField)));
-}
-
-
-ExternalReference ExternalReference::get_make_code_young_function(
- Isolate* isolate) {
- return ExternalReference(Redirect(
- isolate, FUNCTION_ADDR(Code::MakeCodeAgeSequenceYoung)));
-}
-
-
-ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) {
- return ExternalReference(isolate->date_cache()->stamp_address());
-}
-
-
-ExternalReference ExternalReference::transcendental_cache_array_address(
- Isolate* isolate) {
- return ExternalReference(
- isolate->transcendental_cache()->cache_array_address());
-}
-
-
-ExternalReference ExternalReference::new_deoptimizer_function(
- Isolate* isolate) {
- return ExternalReference(
- Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New)));
-}
-
-
-ExternalReference ExternalReference::compute_output_frames_function(
- Isolate* isolate) {
- return ExternalReference(
- Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames)));
-}
-
-
-ExternalReference ExternalReference::log_enter_external_function(
- Isolate* isolate) {
- return ExternalReference(
- Redirect(isolate, FUNCTION_ADDR(Logger::EnterExternal)));
-}
-
-
-ExternalReference ExternalReference::log_leave_external_function(
- Isolate* isolate) {
- return ExternalReference(
- Redirect(isolate, FUNCTION_ADDR(Logger::LeaveExternal)));
-}
-
-
-ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) {
- return ExternalReference(isolate->keyed_lookup_cache()->keys_address());
-}
-
-
-ExternalReference ExternalReference::keyed_lookup_cache_field_offsets(
- Isolate* isolate) {
- return ExternalReference(
- isolate->keyed_lookup_cache()->field_offsets_address());
-}
-
-
-ExternalReference ExternalReference::roots_array_start(Isolate* isolate) {
- return ExternalReference(isolate->heap()->roots_array_start());
-}
-
-
-ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) {
- return ExternalReference(isolate->stack_guard()->address_of_jslimit());
-}
-
-
-ExternalReference ExternalReference::address_of_real_stack_limit(
- Isolate* isolate) {
- return ExternalReference(isolate->stack_guard()->address_of_real_jslimit());
-}
-
-
-ExternalReference ExternalReference::address_of_regexp_stack_limit(
- Isolate* isolate) {
- return ExternalReference(isolate->regexp_stack()->limit_address());
-}
-
-
-ExternalReference ExternalReference::new_space_start(Isolate* isolate) {
- return ExternalReference(isolate->heap()->NewSpaceStart());
-}
-
-
-ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) {
- return ExternalReference(isolate->heap()->store_buffer()->TopAddress());
-}
-
-
-ExternalReference ExternalReference::new_space_mask(Isolate* isolate) {
- return ExternalReference(reinterpret_cast<Address>(
- isolate->heap()->NewSpaceMask()));
-}
-
-
-ExternalReference ExternalReference::new_space_allocation_top_address(
- Isolate* isolate) {
- return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress());
-}
-
-
-ExternalReference ExternalReference::heap_always_allocate_scope_depth(
- Isolate* isolate) {
- Heap* heap = isolate->heap();
- return ExternalReference(heap->always_allocate_scope_depth_address());
-}
-
-
-ExternalReference ExternalReference::new_space_allocation_limit_address(
- Isolate* isolate) {
- return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress());
-}
-
-
-ExternalReference ExternalReference::handle_scope_level_address(
- Isolate* isolate) {
- return ExternalReference(HandleScope::current_level_address(isolate));
-}
-
-
-ExternalReference ExternalReference::handle_scope_next_address(
- Isolate* isolate) {
- return ExternalReference(HandleScope::current_next_address(isolate));
-}
-
-
-ExternalReference ExternalReference::handle_scope_limit_address(
- Isolate* isolate) {
- return ExternalReference(HandleScope::current_limit_address(isolate));
-}
