summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/hydrogen-instructions.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/hydrogen-instructions.cc')
-rw-r--r--src/3rdparty/v8/src/hydrogen-instructions.cc3277
1 files changed, 0 insertions, 3277 deletions
diff --git a/src/3rdparty/v8/src/hydrogen-instructions.cc b/src/3rdparty/v8/src/hydrogen-instructions.cc
deleted file mode 100644
index 37bfb8f..0000000
--- a/src/3rdparty/v8/src/hydrogen-instructions.cc
+++ /dev/null
@@ -1,3277 +0,0 @@
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include "v8.h"
-
-#include "double.h"
-#include "factory.h"
-#include "hydrogen.h"
-
-#if V8_TARGET_ARCH_IA32
-#include "ia32/lithium-ia32.h"
-#elif V8_TARGET_ARCH_X64
-#include "x64/lithium-x64.h"
-#elif V8_TARGET_ARCH_ARM
-#include "arm/lithium-arm.h"
-#elif V8_TARGET_ARCH_MIPS
-#include "mips/lithium-mips.h"
-#else
-#error Unsupported target architecture.
-#endif
-
-namespace v8 {
-namespace internal {
-
-#define DEFINE_COMPILE(type) \
- LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) { \
- return builder->Do##type(this); \
- }
-HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
-#undef DEFINE_COMPILE
-
-
-const char* Representation::Mnemonic() const {
- switch (kind_) {
- case kNone: return "v";
- case kTagged: return "t";
- case kDouble: return "d";
- case kInteger32: return "i";
- case kExternal: return "x";
- default:
- UNREACHABLE();
- return NULL;
- }
-}
-
-
-int HValue::LoopWeight() const {
- const int w = FLAG_loop_weight;
- static const int weights[] = { 1, w, w*w, w*w*w, w*w*w*w };
- return weights[Min(block()->LoopNestingDepth(),
- static_cast<int>(ARRAY_SIZE(weights)-1))];
-}
-
-
-Isolate* HValue::isolate() const {
- ASSERT(block() != NULL);
- return block()->graph()->isolate();
-}
-
-
-void HValue::AssumeRepresentation(Representation r) {
- if (CheckFlag(kFlexibleRepresentation)) {
- ChangeRepresentation(r);
- // The representation of the value is dictated by type feedback and
- // will not be changed later.
- ClearFlag(kFlexibleRepresentation);
- }
-}
-
-
-void HValue::InferRepresentation(HInferRepresentation* h_infer) {
- ASSERT(CheckFlag(kFlexibleRepresentation));
- Representation new_rep = RepresentationFromInputs();
- UpdateRepresentation(new_rep, h_infer, "inputs");
- new_rep = RepresentationFromUses();
- UpdateRepresentation(new_rep, h_infer, "uses");
-}
-
-
-Representation HValue::RepresentationFromUses() {
- if (HasNoUses()) return Representation::None();
-
- // Array of use counts for each representation.
- int use_count[Representation::kNumRepresentations] = { 0 };
-
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- HValue* use = it.value();
- Representation rep = use->observed_input_representation(it.index());
- if (rep.IsNone()) continue;
- if (FLAG_trace_representation) {
- PrintF("#%d %s is used by #%d %s as %s%s\n",
- id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(),
- (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
- }
- use_count[rep.kind()] += use->LoopWeight();
- }
- if (IsPhi()) HPhi::cast(this)->AddIndirectUsesTo(&use_count[0]);
- int tagged_count = use_count[Representation::kTagged];
- int double_count = use_count[Representation::kDouble];
- int int32_count = use_count[Representation::kInteger32];
-
- if (tagged_count > 0) return Representation::Tagged();
- if (double_count > 0) return Representation::Double();
- if (int32_count > 0) return Representation::Integer32();
-
- return Representation::None();
-}
-
-
-void HValue::UpdateRepresentation(Representation new_rep,
- HInferRepresentation* h_infer,
- const char* reason) {
- Representation r = representation();
- if (new_rep.is_more_general_than(r)) {
- // When an HConstant is marked "not convertible to integer", then
- // never try to represent it as an integer.
- if (new_rep.IsInteger32() && !IsConvertibleToInteger()) {
- new_rep = Representation::Tagged();
- if (FLAG_trace_representation) {
- PrintF("Changing #%d %s representation %s -> %s because it's NCTI"
- " (%s want i)\n",
- id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
- }
- } else {
- if (FLAG_trace_representation) {
- PrintF("Changing #%d %s representation %s -> %s based on %s\n",
- id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
- }
- }
- ChangeRepresentation(new_rep);
- AddDependantsToWorklist(h_infer);
- }
-}
-
-
-void HValue::AddDependantsToWorklist(HInferRepresentation* h_infer) {
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- h_infer->AddToWorklist(it.value());
- }
- for (int i = 0; i < OperandCount(); ++i) {
- h_infer->AddToWorklist(OperandAt(i));
- }
-}
-
-
-static int32_t ConvertAndSetOverflow(int64_t result, bool* overflow) {
- if (result > kMaxInt) {
- *overflow = true;
- return kMaxInt;
- }
- if (result < kMinInt) {
- *overflow = true;
- return kMinInt;
- }
- return static_cast<int32_t>(result);
-}
-
-
-static int32_t AddWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
- int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
- return ConvertAndSetOverflow(result, overflow);
-}
-
-
-static int32_t SubWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
- int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
- return ConvertAndSetOverflow(result, overflow);
-}
-
-
-static int32_t MulWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
- int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
- return ConvertAndSetOverflow(result, overflow);
-}
-
-
-int32_t Range::Mask() const {
- if (lower_ == upper_) return lower_;
- if (lower_ >= 0) {
- int32_t res = 1;
- while (res < upper_) {
- res = (res << 1) | 1;
- }
- return res;
- }
- return 0xffffffff;
-}
-
-
-void Range::AddConstant(int32_t value) {
- if (value == 0) return;
- bool may_overflow = false; // Overflow is ignored here.
- lower_ = AddWithoutOverflow(lower_, value, &may_overflow);
- upper_ = AddWithoutOverflow(upper_, value, &may_overflow);
-#ifdef DEBUG
- Verify();
-#endif
-}
-
-
-void Range::Intersect(Range* other) {
- upper_ = Min(upper_, other->upper_);
- lower_ = Max(lower_, other->lower_);
- bool b = CanBeMinusZero() && other->CanBeMinusZero();
- set_can_be_minus_zero(b);
-}
-
-
-void Range::Union(Range* other) {
- upper_ = Max(upper_, other->upper_);
- lower_ = Min(lower_, other->lower_);
- bool b = CanBeMinusZero() || other->CanBeMinusZero();
- set_can_be_minus_zero(b);
-}
-
-
-void Range::CombinedMax(Range* other) {
- upper_ = Max(upper_, other->upper_);
- lower_ = Max(lower_, other->lower_);
- set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
-}
-
-
-void Range::CombinedMin(Range* other) {
- upper_ = Min(upper_, other->upper_);
- lower_ = Min(lower_, other->lower_);
- set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
-}
-
-
-void Range::Sar(int32_t value) {
- int32_t bits = value & 0x1F;
- lower_ = lower_ >> bits;
- upper_ = upper_ >> bits;
- set_can_be_minus_zero(false);
-}
-
-
-void Range::Shl(int32_t value) {
- int32_t bits = value & 0x1F;
- int old_lower = lower_;
- int old_upper = upper_;
- lower_ = lower_ << bits;
- upper_ = upper_ << bits;
- if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
- upper_ = kMaxInt;
- lower_ = kMinInt;
- }
- set_can_be_minus_zero(false);
-}
-
-
-bool Range::AddAndCheckOverflow(Range* other) {
- bool may_overflow = false;
- lower_ = AddWithoutOverflow(lower_, other->lower(), &may_overflow);
- upper_ = AddWithoutOverflow(upper_, other->upper(), &may_overflow);
- KeepOrder();
-#ifdef DEBUG
- Verify();
-#endif
- return may_overflow;
-}
-
-
-bool Range::SubAndCheckOverflow(Range* other) {
- bool may_overflow = false;
- lower_ = SubWithoutOverflow(lower_, other->upper(), &may_overflow);
- upper_ = SubWithoutOverflow(upper_, other->lower(), &may_overflow);
- KeepOrder();
-#ifdef DEBUG
- Verify();
-#endif
- return may_overflow;
-}
-
-
-void Range::KeepOrder() {
- if (lower_ > upper_) {
- int32_t tmp = lower_;
- lower_ = upper_;
- upper_ = tmp;
- }
-}
-
-
-#ifdef DEBUG
-void Range::Verify() const {
- ASSERT(lower_ <= upper_);
-}
-#endif
-
-
-bool Range::MulAndCheckOverflow(Range* other) {
- bool may_overflow = false;
- int v1 = MulWithoutOverflow(lower_, other->lower(), &may_overflow);
- int v2 = MulWithoutOverflow(lower_, other->upper(), &may_overflow);
- int v3 = MulWithoutOverflow(upper_, other->lower(), &may_overflow);
- int v4 = MulWithoutOverflow(upper_, other->upper(), &may_overflow);
- lower_ = Min(Min(v1, v2), Min(v3, v4));
- upper_ = Max(Max(v1, v2), Max(v3, v4));
-#ifdef DEBUG
- Verify();
-#endif
- return may_overflow;
-}
-
-
-const char* HType::ToString() {
- switch (type_) {
- case kTagged: return "tagged";
- case kTaggedPrimitive: return "primitive";
- case kTaggedNumber: return "number";
- case kSmi: return "smi";
- case kHeapNumber: return "heap-number";
- case kString: return "string";
- case kBoolean: return "boolean";
- case kNonPrimitive: return "non-primitive";
- case kJSArray: return "array";
- case kJSObject: return "object";
- case kUninitialized: return "uninitialized";
- }
- UNREACHABLE();
- return "Unreachable code";
-}
-
-
-HType HType::TypeFromValue(Isolate* isolate, Handle<Object> value) {
- // Handle dereferencing is safe here: an object's type as checked below
- // never changes.
- AllowHandleDereference allow_handle_deref(isolate);
-
- HType result = HType::Tagged();
- if (value->IsSmi()) {
- result = HType::Smi();
- } else if (value->IsHeapNumber()) {
- result = HType::HeapNumber();
- } else if (value->IsString()) {
- result = HType::String();
- } else if (value->IsBoolean()) {
- result = HType::Boolean();
- } else if (value->IsJSObject()) {
- result = HType::JSObject();
- } else if (value->IsJSArray()) {
- result = HType::JSArray();
- }
- return result;
-}
-
-
-bool HValue::Dominates(HValue* dominator, HValue* dominated) {
- if (dominator->block() != dominated->block()) {
- // If they are in different blocks we can use the dominance relation
- // between the blocks.
- return dominator->block()->Dominates(dominated->block());
- } else {
- // Otherwise we must see which instruction comes first, considering
- // that phis always precede regular instructions.
- if (dominator->IsInstruction()) {
- if (dominated->IsInstruction()) {
- for (HInstruction* next = HInstruction::cast(dominator)->next();
- next != NULL;
- next = next->next()) {
- if (next == dominated) return true;
- }
- return false;
- } else if (dominated->IsPhi()) {
- return false;
- } else {
- UNREACHABLE();
- }
- } else if (dominator->IsPhi()) {
- if (dominated->IsInstruction()) {
- return true;
- } else {
- // We cannot compare which phi comes first.