-
-
-ExternalReference ExternalReference::scheduled_exception_address(
- Isolate* isolate) {
- return ExternalReference(isolate->scheduled_exception_address());
-}
-
-
-ExternalReference ExternalReference::address_of_pending_message_obj(
- Isolate* isolate) {
- return ExternalReference(isolate->pending_message_obj_address());
-}
-
-
-ExternalReference ExternalReference::address_of_has_pending_message(
- Isolate* isolate) {
- return ExternalReference(isolate->has_pending_message_address());
-}
-
-
-ExternalReference ExternalReference::address_of_pending_message_script(
- Isolate* isolate) {
- return ExternalReference(isolate->pending_message_script_address());
-}
-
-
-ExternalReference ExternalReference::address_of_min_int() {
- return ExternalReference(reinterpret_cast<void*>(&double_constants.min_int));
-}
-
-
-ExternalReference ExternalReference::address_of_one_half() {
- return ExternalReference(reinterpret_cast<void*>(&double_constants.one_half));
-}
-
-
-ExternalReference ExternalReference::address_of_minus_one_half() {
- return ExternalReference(
- reinterpret_cast<void*>(&double_constants.minus_one_half));
-}
-
-
-ExternalReference ExternalReference::address_of_minus_zero() {
- return ExternalReference(
- reinterpret_cast<void*>(&double_constants.minus_zero));
-}
-
-
-ExternalReference ExternalReference::address_of_zero() {
- return ExternalReference(reinterpret_cast<void*>(&double_constants.zero));
-}
-
-
-ExternalReference ExternalReference::address_of_uint8_max_value() {
- return ExternalReference(
- reinterpret_cast<void*>(&double_constants.uint8_max_value));
-}
-
-
-ExternalReference ExternalReference::address_of_negative_infinity() {
- return ExternalReference(
- reinterpret_cast<void*>(&double_constants.negative_infinity));
-}
-
-
-ExternalReference ExternalReference::address_of_canonical_non_hole_nan() {
- return ExternalReference(
- reinterpret_cast<void*>(&double_constants.canonical_non_hole_nan));
-}
-
-
-ExternalReference ExternalReference::address_of_the_hole_nan() {
- return ExternalReference(
- reinterpret_cast<void*>(&double_constants.the_hole_nan));
-}
-
-
-#ifndef V8_INTERPRETED_REGEXP
-
-ExternalReference ExternalReference::re_check_stack_guard_state(
- Isolate* isolate) {
- Address function;
-#ifdef V8_TARGET_ARCH_X64
- function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
-#elif V8_TARGET_ARCH_IA32
- function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
-#elif V8_TARGET_ARCH_ARM
- function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
-#elif V8_TARGET_ARCH_MIPS
- function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
-#else
- UNREACHABLE();
-#endif
- return ExternalReference(Redirect(isolate, function));
-}
-
-ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) {
- return ExternalReference(
- Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
-}
-
-ExternalReference ExternalReference::re_case_insensitive_compare_uc16(
- Isolate* isolate) {
- return ExternalReference(Redirect(
- isolate,
- FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
-}
-
-ExternalReference ExternalReference::re_word_character_map() {
- return ExternalReference(
- NativeRegExpMacroAssembler::word_character_map_address());
-}
-
-ExternalReference ExternalReference::address_of_static_offsets_vector(
- Isolate* isolate) {
- return ExternalReference(
- reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector()));
-}
-
-ExternalReference ExternalReference::address_of_regexp_stack_memory_address(
- Isolate* isolate) {
- return ExternalReference(
- isolate->regexp_stack()->memory_address());
-}
-
-ExternalReference ExternalReference::address_of_regexp_stack_memory_size(
- Isolate* isolate) {
- return ExternalReference(isolate->regexp_stack()->memory_size_address());