- UNREACHABLE();
- }
- } else {
- UNREACHABLE();
- }
- return false;
- }
-}
-
-
-bool HValue::TestDominanceUsingProcessedFlag(HValue* dominator,
- HValue* dominated) {
- if (dominator->block() != dominated->block()) {
- return dominator->block()->Dominates(dominated->block());
- } else {
- // If both arguments are in the same block we check if dominator is a phi
- // or if dominated has not already been processed: in either case we know
- // that dominator precedes dominated.
- return dominator->IsPhi() || !dominated->CheckFlag(kIDefsProcessingDone);
- }
-}
-
-
-bool HValue::IsDefinedAfter(HBasicBlock* other) const {
- return block()->block_id() > other->block_id();
-}
-
-
-HUseListNode* HUseListNode::tail() {
- // Skip and remove dead items in the use list.
- while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
- tail_ = tail_->tail_;
- }
- return tail_;
-}
-
-
-bool HValue::CheckUsesForFlag(Flag f) {
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- if (it.value()->IsSimulate()) continue;
- if (!it.value()->CheckFlag(f)) return false;
- }
- return true;
-}
-
-
-HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
- Advance();
-}
-
-
-void HUseIterator::Advance() {
- current_ = next_;
- if (current_ != NULL) {
- next_ = current_->tail();
- value_ = current_->value();
- index_ = current_->index();
- }
-}
-
-
-int HValue::UseCount() const {
- int count = 0;
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
- return count;
-}
-
-
-HUseListNode* HValue::RemoveUse(HValue* value, int index) {
- HUseListNode* previous = NULL;
- HUseListNode* current = use_list_;
- while (current != NULL) {
- if (current->value() == value && current->index() == index) {
- if (previous == NULL) {
- use_list_ = current->tail();
- } else {
- previous->set_tail(current->tail());
- }
- break;
- }
-
- previous = current;
- current = current->tail();
- }
-
-#ifdef DEBUG
- // Do not reuse use list nodes in debug mode, zap them.
- if (current != NULL) {
- HUseListNode* temp =
- new(block()->zone())
- HUseListNode(current->value(), current->index(), NULL);
- current->Zap();
- current = temp;
- }
-#endif
- return current;
-}
-
-
-bool HValue::Equals(HValue* other) {
- if (other->opcode() != opcode()) return false;
- if (!other->representation().Equals(representation())) return false;
- if (!other->type_.Equals(type_)) return false;
- if (other->flags() != flags()) return false;
- if (OperandCount() != other->OperandCount()) return false;
- for (int i = 0; i < OperandCount(); ++i) {
- if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
- }
- bool result = DataEquals(other);
- ASSERT(!result || Hashcode() == other->Hashcode());
- return result;
-}
-
-
-intptr_t HValue::Hashcode() {
- intptr_t result = opcode();
- int count = OperandCount();
- for (int i = 0; i < count; ++i) {
- result = result * 19 + OperandAt(i)->id() + (result >> 7);
- }
- return result;
-}
-
-
-const char* HValue::Mnemonic() const {
- switch (opcode()) {
-#define MAKE_CASE(type) case k##type: return #type;
- HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
-#undef MAKE_CASE
- case kPhi: return "Phi";
- default: return "";
- }
-}
-
-
-bool HValue::IsInteger32Constant() {
- return IsConstant() && HConstant::cast(this)->HasInteger32Value();
-}
-
-
-int32_t HValue::GetInteger32Constant() {
- return HConstant::cast(this)->Integer32Value();
-}
-
-
-void HValue::SetOperandAt(int index, HValue* value) {
- RegisterUse(index, value);
- InternalSetOperandAt(index, value);
-}
-
-
-void HValue::DeleteAndReplaceWith(HValue* other) {
- // We replace all uses first, so Delete can assert that there are none.
- if (other != NULL) ReplaceAllUsesWith(other);
- ASSERT(HasNoUses());
- Kill();
- DeleteFromGraph();
-}
-
-
-void HValue::ReplaceAllUsesWith(HValue* other) {
- while (use_list_ != NULL) {
- HUseListNode* list_node = use_list_;
- HValue* value = list_node->value();
- ASSERT(!value->block()->IsStartBlock());
- value->InternalSetOperandAt(list_node->index(), other);
- use_list_ = list_node->tail();
- list_node->set_tail(other->use_list_);
- other->use_list_ = list_node;
- }
-}
-
-
-void HValue::Kill() {
- // Instead of going through the entire use list of each operand, we only
- // check the first item in each use list and rely on the tail() method to
- // skip dead items, removing them lazily next time we traverse the list.
- SetFlag(kIsDead);
- for (int i = 0; i < OperandCount(); ++i) {
- HValue* operand = OperandAt(i);
- if (operand == NULL) continue;
- HUseListNode* first = operand->use_list_;
- if (first != NULL && first->value() == this && first->index() == i) {
- operand->use_list_ = first->tail();
- }
- }
-}
-
-
-void HValue::SetBlock(HBasicBlock* block) {
- ASSERT(block_ == NULL || block == NULL);
- block_ = block;
- if (id_ == kNoNumber && block != NULL) {
- id_ = block->graph()->GetNextValueID(this);
- }
-}
-
-
-void HValue::PrintTypeTo(StringStream* stream) {
- if (!representation().IsTagged() || type().Equals(HType::Tagged())) return;
- stream->Add(" type[%s]", type().ToString());
-}
-
-
-void HValue::PrintRangeTo(StringStream* stream) {
- if (range() == NULL || range()->IsMostGeneric()) return;
- stream->Add(" range[%d,%d,m0=%d]",
- range()->lower(),
- range()->upper(),
- static_cast<int>(range()->CanBeMinusZero()));
-}
-
-
-void HValue::PrintChangesTo(StringStream* stream) {
- GVNFlagSet changes_flags = ChangesFlags();
- if (changes_flags.IsEmpty()) return;
- stream->Add(" changes[");
- if (changes_flags == AllSideEffectsFlagSet()) {
- stream->Add("*");
- } else {
- bool add_comma = false;
-#define PRINT_DO(type) \
- if (changes_flags.Contains(kChanges##type)) { \
- if (add_comma) stream->Add(","); \
- add_comma = true; \
- stream->Add(#type); \
- }
- GVN_TRACKED_FLAG_LIST(PRINT_DO);
- GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
-#undef PRINT_DO
- }
- stream->Add("]");
-}
-
-
-void HValue::PrintNameTo(StringStream* stream) {
- stream->Add("%s%d", representation_.Mnemonic(), id());
-}
-
-
-bool HValue::HasMonomorphicJSObjectType() {
- return !GetMonomorphicJSObjectMap().is_null();
-}
-
-
-bool HValue::UpdateInferredType() {
- HType type = CalculateInferredType();
- bool result = (!type.Equals(type_));
- type_ = type;
- return result;
-}
-
-
-void HValue::RegisterUse(int index, HValue* new_value) {
- HValue* old_value = OperandAt(index);
- if (old_value == new_value) return;
-
- HUseListNode* removed = NULL;
- if (old_value != NULL) {
- removed = old_value->RemoveUse(this, index);
- }
-
- if (new_value != NULL) {
- if (removed == NULL) {
- new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
- this, index, new_value->use_list_);
- } else {
- removed->set_tail(new_value->use_list_);
- new_value->use_list_ = removed;
- }
- }
-}
-
-
-void HValue::AddNewRange(Range* r, Zone* zone) {
- if (!HasRange()) ComputeInitialRange(zone);
- if (!HasRange()) range_ = new(zone) Range();
- ASSERT(HasRange());
- r->StackUpon(range_);
- range_ = r;
-}
-
-
-void HValue::RemoveLastAddedRange() {
- ASSERT(HasRange());
- ASSERT(range_->next() != NULL);
- range_ = range_->next();
-}
-
-
-void HValue::ComputeInitialRange(Zone* zone) {
- ASSERT(!HasRange());
- range_ = InferRange(zone);
- ASSERT(HasRange());
-}
-
-
-void HInstruction::PrintTo(StringStream* stream) {
- PrintMnemonicTo(stream);
- PrintDataTo(stream);
- PrintRangeTo(stream);
- PrintChangesTo(stream);
- PrintTypeTo(stream);
-}
-
-
-void HInstruction::PrintMnemonicTo(StringStream* stream) {
- stream->Add("%s ", Mnemonic());
-}
-
-
-void HInstruction::Unlink() {
- ASSERT(IsLinked());
- ASSERT(!IsControlInstruction()); // Must never move control instructions.
- ASSERT(!IsBlockEntry()); // Doesn't make sense to delete these.
- ASSERT(previous_ != NULL);
- previous_->next_ = next_;
- if (next_ == NULL) {
- ASSERT(block()->last() == this);
- block()->set_last(previous_);
- } else {
- next_->previous_ = previous_;
- }
- clear_block();
-}
-
-
-void HInstruction::InsertBefore(HInstruction* next) {
- ASSERT(!IsLinked());
- ASSERT(!next->IsBlockEntry());
- ASSERT(!IsControlInstruction());
- ASSERT(!next->block()->IsStartBlock());
- ASSERT(next->previous_ != NULL);
- HInstruction* prev = next->previous();
- prev->next_ = this;
- next->previous_ = this;
- next_ = next;
- previous_ = prev;
- SetBlock(next->block());
-}
-
-
-void HInstruction::InsertAfter(HInstruction* previous) {
- ASSERT(!IsLinked());
- ASSERT(!previous->IsControlInstruction());
- ASSERT(!IsControlInstruction() || previous->next_ == NULL);
- HBasicBlock* block = previous->block();
- // Never insert anything except constants into the start block after finishing
- // it.
- if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
- ASSERT(block->end()->SecondSuccessor() == NULL);
- InsertAfter(block->end()->FirstSuccessor()->first());
- return;
- }
-
- // If we're inserting after an instruction with side-effects that is
- // followed by a simulate instruction, we need to insert after the
- // simulate instruction instead.
- HInstruction* next = previous->next_;
- if (previous->HasObservableSideEffects() && next != NULL) {
- ASSERT(next->IsSimulate());
- previous = next;
- next = previous->next_;
- }
-
- previous_ = previous;
- next_ = next;
- SetBlock(block);
- previous->next_ = this;
- if (next != NULL) next->previous_ = this;
- if (block->last() == previous) {
- block->set_last(this);
- }
-}
-
-
-#ifdef DEBUG
-void HInstruction::Verify() {
- // Verify that input operands are defined before use.
- HBasicBlock* cur_block = block();
- for (int i = 0; i < OperandCount(); ++i) {
- HValue* other_operand = OperandAt(i);
- if (other_operand == NULL) continue;
- HBasicBlock* other_block = other_operand->block();
- if (cur_block == other_block) {
- if (!other_operand->IsPhi()) {
- HInstruction* cur = this->previous();
- while (cur != NULL) {
- if (cur == other_operand) break;
- cur = cur->previous();
- }
- // Must reach other operand in the same block!
- ASSERT(cur == other_operand);
- }
- } else {
- // If the following assert fires, you may have forgotten an
- // AddInstruction.
- ASSERT(other_block->Dominates(cur_block));
- }
- }
-
- // Verify that instructions that may have side-effects are followed
- // by a simulate instruction.
- if (HasObservableSideEffects() && !IsOsrEntry()) {
- ASSERT(next()->IsSimulate());
- }
-
- // Verify that instructions that can be eliminated by GVN have overridden
- // HValue::DataEquals. The default implementation is UNREACHABLE. We
- // don't actually care whether DataEquals returns true or false here.
- if (CheckFlag(kUseGVN)) DataEquals(this);
-
- // Verify that all uses are in the graph.