-}
-
-#endif // V8_INTERPRETED_REGEXP
-
-
-static double add_two_doubles(double x, double y) {
- return x + y;
-}
-
-
-static double sub_two_doubles(double x, double y) {
- return x - y;
-}
-
-
-static double mul_two_doubles(double x, double y) {
- return x * y;
-}
-
-
-static double div_two_doubles(double x, double y) {
- return x / y;
-}
-
-
-static double mod_two_doubles(double x, double y) {
- return modulo(x, y);
-}
-
-
-static double math_sin_double(double x) {
- return sin(x);
-}
-
-
-static double math_cos_double(double x) {
- return cos(x);
-}
-
-
-static double math_tan_double(double x) {
- return tan(x);
-}
-
-
-static double math_log_double(double x) {
- return log(x);
-}
-
-
-ExternalReference ExternalReference::math_sin_double_function(
- Isolate* isolate) {
- return ExternalReference(Redirect(isolate,
- FUNCTION_ADDR(math_sin_double),
- BUILTIN_FP_CALL));
-}
-
-
-ExternalReference ExternalReference::math_cos_double_function(
- Isolate* isolate) {
- return ExternalReference(Redirect(isolate,
- FUNCTION_ADDR(math_cos_double),
- BUILTIN_FP_CALL));
-}
-
-
-ExternalReference ExternalReference::math_tan_double_function(
- Isolate* isolate) {
- return ExternalReference(Redirect(isolate,
- FUNCTION_ADDR(math_tan_double),
- BUILTIN_FP_CALL));
-}
-
-
-ExternalReference ExternalReference::math_log_double_function(
- Isolate* isolate) {
- return ExternalReference(Redirect(isolate,
- FUNCTION_ADDR(math_log_double),
- BUILTIN_FP_CALL));
-}
-
-
-ExternalReference ExternalReference::math_exp_constants(int constant_index) {
- ASSERT(math_exp_data_initialized);
- return ExternalReference(
- reinterpret_cast<void*>(math_exp_constants_array + constant_index));
-}
-
-
-ExternalReference ExternalReference::math_exp_log_table() {
- ASSERT(math_exp_data_initialized);
- return ExternalReference(reinterpret_cast<void*>(math_exp_log_table_array));
-}
-
-
-ExternalReference ExternalReference::page_flags(Page* page) {
- return ExternalReference(reinterpret_cast<Address>(page) +
- MemoryChunk::kFlagsOffset);
-}
-
-
-ExternalReference ExternalReference::ForDeoptEntry(Address entry) {
- return ExternalReference(entry);
-}
-
-
-double power_helper(double x, double y) {
- int y_int = static_cast<int>(y);
- if (y == y_int) {
- return power_double_int(x, y_int); // Returns 1 if exponent is 0.
- }
- if (y == 0.5) {
- return (isinf(x)) ? V8_INFINITY : fast_sqrt(x + 0.0); // Convert -0 to +0.
- }
- if (y == -0.5) {
- return (isinf(x)) ? 0 : 1.0 / fast_sqrt(x + 0.0); // Convert -0 to +0.
- }
- return power_double_double(x, y);
-}
-
-
-// Helper function to compute x^y, where y is known to be an
-// integer. Uses binary decomposition to limit the number of
-// multiplications; see the discussion in "Hacker's Delight" by Henry
-// S. Warren, Jr., figure 11-6, page 213.
-double power_double_int(double x, int y) {
- double m = (y < 0) ? 1 / x : x;
- unsigned n = (y < 0) ? -y : y;
- double p = 1;
- while (n != 0) {
- if ((n & 1) != 0) p *= m;
- m *= m;
- if ((n & 2) != 0) p *= m;
- m *= m;
- n >>= 2;
- }
- return p;
-}
-
-
-double power_double_double(double x, double y) {
-#if defined(__MINGW64_VERSION_MAJOR) && \
- (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)
- // MinGW64 has a custom implementation for pow. This handles certain
- // special cases that are different.
- if ((x == 0.0 || isinf(x)) && isfinite(y)) {
- double f;
- if (modf(y, &f) != 0.0) return ((x == 0.0) ^ (y > 0)) ? V8_INFINITY : 0;
- }
-
- if (x == 2.0) {
- int y_int = static_cast<int>(y);
- if (y == y_int) return ldexp(1.0, y_int);
- }
-#endif
-
- // The checks for special cases can be dropped in ia32 because it has already
- // been done in generated code before bailing out here.