- for (HUseIterator use = uses(); !use.Done(); use.Advance()) {
- if (use.value()->IsInstruction()) {
- ASSERT(HInstruction::cast(use.value())->IsLinked());
- }
- }
-}
-#endif
-
-
-HNumericConstraint* HNumericConstraint::AddToGraph(
- HValue* constrained_value,
- NumericRelation relation,
- HValue* related_value,
- HInstruction* insertion_point) {
- if (insertion_point == NULL) {
- if (constrained_value->IsInstruction()) {
- insertion_point = HInstruction::cast(constrained_value);
- } else if (constrained_value->IsPhi()) {
- insertion_point = constrained_value->block()->first();
- } else {
- UNREACHABLE();
- }
- }
- HNumericConstraint* result =
- new(insertion_point->block()->zone()) HNumericConstraint(
- constrained_value, relation, related_value);
- result->InsertAfter(insertion_point);
- return result;
-}
-
-
-void HNumericConstraint::PrintDataTo(StringStream* stream) {
- stream->Add("(");
- constrained_value()->PrintNameTo(stream);
- stream->Add(" %s ", relation().Mnemonic());
- related_value()->PrintNameTo(stream);
- stream->Add(")");
-}
-
-
-HInductionVariableAnnotation* HInductionVariableAnnotation::AddToGraph(
- HPhi* phi,
- NumericRelation relation,
- int operand_index) {
- HInductionVariableAnnotation* result =
- new(phi->block()->zone()) HInductionVariableAnnotation(phi, relation,
- operand_index);
- result->InsertAfter(phi->block()->first());
- return result;
-}
-
-
-void HInductionVariableAnnotation::PrintDataTo(StringStream* stream) {
- stream->Add("(");
- RedefinedOperand()->PrintNameTo(stream);
- stream->Add(" %s ", relation().Mnemonic());
- induction_base()->PrintNameTo(stream);
- stream->Add(")");
-}
-
-
-void HDummyUse::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
-}
-
-
-void HUnaryCall::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
- stream->Add(" ");
- stream->Add("#%d", argument_count());
-}
-
-
-void HBinaryCall::PrintDataTo(StringStream* stream) {
- first()->PrintNameTo(stream);
- stream->Add(" ");
- second()->PrintNameTo(stream);
- stream->Add(" ");
- stream->Add("#%d", argument_count());
-}
-
-
-void HBoundsCheck::AddInformativeDefinitions() {
- // TODO(mmassi): Executing this code during AddInformativeDefinitions
- // is a hack. Move it to some other HPhase.
- if (index()->IsRelationTrue(NumericRelation::Ge(),
- block()->graph()->GetConstant0()) &&
- index()->IsRelationTrue(NumericRelation::Lt(), length())) {
- set_skip_check(true);
- }
-}
-
-
-bool HBoundsCheck::IsRelationTrueInternal(NumericRelation relation,
- HValue* related_value) {
- if (related_value == length()) {
- // A HBoundsCheck is smaller than the length it compared against.
- return NumericRelation::Lt().Implies(relation);
- } else if (related_value == block()->graph()->GetConstant0()) {
- // A HBoundsCheck is greater than or equal to zero.
- return NumericRelation::Ge().Implies(relation);
- } else {
- return false;
- }
-}
-
-
-void HBoundsCheck::PrintDataTo(StringStream* stream) {
- index()->PrintNameTo(stream);
- stream->Add(" ");
- length()->PrintNameTo(stream);
- if (skip_check()) {
- stream->Add(" [DISABLED]");
- }
-}
-
-
-void HBoundsCheck::InferRepresentation(HInferRepresentation* h_infer) {
- ASSERT(CheckFlag(kFlexibleRepresentation));
- Representation r;
- if (key_mode_ == DONT_ALLOW_SMI_KEY ||
- !length()->representation().IsTagged()) {
- r = Representation::Integer32();
- } else if (index()->representation().IsTagged() ||
- (index()->ActualValue()->IsConstant() &&
- HConstant::cast(index()->ActualValue())->HasSmiValue())) {
- // If the index is tagged, or a constant that holds a Smi, allow the length
- // to be tagged, since it is usually already tagged from loading it out of
- // the length field of a JSArray. This allows for direct comparison without
- // untagging.
- r = Representation::Tagged();
- } else {
- r = Representation::Integer32();
- }
- UpdateRepresentation(r, h_infer, "boundscheck");
-}
-
-
-void HCallConstantFunction::PrintDataTo(StringStream* stream) {
- if (IsApplyFunction()) {
- stream->Add("optimized apply ");
- } else {
- stream->Add("%o ", function()->shared()->DebugName());
- }
- stream->Add("#%d", argument_count());
-}
-
-
-void HCallNamed::PrintDataTo(StringStream* stream) {
- stream->Add("%o ", *name());
- HUnaryCall::PrintDataTo(stream);
-}
-
-
-void HGlobalObject::PrintDataTo(StringStream* stream) {
- stream->Add("qml_global: %s ", qml_global()?"true":"false");
- HUnaryOperation::PrintDataTo(stream);
-}
-
-void HCallGlobal::PrintDataTo(StringStream* stream) {
- stream->Add("%o ", *name());
- HUnaryCall::PrintDataTo(stream);
-}
-
-
-void HCallKnownGlobal::PrintDataTo(StringStream* stream) {
- stream->Add("%o ", target()->shared()->DebugName());
- stream->Add("#%d", argument_count());
-}
-
-
-void HCallRuntime::PrintDataTo(StringStream* stream) {
- stream->Add("%o ", *name());
- stream->Add("#%d", argument_count());
-}
-
-
-void HClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
- stream->Add("class_of_test(");
- value()->PrintNameTo(stream);
- stream->Add(", \"%o\")", *class_name());
-}
-
-
-void HWrapReceiver::PrintDataTo(StringStream* stream) {
- receiver()->PrintNameTo(stream);
- stream->Add(" ");
- function()->PrintNameTo(stream);
-}
-
-
-void HAccessArgumentsAt::PrintDataTo(StringStream* stream) {
- arguments()->PrintNameTo(stream);
- stream->Add("[");
- index()->PrintNameTo(stream);
- stream->Add("], length ");
- length()->PrintNameTo(stream);
-}
-
-
-void HControlInstruction::PrintDataTo(StringStream* stream) {
- stream->Add(" goto (");
- bool first_block = true;
- for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
- stream->Add(first_block ? "B%d" : ", B%d", it.Current()->block_id());
- first_block = false;
- }
- stream->Add(")");
-}
-
-
-void HUnaryControlInstruction::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
- HControlInstruction::PrintDataTo(stream);
-}
-
-
-void HIsNilAndBranch::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
- stream->Add(kind() == kStrictEquality ? " === " : " == ");
- stream->Add(nil() == kNullValue ? "null" : "undefined");
- HControlInstruction::PrintDataTo(stream);
-}
-
-
-void HReturn::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
-}
-
-
-Representation HBranch::observed_input_representation(int index) {
- static const ToBooleanStub::Types tagged_types(
- ToBooleanStub::UNDEFINED |
- ToBooleanStub::NULL_TYPE |
- ToBooleanStub::SPEC_OBJECT |
- ToBooleanStub::STRING);
- if (expected_input_types_.ContainsAnyOf(tagged_types)) {
- return Representation::Tagged();
- } else if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
- return Representation::Double();
- } else if (expected_input_types_.Contains(ToBooleanStub::SMI)) {
- return Representation::Integer32();
- } else {
- return Representation::None();
- }
-}
-
-
-void HCompareMap::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
- stream->Add(" (%p)", *map());
- HControlInstruction::PrintDataTo(stream);
-}
-
-
-const char* HUnaryMathOperation::OpName() const {
- switch (op()) {
- case kMathFloor: return "floor";
- case kMathRound: return "round";
- case kMathCeil: return "ceil";
- case kMathAbs: return "abs";
- case kMathLog: return "log";
- case kMathSin: return "sin";
- case kMathCos: return "cos";
- case kMathTan: return "tan";
- case kMathASin: return "asin";
- case kMathACos: return "acos";
- case kMathATan: return "atan";
- case kMathExp: return "exp";
- case kMathSqrt: return "sqrt";
- default: break;
- }
- return "(unknown operation)";
-}
-
-
-void HUnaryMathOperation::PrintDataTo(StringStream* stream) {
- const char* name = OpName();
- stream->Add("%s ", name);
- value()->PrintNameTo(stream);
-}
-
-
-void HUnaryOperation::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
-}
-
-
-void HHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
- switch (from_) {
- case FIRST_JS_RECEIVER_TYPE:
- if (to_ == LAST_TYPE) stream->Add(" spec_object");
- break;
- case JS_REGEXP_TYPE:
- if (to_ == JS_REGEXP_TYPE) stream->Add(" reg_exp");
- break;
- case JS_ARRAY_TYPE:
- if (to_ == JS_ARRAY_TYPE) stream->Add(" array");
- break;
- case JS_FUNCTION_TYPE:
- if (to_ == JS_FUNCTION_TYPE) stream->Add(" function");
- break;
- default:
- break;
- }
-}
-
-
-void HTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
- stream->Add(" == %o", *type_literal_);
- HControlInstruction::PrintDataTo(stream);
-}
-
-
-void HCheckMapValue::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
- stream->Add(" ");
- map()->PrintNameTo(stream);
-}
-
-
-void HForInPrepareMap::PrintDataTo(StringStream* stream) {
- enumerable()->PrintNameTo(stream);
-}
-
-
-void HForInCacheArray::PrintDataTo(StringStream* stream) {
- enumerable()->PrintNameTo(stream);
- stream->Add(" ");
- map()->PrintNameTo(stream);
- stream->Add("[%d]", idx_);
-}
-
-
-void HLoadFieldByIndex::PrintDataTo(StringStream* stream) {
- object()->PrintNameTo(stream);
- stream->Add(" ");
- index()->PrintNameTo(stream);
-}
-
-
-HValue* HBitwise::Canonicalize() {
- if (!representation().IsInteger32()) return this;
- // If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
- int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
- if (left()->IsConstant() &&
- HConstant::cast(left())->HasInteger32Value() &&
- HConstant::cast(left())->Integer32Value() == nop_constant &&
- !right()->CheckFlag(kUint32)) {
- return right();
- }
- if (right()->IsConstant() &&
- HConstant::cast(right())->HasInteger32Value() &&
- HConstant::cast(right())->Integer32Value() == nop_constant &&
- !left()->CheckFlag(kUint32)) {
- return left();
- }
- return this;
-}
-
-
-HValue* HBitNot::Canonicalize() {
- // Optimize ~~x, a common pattern used for ToInt32(x).
- if (value()->IsBitNot()) {
- HValue* result = HBitNot::cast(value())->value();
- ASSERT(result->representation().IsInteger32());
- if (!result->CheckFlag(kUint32)) {
- return result;
- }
- }
- return this;
-}
-
-
-HValue* HAdd::Canonicalize() {
- if (!representation().IsInteger32()) return this;
- if (CheckUsesForFlag(kTruncatingToInt32)) ClearFlag(kCanOverflow);
- return this;
-}
-
-
-HValue* HSub::Canonicalize() {
- if (!representation().IsInteger32()) return this;
- if (CheckUsesForFlag(kTruncatingToInt32)) ClearFlag(kCanOverflow);
- return this;
-}
-
-
-HValue* HChange::Canonicalize() {
- return (from().Equals(to())) ? value() : this;
-}
-
-
-HValue* HWrapReceiver::Canonicalize() {
- if (HasNoUses()) return NULL;
- if (receiver()->type().IsJSObject()) {
- return receiver();
- }
- return this;
-}
-
-
-void HTypeof::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
-}
-
-
-void HForceRepresentation::PrintDataTo(StringStream* stream) {
- stream->Add("%s ", representation().Mnemonic());
- value()->PrintNameTo(stream);
-}
-
-
-void HChange::PrintDataTo(StringStream* stream) {
- HUnaryOperation::PrintDataTo(stream);
- stream->Add(" %s to %s", from().Mnemonic(), to().Mnemonic());
-
- if (CanTruncateToInt32()) stream->Add(" truncating-int32");
- if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
- if (CheckFlag(kDeoptimizeOnUndefined)) stream->Add(" deopt-on-undefined");
-}
-
-
-void HJSArrayLength::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
- if (HasTypeCheck()) {
- stream->Add(" ");
- typecheck()->PrintNameTo(stream);
- }
-}
-
-
-HValue* HUnaryMathOperation::Canonicalize() {
- if (op() == kMathFloor) {
- // If the input is integer32 then we replace the floor instruction
- // with its input. This happens before the representation changes are
- // introduced.
- if (value()->representation().IsInteger32()) return value();
-
-#if defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_IA32) || \
- defined(V8_TARGET_ARCH_X64)
- if (value()->IsDiv() && (value()->UseCount() == 1)) {
- // TODO(2038): Implement this optimization for non ARM architectures.
- HDiv* hdiv = HDiv::cast(value());
- HValue* left = hdiv->left();
- HValue* right = hdiv->right();
- // Try to simplify left and right values of the division.
- HValue* new_left =
- LChunkBuilder::SimplifiedDividendForMathFloorOfDiv(left);
- HValue* new_right =
- LChunkBuilder::SimplifiedDivisorForMathFloorOfDiv(right);
-
- // Return if left or right are not optimizable.
- if ((new_left == NULL) || (new_right == NULL)) return this;
-
- // Insert the new values in the graph.
- if (new_left->IsInstruction() &&
- !HInstruction::cast(new_left)->IsLinked()) {
- HInstruction::cast(new_left)->InsertBefore(this);
- }
- if (new_right->IsInstruction() &&
- !HInstruction::cast(new_right)->IsLinked()) {
- HInstruction::cast(new_right)->InsertBefore(this);
- }
- HMathFloorOfDiv* instr = new(block()->zone()) HMathFloorOfDiv(context(),
- new_left,
- new_right);
- // Replace this HMathFloor instruction by the new HMathFloorOfDiv.
- instr->InsertBefore(this);
- ReplaceAllUsesWith(instr);
- Kill();
- // We know the division had no other uses than this HMathFloor. Delete it.
- // Also delete the arguments of the division if they are not used any
- // more.
- hdiv->DeleteAndReplaceWith(NULL);
- ASSERT(left->IsChange() || left->IsConstant());
- ASSERT(right->IsChange() || right->IsConstant());
- if (left->HasNoUses()) left->DeleteAndReplaceWith(NULL);
- if (right->HasNoUses()) right->DeleteAndReplaceWith(NULL);
-
- // Return NULL to remove this instruction from the graph.
- return NULL;
- }
-#endif // V8_TARGET_ARCH_ARM
- }
- return this;
-}
-
-
-HValue* HCheckInstanceType::Canonicalize() {
- if (check_ == IS_STRING &&
- !value()->type().IsUninitialized() &&
- value()->type().IsString()) {
- return NULL;
- }
-
- if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) {
- // Dereferencing is safe here:
- // an internalized string cannot become non-internalized.
- AllowHandleDereference allow_handle_deref(isolate());
- if (HConstant::cast(value())->handle()->IsInternalizedString()) return NULL;
- }
- return this;
-}
-
-
-void HCheckInstanceType::GetCheckInterval(InstanceType* first,
- InstanceType* last) {
- ASSERT(is_interval_check());
- switch (check_) {
- case IS_SPEC_OBJECT:
- *first = FIRST_SPEC_OBJECT_TYPE;
- *last = LAST_SPEC_OBJECT_TYPE;
- return;
- case IS_JS_ARRAY:
- *first = *last = JS_ARRAY_TYPE;
- return;
- default:
- UNREACHABLE();
- }
-}
-
-
-void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
- ASSERT(!is_interval_check());
- switch (check_) {
- case IS_STRING:
- *mask = kIsNotStringMask;
- *tag = kStringTag;
- return;
- case IS_INTERNALIZED_STRING:
- *mask = kIsInternalizedMask;
- *tag = kInternalizedTag;
- return;
- default:
- UNREACHABLE();
- }
-}
-
-
-void HCheckMaps::SetSideEffectDominator(GVNFlag side_effect,
- HValue* dominator) {
- ASSERT(side_effect == kChangesMaps);
- // TODO(mstarzinger): For now we specialize on HStoreNamedField, but once
- // type information is rich enough we should generalize this to any HType
- // for which the map is known.
- if (HasNoUses() && dominator->IsStoreNamedField()) {
- HStoreNamedField* store = HStoreNamedField::cast(dominator);
- Handle<Map> map = store->transition();
- if (map.is_null() || store->object() != value()) return;
- for (int i = 0; i < map_set()->length(); i++) {
- if (map.is_identical_to(map_set()->at(i))) {
- DeleteAndReplaceWith(NULL);
- return;
- }
- }
- }
-}
-
-
-void HLoadElements::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
- if (HasTypeCheck()) {
- stream->Add(" ");
- typecheck()->PrintNameTo(stream);
- }
-}
-
-
-void HCheckMaps::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
- stream->Add(" [%p", *map_set()->first());
- for (int i = 1; i < map_set()->length(); ++i) {
- stream->Add(",%p", *map_set()->at(i));
- }
- stream->Add("]");
-}
-
-
-void HCheckFunction::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
- stream->Add(" %p", *target());
-}
-
-
-const char* HCheckInstanceType::GetCheckName() {
- switch (check_) {
- case IS_SPEC_OBJECT: return "object";
- case IS_JS_ARRAY: return "array";
- case IS_STRING: return "string";
- case IS_INTERNALIZED_STRING: return "internalized_string";
- }
- UNREACHABLE();
- return "";
-}
-
-void HCheckInstanceType::PrintDataTo(StringStream* stream) {
- stream->Add("%s ", GetCheckName());
- HUnaryOperation::PrintDataTo(stream);
-}
-
-
-void HCheckPrototypeMaps::PrintDataTo(StringStream* stream) {
- stream->Add("[receiver_prototype=%p,holder=%p]",
- *prototypes_.first(), *prototypes_.last());
-}
-
-
-void HCallStub::PrintDataTo(StringStream* stream) {
- stream->Add("%s ",
- CodeStub::MajorName(major_key_, false));
- HUnaryCall::PrintDataTo(stream);
-}
-
-
-void HInstanceOf::PrintDataTo(StringStream* stream) {
- left()->PrintNameTo(stream);
- stream->Add(" ");
- right()->PrintNameTo(stream);
- stream->Add(" ");
- context()->PrintNameTo(stream);
-}
-
-
-Range* HValue::InferRange(Zone* zone) {
- // Untagged integer32 cannot be -0, all other representations can.
- Range* result = new(zone) Range();
- result->set_can_be_minus_zero(!representation().IsInteger32());
- return result;
-}
-
-
-Range* HChange::InferRange(Zone* zone) {
- Range* input_range = value()->range();
- if (from().IsInteger32() &&
- to().IsTagged() &&
- !value()->CheckFlag(HInstruction::kUint32) &&
- input_range != NULL && input_range->IsInSmiRange()) {
- set_type(HType::Smi());
- }
- Range* result = (input_range != NULL)
- ? input_range->Copy(zone)
- : HValue::InferRange(zone);
- if (to().IsInteger32()) result->set_can_be_minus_zero(false);
- return result;
-}
-
-
-Range* HConstant::InferRange(Zone* zone) {
- if (has_int32_value_) {
- Range* result = new(zone) Range(int32_value_, int32_value_);
- result->set_can_be_minus_zero(false);
- return result;
- }
- return HValue::InferRange(zone);
-}
-
-
-Range* HPhi::InferRange(Zone* zone) {
- if (representation().IsInteger32()) {
- if (block()->IsLoopHeader()) {
- Range* range = new(zone) Range(kMinInt, kMaxInt);
- return range;
- } else {
- Range* range = OperandAt(0)->range()->Copy(zone);
- for (int i = 1; i < OperandCount(); ++i) {
- range->Union(OperandAt(i)->range());
- }
- return range;
- }
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-Range* HAdd::InferRange(Zone* zone) {
- if (representation().IsInteger32()) {
- Range* a = left()->range();
- Range* b = right()->range();
- Range* res = a->Copy(zone);
- if (!res->AddAndCheckOverflow(b)) {
- ClearFlag(kCanOverflow);
- }
- bool m0 = a->CanBeMinusZero() && b->CanBeMinusZero();
- res->set_can_be_minus_zero(m0);
- return res;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-Range* HSub::InferRange(Zone* zone) {
- if (representation().IsInteger32()) {
- Range* a = left()->range();
- Range* b = right()->range();
- Range* res = a->Copy(zone);
- if (!res->SubAndCheckOverflow(b)) {
- ClearFlag(kCanOverflow);
- }
- res->set_can_be_minus_zero(a->CanBeMinusZero() && b->CanBeZero());
- return res;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-Range* HMul::InferRange(Zone* zone) {
- if (representation().IsInteger32()) {
- Range* a = left()->range();
- Range* b = right()->range();
- Range* res = a->Copy(zone);
- if (!res->MulAndCheckOverflow(b)) {
- ClearFlag(kCanOverflow);
- }
- bool m0 = (a->CanBeZero() && b->CanBeNegative()) ||
- (a->CanBeNegative() && b->CanBeZero());
- res->set_can_be_minus_zero(m0);
- return res;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-Range* HDiv::InferRange(Zone* zone) {
- if (representation().IsInteger32()) {
- Range* result = new(zone) Range();
- if (left()->range()->CanBeMinusZero()) {
- result->set_can_be_minus_zero(true);
- }
-
- if (left()->range()->CanBeZero() && right()->range()->CanBeNegative()) {
- result->set_can_be_minus_zero(true);
- }
-
- if (right()->range()->Includes(-1) && left()->range()->Includes(kMinInt)) {
- SetFlag(HValue::kCanOverflow);
- }
-
- if (!right()->range()->CanBeZero()) {
- ClearFlag(HValue::kCanBeDivByZero);
- }
- return result;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-Range* HMod::InferRange(Zone* zone) {
- if (representation().IsInteger32()) {
- Range* a = left()->range();
- Range* result = new(zone) Range();
- if (a->CanBeMinusZero() || a->CanBeNegative()) {
- result->set_can_be_minus_zero(true);
- }
-
- if (right()->range()->Includes(-1) && left()->range()->Includes(kMinInt)) {
- SetFlag(HValue::kCanOverflow);
- }
-
- if (!right()->range()->CanBeZero()) {
- ClearFlag(HValue::kCanBeDivByZero);
- }
- return result;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-void HPhi::AddInformativeDefinitions() {
- if (OperandCount() == 2) {
- // If one of the operands is an OSR block give up (this cannot be an
- // induction variable).
- if (OperandAt(0)->block()->is_osr_entry() ||
- OperandAt(1)->block()->is_osr_entry()) return;
-
- for (int operand_index = 0; operand_index < 2; operand_index++) {
- int other_operand_index = (operand_index + 1) % 2;
-
- static NumericRelation relations[] = {
- NumericRelation::Ge(),
- NumericRelation::Le()
- };
-
- // Check if this phi is an induction variable. If, e.g., we know that
- // its first input is greater than the phi itself, then that must be
- // the back edge, and the phi is always greater than its second input.