- if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) return OS::nan_value();
- return pow(x, y);
-}
-
-
-ExternalReference ExternalReference::power_double_double_function(
- Isolate* isolate) {
- return ExternalReference(Redirect(isolate,
- FUNCTION_ADDR(power_double_double),
- BUILTIN_FP_FP_CALL));
-}
-
-
-ExternalReference ExternalReference::power_double_int_function(
- Isolate* isolate) {
- return ExternalReference(Redirect(isolate,
- FUNCTION_ADDR(power_double_int),
- BUILTIN_FP_INT_CALL));
-}
-
-
-static int native_compare_doubles(double y, double x) {
- if (x == y) return EQUAL;
- return x < y ? LESS : GREATER;
-}
-
-
-bool EvalComparison(Token::Value op, double op1, double op2) {
- ASSERT(Token::IsCompareOp(op));
- switch (op) {
- case Token::EQ:
- case Token::EQ_STRICT: return (op1 == op2);
- case Token::NE: return (op1 != op2);
- case Token::LT: return (op1 < op2);
- case Token::GT: return (op1 > op2);
- case Token::LTE: return (op1 <= op2);
- case Token::GTE: return (op1 >= op2);
- default:
- UNREACHABLE();
- return false;
- }
-}
-
-
-ExternalReference ExternalReference::double_fp_operation(
- Token::Value operation, Isolate* isolate) {
- typedef double BinaryFPOperation(double x, double y);
- BinaryFPOperation* function = NULL;
- switch (operation) {
- case Token::ADD:
- function = &add_two_doubles;
- break;
- case Token::SUB:
- function = &sub_two_doubles;
- break;
- case Token::MUL:
- function = &mul_two_doubles;
- break;
- case Token::DIV:
- function = &div_two_doubles;
- break;
- case Token::MOD:
- function = &mod_two_doubles;
- break;
- default:
- UNREACHABLE();
- }
- return ExternalReference(Redirect(isolate,
- FUNCTION_ADDR(function),
- BUILTIN_FP_FP_CALL));
-}
-
-
-ExternalReference ExternalReference::compare_doubles(Isolate* isolate) {
- return ExternalReference(Redirect(isolate,
- FUNCTION_ADDR(native_compare_doubles),
- BUILTIN_COMPARE_CALL));
-}
-
-
-#ifdef ENABLE_DEBUGGER_SUPPORT
-ExternalReference ExternalReference::debug_break(Isolate* isolate) {
- return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break)));
-}
-
-
-ExternalReference ExternalReference::debug_step_in_fp_address(
- Isolate* isolate) {
- return ExternalReference(isolate->debug()->step_in_fp_addr());
-}
-#endif
-
-
-void PositionsRecorder::RecordPosition(int pos) {
- ASSERT(pos != RelocInfo::kNoPosition);
- ASSERT(pos >= 0);
- state_.current_position = pos;
-#ifdef ENABLE_GDB_JIT_INTERFACE
- if (gdbjit_lineinfo_ != NULL) {
- gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, false);
- }
-#endif
- LOG_CODE_EVENT(assembler_->isolate(),
- CodeLinePosInfoAddPositionEvent(jit_handler_data_,
- assembler_->pc_offset(),
- pos));
-}
-
-
-void PositionsRecorder::RecordStatementPosition(int pos) {
- ASSERT(pos != RelocInfo::kNoPosition);
- ASSERT(pos >= 0);
- state_.current_statement_position = pos;
-#ifdef ENABLE_GDB_JIT_INTERFACE
- if (gdbjit_lineinfo_ != NULL) {
- gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, true);
- }
-#endif
- LOG_CODE_EVENT(assembler_->isolate(),
- CodeLinePosInfoAddStatementPositionEvent(
- jit_handler_data_,
- assembler_->pc_offset(),
- pos));
-}
-
-
-bool PositionsRecorder::WriteRecordedPositions() {
- bool written = false;
-
- // Write the statement position if it is different from what was written last
- // time.
- if (state_.current_statement_position != state_.written_statement_position) {
- EnsureSpace ensure_space(assembler_);
- assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION,
- state_.current_statement_position);
- state_.written_statement_position = state_.current_statement_position;
- written = true;
- }
-
- // Write the position if it is different from what was written last time and
- // also different from the written statement position.
- if (state_.current_position != state_.written_position &&
- state_.current_position != state_.written_statement_position) {
- EnsureSpace ensure_space(assembler_);
- assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position);
- state_.written_position = state_.current_position;
- written = true;
- }
-
- // Return whether something was written.
- return written;
-}
-
-} } // namespace v8::internal