- for (int relation_index = 0; relation_index < 2; relation_index++) {
- if (OperandAt(operand_index)->IsRelationTrue(relations[relation_index],
- this)) {
- HInductionVariableAnnotation::AddToGraph(this,
- relations[relation_index],
- other_operand_index);
- }
- }
- }
- }
-}
-
-
-bool HPhi::IsRelationTrueInternal(NumericRelation relation, HValue* other) {
- if (CheckFlag(kNumericConstraintEvaluationInProgress)) return false;
-
- SetFlag(kNumericConstraintEvaluationInProgress);
- bool result = true;
- for (int i = 0; i < OperandCount(); i++) {
- // Skip OSR entry blocks
- if (OperandAt(i)->block()->is_osr_entry()) continue;
-
- if (!OperandAt(i)->IsRelationTrue(relation, other)) {
- result = false;
- break;
- }
- }
- ClearFlag(kNumericConstraintEvaluationInProgress);
-
- return result;
-}
-
-
-Range* HMathMinMax::InferRange(Zone* zone) {
- if (representation().IsInteger32()) {
- Range* a = left()->range();
- Range* b = right()->range();
- Range* res = a->Copy(zone);
- if (operation_ == kMathMax) {
- res->CombinedMax(b);
- } else {
- ASSERT(operation_ == kMathMin);
- res->CombinedMin(b);
- }
- return res;
- } else {
- return HValue::InferRange(zone);
- }
-}
-
-
-void HPhi::PrintTo(StringStream* stream) {
- stream->Add("[");
- for (int i = 0; i < OperandCount(); ++i) {
- HValue* value = OperandAt(i);
- stream->Add(" ");
- value->PrintNameTo(stream);
- stream->Add(" ");
- }
- stream->Add(" uses%d_%di_%dd_%dt",
- UseCount(),
- int32_non_phi_uses() + int32_indirect_uses(),
- double_non_phi_uses() + double_indirect_uses(),
- tagged_non_phi_uses() + tagged_indirect_uses());
- stream->Add("%s%s]",
- is_live() ? "_live" : "",
- IsConvertibleToInteger() ? "" : "_ncti");
-}
-
-
-void HPhi::AddInput(HValue* value) {
- inputs_.Add(NULL, value->block()->zone());
- SetOperandAt(OperandCount() - 1, value);
- // Mark phis that may have 'arguments' directly or indirectly as an operand.
- if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
- SetFlag(kIsArguments);
- }
-}
-
-
-bool HPhi::HasRealUses() {
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- if (!it.value()->IsPhi()) return true;
- }
- return false;
-}
-
-
-HValue* HPhi::GetRedundantReplacement() {
- HValue* candidate = NULL;
- int count = OperandCount();
- int position = 0;
- while (position < count && candidate == NULL) {
- HValue* current = OperandAt(position++);
- if (current != this) candidate = current;
- }
- while (position < count) {
- HValue* current = OperandAt(position++);
- if (current != this && current != candidate) return NULL;
- }
- ASSERT(candidate != this);
- return candidate;
-}
-
-
-void HPhi::DeleteFromGraph() {
- ASSERT(block() != NULL);
- block()->RemovePhi(this);
- ASSERT(block() == NULL);
-}
-
-
-void HPhi::InitRealUses(int phi_id) {
- // Initialize real uses.
- phi_id_ = phi_id;
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- HValue* value = it.value();
- if (!value->IsPhi()) {
- Representation rep = value->observed_input_representation(it.index());
- non_phi_uses_[rep.kind()] += value->LoopWeight();
- if (FLAG_trace_representation) {
- PrintF("#%d Phi is used by real #%d %s as %s\n",
- id(), value->id(), value->Mnemonic(), rep.Mnemonic());
- }
- }
- }
-}
-
-
-void HPhi::AddNonPhiUsesFrom(HPhi* other) {
- if (FLAG_trace_representation) {
- PrintF("adding to #%d Phi uses of #%d Phi: i%d d%d t%d\n",
- id(), other->id(),
- other->non_phi_uses_[Representation::kInteger32],
- other->non_phi_uses_[Representation::kDouble],
- other->non_phi_uses_[Representation::kTagged]);
- }
-
- for (int i = 0; i < Representation::kNumRepresentations; i++) {
- indirect_uses_[i] += other->non_phi_uses_[i];
- }
-}
-
-
-void HPhi::AddIndirectUsesTo(int* dest) {
- for (int i = 0; i < Representation::kNumRepresentations; i++) {
- dest[i] += indirect_uses_[i];
- }
-}
-
-
-void HSimulate::MergeInto(HSimulate* other) {
- for (int i = 0; i < values_.length(); ++i) {
- HValue* value = values_[i];
- if (HasAssignedIndexAt(i)) {
- other->AddAssignedValue(GetAssignedIndexAt(i), value);
- } else {
- if (other->pop_count_ > 0) {
- other->pop_count_--;
- } else {
- other->AddPushedValue(value);
- }
- }
- }
- other->pop_count_ += pop_count();
-}
-
-
-void HSimulate::PrintDataTo(StringStream* stream) {
- stream->Add("id=%d", ast_id().ToInt());
- if (pop_count_ > 0) stream->Add(" pop %d", pop_count_);
- if (values_.length() > 0) {
- if (pop_count_ > 0) stream->Add(" /");
- for (int i = values_.length() - 1; i >= 0; --i) {
- if (i > 0) stream->Add(",");
- if (HasAssignedIndexAt(i)) {
- stream->Add(" var[%d] = ", GetAssignedIndexAt(i));
- } else {
- stream->Add(" push ");
- }
- values_[i]->PrintNameTo(stream);
- }
- }
-}
-
-
-void HDeoptimize::PrintDataTo(StringStream* stream) {
- if (OperandCount() == 0) return;
- OperandAt(0)->PrintNameTo(stream);
- for (int i = 1; i < OperandCount(); ++i) {
- stream->Add(" ");
- OperandAt(i)->PrintNameTo(stream);
- }
-}
-
-
-void HEnterInlined::PrintDataTo(StringStream* stream) {
- SmartArrayPointer<char> name = function()->debug_name()->ToCString();
- stream->Add("%s, id=%d", *name, function()->id().ToInt());
-}
-
-
-static bool IsInteger32(double value) {
- double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
- return BitCast<int64_t>(roundtrip_value) == BitCast<int64_t>(value);
-}
-
-
-HConstant::HConstant(Handle<Object> handle, Representation r)
- : handle_(handle),
- has_int32_value_(false),
- has_double_value_(false) {
- // Dereferencing here is safe: the value of a number object does not change.
- AllowHandleDereference allow_handle_deref(Isolate::Current());
- if (handle_->IsNumber()) {
- double n = handle_->Number();
- has_int32_value_ = IsInteger32(n);
- int32_value_ = DoubleToInt32(n);
- double_value_ = n;
- has_double_value_ = true;
- }
- if (r.IsNone()) {
- if (has_int32_value_) {
- r = Representation::Integer32();
- } else if (has_double_value_) {
- r = Representation::Double();
- } else {
- r = Representation::Tagged();
- }
- }
- Initialize(r);
-}
-
-
-HConstant::HConstant(int32_t integer_value, Representation r)
- : has_int32_value_(true),
- has_double_value_(true),
- int32_value_(integer_value),
- double_value_(FastI2D(integer_value)) {
- Initialize(r);
-}
-
-
-HConstant::HConstant(double double_value, Representation r)
- : has_int32_value_(IsInteger32(double_value)),
- has_double_value_(true),
- int32_value_(DoubleToInt32(double_value)),
- double_value_(double_value) {
- Initialize(r);
-}
-
-
-void HConstant::Initialize(Representation r) {
- set_representation(r);
- SetFlag(kUseGVN);
- if (representation().IsInteger32()) {
- ClearGVNFlag(kDependsOnOsrEntries);
- }
-}
-
-
-HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
- if (r.IsInteger32() && !has_int32_value_) return NULL;
- if (r.IsDouble() && !has_double_value_) return NULL;
- if (handle_.is_null()) {
- ASSERT(has_int32_value_ || has_double_value_);
- if (has_int32_value_) return new(zone) HConstant(int32_value_, r);
- return new(zone) HConstant(double_value_, r);
- }
- return new(zone) HConstant(handle_, r);
-}
-
-
-HConstant* HConstant::CopyToTruncatedInt32(Zone* zone) const {
- if (has_int32_value_) {
- if (handle_.is_null()) {
- return new(zone) HConstant(int32_value_, Representation::Integer32());
- } else {
- // Re-use the existing Handle if possible.
- return new(zone) HConstant(handle_, Representation::Integer32());
- }
- } else if (has_double_value_) {
- return new(zone) HConstant(DoubleToInt32(double_value_),
- Representation::Integer32());
- } else {
- return NULL;
- }
-}
-
-
-bool HConstant::ToBoolean() {
- // Converts the constant's boolean value according to
- // ECMAScript section 9.2 ToBoolean conversion.
- if (HasInteger32Value()) return Integer32Value() != 0;
- if (HasDoubleValue()) {
- double v = DoubleValue();
- return v != 0 && !isnan(v);
- }
- // Dereferencing is safe: singletons do not change and strings are
- // immutable.
- AllowHandleDereference allow_handle_deref(isolate());
- if (handle_->IsTrue()) return true;
- if (handle_->IsFalse()) return false;
- if (handle_->IsUndefined()) return false;
- if (handle_->IsNull()) return false;
- if (handle_->IsString() && String::cast(*handle_)->length() == 0) {
- return false;
- }
- return true;
-}
-
-void HConstant::PrintDataTo(StringStream* stream) {
- if (has_int32_value_) {
- stream->Add("%d ", int32_value_);
- } else if (has_double_value_) {
- stream->Add("%f ", FmtElm(double_value_));
- } else {
- handle()->ShortPrint(stream);
- }
-}
-
-
-bool HArrayLiteral::IsCopyOnWrite() const {
- if (!boilerplate_object_->IsJSObject()) return false;
- return Handle<JSObject>::cast(boilerplate_object_)->elements()->map() ==
- HEAP->fixed_cow_array_map();
-}
-
-
-void HBinaryOperation::PrintDataTo(StringStream* stream) {
- left()->PrintNameTo(stream);
- stream->Add(" ");
- right()->PrintNameTo(stream);
- if (CheckFlag(kCanOverflow)) stream->Add(" !");
- if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
-}
-
-
-void HBinaryOperation::InferRepresentation(HInferRepresentation* h_infer) {
- ASSERT(CheckFlag(kFlexibleRepresentation));
- Representation new_rep = RepresentationFromInputs();
- UpdateRepresentation(new_rep, h_infer, "inputs");
- // When the operation has information about its own output type, don't look
- // at uses.
- if (!observed_output_representation_.IsNone()) return;
- new_rep = RepresentationFromUses();
- UpdateRepresentation(new_rep, h_infer, "uses");
-}
-
-
-Representation HBinaryOperation::RepresentationFromInputs() {
- // Determine the worst case of observed input representations and
- // the currently assumed output representation.
- Representation rep = representation();
- if (observed_output_representation_.is_more_general_than(rep)) {
- rep = observed_output_representation_;
- }
- for (int i = 1; i <= 2; ++i) {
- Representation input_rep = observed_input_representation(i);
- if (input_rep.is_more_general_than(rep)) rep = input_rep;
- }
- // If any of the actual input representation is more general than what we
- // have so far but not Tagged, use that representation instead.
- Representation left_rep = left()->representation();
- Representation right_rep = right()->representation();
-
- if (left_rep.is_more_general_than(rep) &&
- left()->CheckFlag(kFlexibleRepresentation)) {
- rep = left_rep;
- }
- if (right_rep.is_more_general_than(rep) &&
- right()->CheckFlag(kFlexibleRepresentation)) {
- rep = right_rep;
- }
- return rep;
-}
-
-
-void HBinaryOperation::AssumeRepresentation(Representation r) {
- set_observed_input_representation(r, r);
- HValue::AssumeRepresentation(r);
-}
-
-
-void HMathMinMax::InferRepresentation(HInferRepresentation* h_infer) {
- ASSERT(CheckFlag(kFlexibleRepresentation));
- Representation new_rep = RepresentationFromInputs();
- UpdateRepresentation(new_rep, h_infer, "inputs");
- // Do not care about uses.
-}
-
-
-Range* HBitwise::InferRange(Zone* zone) {
- if (op() == Token::BIT_XOR) return HValue::InferRange(zone);
- const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
- int32_t left_mask = (left()->range() != NULL)
- ? left()->range()->Mask()
- : kDefaultMask;
- int32_t right_mask = (right()->range() != NULL)
- ? right()->range()->Mask()
- : kDefaultMask;
- int32_t result_mask = (op() == Token::BIT_AND)
- ? left_mask & right_mask
- : left_mask | right_mask;
- return (result_mask >= 0)
- ? new(zone) Range(0, result_mask)
- : HValue::InferRange(zone);
-}
-
-
-Range* HSar::InferRange(Zone* zone) {
- if (right()->IsConstant()) {
- HConstant* c = HConstant::cast(right());
- if (c->HasInteger32Value()) {
- Range* result = (left()->range() != NULL)
- ? left()->range()->Copy(zone)
- : new(zone) Range();
- result->Sar(c->Integer32Value());
- result->set_can_be_minus_zero(false);
- return result;
- }
- }
- return HValue::InferRange(zone);
-}
-
-
-Range* HShr::InferRange(Zone* zone) {
- if (right()->IsConstant()) {
- HConstant* c = HConstant::cast(right());
- if (c->HasInteger32Value()) {
- int shift_count = c->Integer32Value() & 0x1f;
- if (left()->range()->CanBeNegative()) {
- // Only compute bounds if the result always fits into an int32.
- return (shift_count >= 1)
- ? new(zone) Range(0,
- static_cast<uint32_t>(0xffffffff) >> shift_count)
- : new(zone) Range();
- } else {
- // For positive inputs we can use the >> operator.
- Range* result = (left()->range() != NULL)
- ? left()->range()->Copy(zone)
- : new(zone) Range();
- result->Sar(c->Integer32Value());
- result->set_can_be_minus_zero(false);
- return result;
- }
- }
- }
- return HValue::InferRange(zone);
-}
-
-
-Range* HShl::InferRange(Zone* zone) {
- if (right()->IsConstant()) {
- HConstant* c = HConstant::cast(right());
- if (c->HasInteger32Value()) {
- Range* result = (left()->range() != NULL)
- ? left()->range()->Copy(zone)
- : new(zone) Range();
- result->Shl(c->Integer32Value());
- result->set_can_be_minus_zero(false);
- return result;
- }
- }
- return HValue::InferRange(zone);
-}
-
-
-Range* HLoadKeyed::InferRange(Zone* zone) {
- switch (elements_kind()) {
- case EXTERNAL_PIXEL_ELEMENTS:
- return new(zone) Range(0, 255);
- case EXTERNAL_BYTE_ELEMENTS:
- return new(zone) Range(-128, 127);
- case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
- return new(zone) Range(0, 255);
- case EXTERNAL_SHORT_ELEMENTS:
- return new(zone) Range(-32768, 32767);
- case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
- return new(zone) Range(0, 65535);
- default:
- return HValue::InferRange(zone);
- }
-}
-
-
-void HCompareGeneric::PrintDataTo(StringStream* stream) {
- stream->Add(Token::Name(token()));
- stream->Add(" ");
- HBinaryOperation::PrintDataTo(stream);
-}
-
-
-void HStringCompareAndBranch::PrintDataTo(StringStream* stream) {
- stream->Add(Token::Name(token()));
- stream->Add(" ");
- HControlInstruction::PrintDataTo(stream);
-}
-
-
-void HCompareIDAndBranch::AddInformativeDefinitions() {
- NumericRelation r = NumericRelation::FromToken(token());
- if (r.IsNone()) return;
-
- HNumericConstraint::AddToGraph(left(), r, right(), SuccessorAt(0)->first());
- HNumericConstraint::AddToGraph(
- left(), r.Negated(), right(), SuccessorAt(1)->first());
-}
-
-
-void HCompareIDAndBranch::PrintDataTo(StringStream* stream) {
- stream->Add(Token::Name(token()));
- stream->Add(" ");
- left()->PrintNameTo(stream);
- stream->Add(" ");
- right()->PrintNameTo(stream);
- HControlInstruction::PrintDataTo(stream);
-}
-
-
-void HCompareObjectEqAndBranch::PrintDataTo(StringStream* stream) {
- left()->PrintNameTo(stream);
- stream->Add(" ");
- right()->PrintNameTo(stream);
- HControlInstruction::PrintDataTo(stream);
-}
-
-
-void HGoto::PrintDataTo(StringStream* stream) {
- stream->Add("B%d", SuccessorAt(0)->block_id());
-}
-
-
-void HCompareIDAndBranch::InferRepresentation(HInferRepresentation* h_infer) {
- Representation rep = Representation::None();
- Representation left_rep = left()->representation();
- Representation right_rep = right()->representation();
- bool observed_integers =
- observed_input_representation(0).IsInteger32() &&
- observed_input_representation(1).IsInteger32();
- bool inputs_are_not_doubles =
- !left_rep.IsDouble() && !right_rep.IsDouble();
- if (observed_integers && inputs_are_not_doubles) {
- rep = Representation::Integer32();
- } else {
- rep = Representation::Double();
- // According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
- // and !=) have special handling of undefined, e.g. undefined == undefined
- // is 'true'. Relational comparisons have a different semantic, first
- // calling ToPrimitive() on their arguments. The standard Crankshaft
- // tagged-to-double conversion to ensure the HCompareIDAndBranch's inputs
- // are doubles caused 'undefined' to be converted to NaN. That's compatible
- // out-of-the box with ordered relational comparisons (<, >, <=,
- // >=). However, for equality comparisons (and for 'in' and 'instanceof'),
- // it is not consistent with the spec. For example, it would cause undefined
- // == undefined (should be true) to be evaluated as NaN == NaN
- // (false). Therefore, any comparisons other than ordered relational
- // comparisons must cause a deopt when one of their arguments is undefined.
- // See also v8:1434
- if (!Token::IsOrderedRelationalCompareOp(token_)) {
- SetFlag(kDeoptimizeOnUndefined);
- }
- }
- ChangeRepresentation(rep);
-}
-
-
-void HParameter::PrintDataTo(StringStream* stream) {
- stream->Add("%u", index());
-}
-
-
-void HLoadNamedField::PrintDataTo(StringStream* stream) {
- object()->PrintNameTo(stream);
- stream->Add(" @%d%s", offset(), is_in_object() ? "[in-object]" : "");
-}
-
-
-// Returns true if an instance of this map can never find a property with this
-// name in its prototype chain. This means all prototypes up to the top are
-// fast and don't have the name in them. It would be good if we could optimize
-// polymorphic loads where the property is sometimes found in the prototype
-// chain.
-static bool PrototypeChainCanNeverResolve(
- Handle<Map> map, Handle<String> name) {
- Isolate* isolate = map->GetIsolate();
- Object* current = map->prototype();
- while (current != isolate->heap()->null_value()) {
- if (current->IsJSGlobalProxy() ||
- current->IsGlobalObject() ||
- !current->IsJSObject() ||
- JSObject::cast(current)->map()->has_named_interceptor() ||
- JSObject::cast(current)->IsAccessCheckNeeded() ||
- !JSObject::cast(current)->HasFastProperties()) {
- return false;
- }
-
- LookupResult lookup(isolate);
- Map* map = JSObject::cast(current)->map();
- map->LookupDescriptor(NULL, *name, &lookup);
- if (lookup.IsFound()) return false;
- if (!lookup.IsCacheable()) return false;
- current = JSObject::cast(current)->GetPrototype();
- }
- return true;
-}
-
-
-HLoadNamedFieldPolymorphic::HLoadNamedFieldPolymorphic(HValue* context,
- HValue* object,
- SmallMapList* types,
- Handle<String> name,
- Zone* zone)
- : types_(Min(types->length(), kMaxLoadPolymorphism), zone),
- name_(name),
- need_generic_(false) {
- SetOperandAt(0, context);
- SetOperandAt(1, object);
- set_representation(Representation::Tagged());
- SetGVNFlag(kDependsOnMaps);
- SmallMapList negative_lookups;
- for (int i = 0;
- i < types->length() && types_.length() < kMaxLoadPolymorphism;
- ++i) {
- Handle<Map> map = types->at(i);
- LookupResult lookup(map->GetIsolate());
- map->LookupDescriptor(NULL, *name, &lookup);
- if (lookup.IsFound()) {
- switch (lookup.type()) {
- case FIELD: {
- int index = lookup.GetLocalFieldIndexFromMap(*map);
- if (index < 0) {
- SetGVNFlag(kDependsOnInobjectFields);
- } else {
- SetGVNFlag(kDependsOnBackingStoreFields);
- }
- types_.Add(types->at(i), zone);
- break;
- }
- case CONSTANT_FUNCTION:
- types_.Add(types->at(i), zone);
- break;
- case CALLBACKS:
- break;
- case TRANSITION:
- case INTERCEPTOR:
- case NONEXISTENT:
- case NORMAL:
- case HANDLER:
- UNREACHABLE();
- break;
- }
- } else if (lookup.IsCacheable() &&
- // For dicts the lookup on the map will fail, but the object may
- // contain the property so we cannot generate a negative lookup
- // (which would just be a map check and return undefined).
- !map->is_dictionary_map() &&
- !map->has_named_interceptor() &&
- PrototypeChainCanNeverResolve(map, name)) {
- negative_lookups.Add(types->at(i), zone);
- }
- }
-
- bool need_generic =
- (types->length() != negative_lookups.length() + types_.length());
- if (!need_generic && FLAG_deoptimize_uncommon_cases) {
- SetFlag(kUseGVN);
- for (int i = 0; i < negative_lookups.length(); i++) {
- types_.Add(negative_lookups.at(i), zone);
- }
- } else {
- // We don't have an easy way to handle both a call (to the generic stub) and
- // a deopt in the same hydrogen instruction, so in this case we don't add
- // the negative lookups which can deopt - just let the generic stub handle
- // them.
- SetAllSideEffects();
- need_generic_ = true;
- }
-}
-
-
-bool HLoadNamedFieldPolymorphic::DataEquals(HValue* value) {
- HLoadNamedFieldPolymorphic* other = HLoadNamedFieldPolymorphic::cast(value);
- if (types_.length() != other->types()->length()) return false;
- if (!name_.is_identical_to(other->name())) return false;
- if (need_generic_ != other->need_generic_) return false;
- for (int i = 0; i < types_.length(); i++) {
- bool found = false;
- for (int j = 0; j < types_.length(); j++) {
- if (types_.at(j).is_identical_to(other->types()->at(i))) {
- found = true;
- break;
- }
- }
- if (!found) return false;
- }
- return true;
-}
-
-
-void HLoadNamedFieldPolymorphic::PrintDataTo(StringStream* stream) {
- object()->PrintNameTo(stream);
- stream->Add(".");
- stream->Add(*String::cast(*name())->ToCString());
-}
-
-
-void HLoadNamedGeneric::PrintDataTo(StringStream* stream) {
- object()->PrintNameTo(stream);
- stream->Add(".");
- stream->Add(*String::cast(*name())->ToCString());
-}
-
-
-void HLoadKeyed::PrintDataTo(StringStream* stream) {
- if (!is_external()) {
- elements()->PrintNameTo(stream);
- } else {
- ASSERT(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
- elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
- elements()->PrintNameTo(stream);
- stream->Add(".");
- stream->Add(ElementsKindToString(elements_kind()));
- }
-
- stream->Add("[");
- key()->PrintNameTo(stream);
- if (IsDehoisted()) {
- stream->Add(" + %d]", index_offset());
- } else {
- stream->Add("]");
- }
-
- if (HasDependency()) {
- stream->Add(" ");
- dependency()->PrintNameTo(stream);
- }
-
- if (RequiresHoleCheck()) {
- stream->Add(" check_hole");
- }
-}
-
-
-bool HLoadKeyed::UsesMustHandleHole() const {
- if (IsFastPackedElementsKind(elements_kind())) {
- return false;
- }
-
- if (hole_mode() == ALLOW_RETURN_HOLE) return true;
-
- if (IsFastDoubleElementsKind(elements_kind())) {
- return false;
- }
-
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- HValue* use = it.value();
- if (!use->IsChange()) {
- return false;
- }
- }
-
- return true;
-}
-
-
-bool HLoadKeyed::RequiresHoleCheck() const {
- if (IsFastPackedElementsKind(elements_kind())) {
- return false;
- }
-
- return !UsesMustHandleHole();
-}
-
-
-void HLoadKeyedGeneric::PrintDataTo(StringStream* stream) {
- object()->PrintNameTo(stream);
- stream->Add("[");
- key()->PrintNameTo(stream);
- stream->Add("]");
-}
-
-
-HValue* HLoadKeyedGeneric::Canonicalize() {
- // Recognize generic keyed loads that use property name generated
- // by for-in statement as a key and rewrite them into fast property load
- // by index.
- if (key()->IsLoadKeyed()) {
- HLoadKeyed* key_load = HLoadKeyed::cast(key());
- if (key_load->elements()->IsForInCacheArray()) {
- HForInCacheArray* names_cache =
- HForInCacheArray::cast(key_load->elements());
-
- if (names_cache->enumerable() == object()) {
- HForInCacheArray* index_cache =
- names_cache->index_cache();
- HCheckMapValue* map_check =
- new(block()->zone()) HCheckMapValue(object(), names_cache->map());
- HInstruction* index = new(block()->zone()) HLoadKeyed(
- index_cache,
- key_load->key(),
- key_load->key(),
- key_load->elements_kind());
- map_check->InsertBefore(this);
- index->InsertBefore(this);
- HLoadFieldByIndex* load = new(block()->zone()) HLoadFieldByIndex(
- object(), index);
- load->InsertBefore(this);
- return load;
- }
- }
- }
-
- return this;
-}
-
-
-void HStoreNamedGeneric::PrintDataTo(StringStream* stream) {
- object()->PrintNameTo(stream);
- stream->Add(".");
- ASSERT(name()->IsString());
- stream->Add(*String::cast(*name())->ToCString());
- stream->Add(" = ");
- value()->PrintNameTo(stream);
-}
-
-
-void HStoreNamedField::PrintDataTo(StringStream* stream) {
- object()->PrintNameTo(stream);
- stream->Add(".");
- stream->Add(*String::cast(*name())->ToCString());
- stream->Add(" = ");
- value()->PrintNameTo(stream);
- stream->Add(" @%d%s", offset(), is_in_object() ? "[in-object]" : "");
- if (NeedsWriteBarrier()) {
- stream->Add(" (write-barrier)");
- }
- if (!transition().is_null()) {
- stream->Add(" (transition map %p)", *transition());
- }
-}
-
-
-void HStoreKeyed::PrintDataTo(StringStream* stream) {
- if (!is_external()) {
- elements()->PrintNameTo(stream);
- } else {
- elements()->PrintNameTo(stream);
- stream->Add(".");
- stream->Add(ElementsKindToString(elements_kind()));
- ASSERT(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
- elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
- }
-
- stream->Add("[");
- key()->PrintNameTo(stream);
- if (IsDehoisted()) {
- stream->Add(" + %d] = ", index_offset());
- } else {
- stream->Add("] = ");
- }
-
- value()->PrintNameTo(stream);
-}
-
-
-void HStoreKeyedGeneric::PrintDataTo(StringStream* stream) {
- object()->PrintNameTo(stream);
- stream->Add("[");
- key()->PrintNameTo(stream);
- stream->Add("] = ");
- value()->PrintNameTo(stream);
-}
-
-
-void HTransitionElementsKind::PrintDataTo(StringStream* stream) {
- object()->PrintNameTo(stream);
- ElementsKind from_kind = original_map()->elements_kind();
- ElementsKind to_kind = transitioned_map()->elements_kind();
- stream->Add(" %p [%s] -> %p [%s]",
- *original_map(),
- ElementsAccessor::ForKind(from_kind)->name(),
- *transitioned_map(),
- ElementsAccessor::ForKind(to_kind)->name());
-}
-
-
-void HLoadGlobalCell::PrintDataTo(StringStream* stream) {
- stream->Add("[%p]", *cell());
- if (!details_.IsDontDelete()) stream->Add(" (deleteable)");
- if (details_.IsReadOnly()) stream->Add(" (read-only)");
-}
-
-
-bool HLoadGlobalCell::RequiresHoleCheck() const {
- if (details_.IsDontDelete() && !details_.IsReadOnly()) return false;
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- HValue* use = it.value();
- if (!use->IsChange()) return true;
- }
- return false;
-}
-
-
-void HLoadGlobalGeneric::PrintDataTo(StringStream* stream) {
- stream->Add("%o ", *name());
-}
-
-
-void HStoreGlobalCell::PrintDataTo(StringStream* stream) {
- stream->Add("[%p] = ", *cell());
- value()->PrintNameTo(stream);
- if (!details_.IsDontDelete()) stream->Add(" (deleteable)");
- if (details_.IsReadOnly()) stream->Add(" (read-only)");
-}
-
-
-void HStoreGlobalGeneric::PrintDataTo(StringStream* stream) {
- stream->Add("%o = ", *name());
- value()->PrintNameTo(stream);
-}
-
-
-void HLoadContextSlot::PrintDataTo(StringStream* stream) {
- value()->PrintNameTo(stream);
- stream->Add("[%d]", slot_index());
-}
-
-
-void HStoreContextSlot::PrintDataTo(StringStream* stream) {
- context()->PrintNameTo(stream);
- stream->Add("[%d] = ", slot_index());
- value()->PrintNameTo(stream);
-}
-
-
-// Implementation of type inference and type conversions. Calculates
-// the inferred type of this instruction based on the input operands.
-
-HType HValue::CalculateInferredType() {
- return type_;
-}
-
-
-HType HCheckMaps::CalculateInferredType() {
- return value()->type();
-}
-
-
-HType HCheckFunction::CalculateInferredType() {
- return value()->type();
-}
-
-
-HType HCheckNonSmi::CalculateInferredType() {
- // TODO(kasperl): Is there any way to signal that this isn't a smi?
- return HType::Tagged();
-}
-
-
-HType HCheckSmi::CalculateInferredType() {
- return HType::Smi();
-}
-
-
-void HCheckSmiOrInt32::InferRepresentation(HInferRepresentation* h_infer) {
- ASSERT(CheckFlag(kFlexibleRepresentation));
- Representation r = value()->representation().IsTagged()
- ? Representation::Tagged() : Representation::Integer32();
- UpdateRepresentation(r, h_infer, "checksmiorint32");
-}
-
-
-HType HPhi::CalculateInferredType() {
- HType result = HType::Uninitialized();
- for (int i = 0; i < OperandCount(); ++i) {
- HType current = OperandAt(i)->type();
- result = result.Combine(current);
- }
- return result;
-}
-
-
-HType HConstant::CalculateInferredType() {
- if (has_int32_value_) {
- return Smi::IsValid(int32_value_) ? HType::Smi() : HType::HeapNumber();
- }
- if (has_double_value_) return HType::HeapNumber();
- return HType::TypeFromValue(isolate(), handle_);
-}
-
-
-HType HCompareGeneric::CalculateInferredType() {
- return HType::Boolean();
-}
-
-
-HType HInstanceOf::CalculateInferredType() {
- return HType::Boolean();
-}
-
-
-HType HDeleteProperty::CalculateInferredType() {
- return HType::Boolean();
-}
-
-
-HType HInstanceOfKnownGlobal::CalculateInferredType() {
- return HType::Boolean();
-}
-
-
-HType HChange::CalculateInferredType() {
- if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
- return type();
-}
-
-
-HType HBitwiseBinaryOperation::CalculateInferredType() {
- return HType::TaggedNumber();
-}
-
-
-HType HArithmeticBinaryOperation::CalculateInferredType() {
- return HType::TaggedNumber();
-}
-
-
-HType HAdd::CalculateInferredType() {
- return HType::Tagged();
-}
-
-
-HType HBitNot::CalculateInferredType() {
- return HType::TaggedNumber();
-}
-
-
-HType HUnaryMathOperation::CalculateInferredType() {
- return HType::TaggedNumber();
-}
-
-
-HType HStringCharFromCode::CalculateInferredType() {
- return HType::String();
-}
-
-
-HType HAllocateObject::CalculateInferredType() {
- return HType::JSObject();
-}
-
-
-HType HAllocate::CalculateInferredType() {
- return type_;
-}
-
-
-HType HFastLiteral::CalculateInferredType() {
- // TODO(mstarzinger): Be smarter, could also be JSArray here.
- return HType::JSObject();
-}
-
-
-HType HArrayLiteral::CalculateInferredType() {
- return HType::JSArray();
-}
-
-
-HType HObjectLiteral::CalculateInferredType() {
- return HType::JSObject();
-}
-
-
-HType HRegExpLiteral::CalculateInferredType() {
- return HType::JSObject();
-}
-
-
-HType HFunctionLiteral::CalculateInferredType() {
- return HType::JSObject();
-}
-
-
-HValue* HUnaryMathOperation::EnsureAndPropagateNotMinusZero(
- BitVector* visited) {
- visited->Add(id());
- if (representation().IsInteger32() &&
- !value()->representation().IsInteger32()) {
- if (value()->range() == NULL || value()->range()->CanBeMinusZero()) {
- SetFlag(kBailoutOnMinusZero);
- }
- }
- if (RequiredInputRepresentation(0).IsInteger32() &&
- representation().IsInteger32()) {
- return value();
- }
- return NULL;
-}
-
-
-
-HValue* HChange::EnsureAndPropagateNotMinusZero(BitVector* visited) {
- visited->Add(id());
- if (from().IsInteger32()) return NULL;
- if (CanTruncateToInt32()) return NULL;
- if (value()->range() == NULL || value()->range()->CanBeMinusZero()) {
- SetFlag(kBailoutOnMinusZero);
- }
- ASSERT(!from().IsInteger32() || !to().IsInteger32());
- return NULL;
-}
-
-
-HValue* HForceRepresentation::EnsureAndPropagateNotMinusZero(
- BitVector* visited) {
- visited->Add(id());
- return value();
-}
-
-
-HValue* HMod::EnsureAndPropagateNotMinusZero(BitVector* visited) {
- visited->Add(id());
- if (range() == NULL || range()->CanBeMinusZero()) {
- SetFlag(kBailoutOnMinusZero);
- return left();
- }
- return NULL;
-}
-
-
-HValue* HDiv::EnsureAndPropagateNotMinusZero(BitVector* visited) {
- visited->Add(id());
- if (range() == NULL || range()->CanBeMinusZero()) {
- SetFlag(kBailoutOnMinusZero);
- }
- return NULL;
-}
-
-
-HValue* HMathFloorOfDiv::EnsureAndPropagateNotMinusZero(BitVector* visited) {
- visited->Add(id());
- SetFlag(kBailoutOnMinusZero);
- return NULL;
-}
-
-
-HValue* HMul::EnsureAndPropagateNotMinusZero(BitVector* visited) {
- visited->Add(id());
- if (range() == NULL || range()->CanBeMinusZero()) {
- SetFlag(kBailoutOnMinusZero);
- }
- return NULL;
-}
-
-
-HValue* HSub::EnsureAndPropagateNotMinusZero(BitVector* visited) {
- visited->Add(id());
- // Propagate to the left argument. If the left argument cannot be -0, then
- // the result of the add operation cannot be either.
- if (range() == NULL || range()->CanBeMinusZero()) {
- return left();
- }
- return NULL;
-}
-
-
-HValue* HAdd::EnsureAndPropagateNotMinusZero(BitVector* visited) {
- visited->Add(id());
- // Propagate to the left argument. If the left argument cannot be -0, then
- // the result of the sub operation cannot be either.
- if (range() == NULL || range()->CanBeMinusZero()) {
- return left();
- }
- return NULL;
-}
-
-
-bool HStoreKeyed::NeedsCanonicalization() {
- // If value is an integer or smi or comes from the result of a keyed load or
- // constant then it is either be a non-hole value or in the case of a constant
- // the hole is only being stored explicitly: no need for canonicalization.
- if (value()->IsLoadKeyed() || value()->IsConstant()) {
- return false;
- }
-
- if (value()->IsChange()) {
- if (HChange::cast(value())->from().IsInteger32()) {
- return false;
- }
- if (HChange::cast(value())->value()->type().IsSmi()) {
- return false;
- }
- }
- return true;
-}
-
-
-#define H_CONSTANT_INT32(val) \
-new(zone) HConstant(static_cast<int32_t>(val), Representation::Integer32())
-#define H_CONSTANT_DOUBLE(val) \
-new(zone) HConstant(static_cast<double>(val), Representation::Double())
-
-#define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op) \
-HInstruction* HInstr::New( \
- Zone* zone, HValue* context, HValue* left, HValue* right) { \
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \
- HConstant* c_left = HConstant::cast(left); \
- HConstant* c_right = HConstant::cast(right); \
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \
- double double_res = c_left->DoubleValue() op c_right->DoubleValue(); \
- if (TypeInfo::IsInt32Double(double_res)) { \
- return H_CONSTANT_INT32(double_res); \
- } \
- return H_CONSTANT_DOUBLE(double_res); \
- } \
- } \
- return new(zone) HInstr(context, left, right); \
-}
-
-
-DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
-DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
-DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
-
-#undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
-
-
-HInstruction* HStringAdd::New(
- Zone* zone, HValue* context, HValue* left, HValue* right) {
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_right = HConstant::cast(right);
- HConstant* c_left = HConstant::cast(left);
- if (c_left->HasStringValue() && c_right->HasStringValue()) {
- return new(zone) HConstant(FACTORY->NewConsString(c_left->StringValue(),
- c_right->StringValue()),
- Representation::Tagged());
- }
- }
- return new(zone) HStringAdd(context, left, right);
-}
-
-
-HInstruction* HStringCharFromCode::New(
- Zone* zone, HValue* context, HValue* char_code) {
- if (FLAG_fold_constants && char_code->IsConstant()) {
- HConstant* c_code = HConstant::cast(char_code);
- Isolate* isolate = Isolate::Current();
- if (c_code->HasNumberValue()) {
- if (isfinite(c_code->DoubleValue())) {
- uint32_t code = c_code->NumberValueAsInteger32() & 0xffff;
- return new(zone) HConstant(LookupSingleCharacterStringFromCode(isolate,
- code),
- Representation::Tagged());
- }
- return new(zone) HConstant(isolate->factory()->empty_string(),
- Representation::Tagged());
- }
- }
- return new(zone) HStringCharFromCode(context, char_code);
-}
-
-
-HInstruction* HStringLength::New(Zone* zone, HValue* string) {
- if (FLAG_fold_constants && string->IsConstant()) {
- HConstant* c_string = HConstant::cast(string);
- if (c_string->HasStringValue()) {
- return H_CONSTANT_INT32(c_string->StringValue()->length());
- }
- }
- return new(zone) HStringLength(string);
-}
-
-
-HInstruction* HUnaryMathOperation::New(
- Zone* zone, HValue* context, HValue* value, BuiltinFunctionId op) {
- do {
- if (!FLAG_fold_constants) break;
- if (!value->IsConstant()) break;
- HConstant* constant = HConstant::cast(value);
- if (!constant->HasNumberValue()) break;
- double d = constant->DoubleValue();
- if (isnan(d)) { // NaN poisons everything.
- return H_CONSTANT_DOUBLE(OS::nan_value());
- }
- if (isinf(d)) { // +Infinity and -Infinity.
- switch (op) {
- case kMathSin:
- case kMathCos:
- case kMathTan:
- return H_CONSTANT_DOUBLE(OS::nan_value());
- case kMathExp:
- return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0);
- case kMathLog:
- case kMathSqrt:
- return H_CONSTANT_DOUBLE((d > 0.0) ? d : OS::nan_value());
- case kMathPowHalf:
- case kMathAbs:
- return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d);
- case kMathRound:
- case kMathFloor:
- return H_CONSTANT_DOUBLE(d);
- default:
- UNREACHABLE();
- break;
- }
- }
- switch (op) {
- case kMathSin:
- return H_CONSTANT_DOUBLE(fast_sin(d));
- case kMathCos:
- return H_CONSTANT_DOUBLE(fast_cos(d));
- case kMathTan:
- return H_CONSTANT_DOUBLE(fast_tan(d));
- case kMathExp:
- return H_CONSTANT_DOUBLE(fast_exp(d));
- case kMathLog:
- return H_CONSTANT_DOUBLE(fast_log(d));
- case kMathSqrt:
- return H_CONSTANT_DOUBLE(fast_sqrt(d));
- case kMathPowHalf:
- return H_CONSTANT_DOUBLE(power_double_double(d, 0.5));
- case kMathAbs:
- return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d);
- case kMathRound:
- // -0.5 .. -0.0 round to -0.0.
- if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0);
- // Doubles are represented as Significant * 2 ^ Exponent. If the
- // Exponent is not negative, the double value is already an integer.
- if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d);
- return H_CONSTANT_DOUBLE(floor(d + 0.5));
- case kMathFloor:
- return H_CONSTANT_DOUBLE(floor(d));
- default:
- UNREACHABLE();
- break;
- }
- } while (false);
- return new(zone) HUnaryMathOperation(context, value, op);
-}
-
-
-HInstruction* HPower::New(Zone* zone, HValue* left, HValue* right) {
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_left = HConstant::cast(left);
- HConstant* c_right = HConstant::cast(right);
- if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
- double result = power_helper(c_left->DoubleValue(),
- c_right->DoubleValue());
- return H_CONSTANT_DOUBLE(isnan(result) ? OS::nan_value() : result);
- }
- }
- return new(zone) HPower(left, right);
-}
-
-
-HInstruction* HMathMinMax::New(
- Zone* zone, HValue* context, HValue* left, HValue* right, Operation op) {
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_left = HConstant::cast(left);
- HConstant* c_right = HConstant::cast(right);
- if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
- double d_left = c_left->DoubleValue();
- double d_right = c_right->DoubleValue();
- if (op == kMathMin) {
- if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right);
- if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left);
- if (d_left == d_right) {
- // Handle +0 and -0.
- return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left
- : d_right);
- }
- } else {
- if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right);
- if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left);
- if (d_left == d_right) {
- // Handle +0 and -0.
- return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right
- : d_left);
- }
- }
- // All comparisons failed, must be NaN.
- return H_CONSTANT_DOUBLE(OS::nan_value());
- }
- }
- return new(zone) HMathMinMax(context, left, right, op);
-}
-
-
-HInstruction* HMod::New(
- Zone* zone, HValue* context, HValue* left, HValue* right) {
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_left = HConstant::cast(left);
- HConstant* c_right = HConstant::cast(right);
- if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
- int32_t dividend = c_left->Integer32Value();
- int32_t divisor = c_right->Integer32Value();
- if (divisor != 0) {
- int32_t res = dividend % divisor;
- if ((res == 0) && (dividend < 0)) {
- return H_CONSTANT_DOUBLE(-0.0);
- }
- return H_CONSTANT_INT32(res);
- }
- }
- }
- return new(zone) HMod(context, left, right);
-}
-
-
-HInstruction* HDiv::New(
- Zone* zone, HValue* context, HValue* left, HValue* right) {
- // If left and right are constant values, try to return a constant value.
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_left = HConstant::cast(left);
- HConstant* c_right = HConstant::cast(right);
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
- if (c_right->DoubleValue() != 0) {
- double double_res = c_left->DoubleValue() / c_right->DoubleValue();
- if (TypeInfo::IsInt32Double(double_res)) {
- return H_CONSTANT_INT32(double_res);
- }
- return H_CONSTANT_DOUBLE(double_res);
- } else {
- int sign = Double(c_left->DoubleValue()).Sign() *
- Double(c_right->DoubleValue()).Sign(); // Right could be -0.
- return H_CONSTANT_DOUBLE(sign * V8_INFINITY);
- }
- }
- }
- return new(zone) HDiv(context, left, right);
-}
-
-
-HInstruction* HBitwise::New(
- Zone* zone, Token::Value op, HValue* context, HValue* left, HValue* right) {
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_left = HConstant::cast(left);
- HConstant* c_right = HConstant::cast(right);
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
- int32_t result;
- int32_t v_left = c_left->NumberValueAsInteger32();
- int32_t v_right = c_right->NumberValueAsInteger32();
- switch (op) {
- case Token::BIT_XOR:
- result = v_left ^ v_right;
- break;
- case Token::BIT_AND:
- result = v_left & v_right;
- break;
- case Token::BIT_OR:
- result = v_left | v_right;
- break;
- default:
- result = 0; // Please the compiler.
- UNREACHABLE();
- }
- return H_CONSTANT_INT32(result);
- }
- }
- return new(zone) HBitwise(op, context, left, right);
-}
-
-
-#define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result) \
-HInstruction* HInstr::New( \
- Zone* zone, HValue* context, HValue* left, HValue* right) { \
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \
- HConstant* c_left = HConstant::cast(left); \
- HConstant* c_right = HConstant::cast(right); \
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \
- return H_CONSTANT_INT32(result); \
- } \
- } \
- return new(zone) HInstr(context, left, right); \
-}
-
-
-DEFINE_NEW_H_BITWISE_INSTR(HSar,
-c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
-DEFINE_NEW_H_BITWISE_INSTR(HShl,
-c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
-
-#undef DEFINE_NEW_H_BITWISE_INSTR
-
-
-HInstruction* HShr::New(
- Zone* zone, HValue* context, HValue* left, HValue* right) {
- if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
- HConstant* c_left = HConstant::cast(left);
- HConstant* c_right = HConstant::cast(right);
- if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
- int32_t left_val = c_left->NumberValueAsInteger32();
- int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
- if ((right_val == 0) && (left_val < 0)) {
- return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val));
- }
- return H_CONSTANT_INT32(static_cast<uint32_t>(left_val) >> right_val);
- }
- }
- return new(zone) HShr(context, left, right);
-}
-
-
-#undef H_CONSTANT_INT32
-#undef H_CONSTANT_DOUBLE
-
-
-void HIn::PrintDataTo(StringStream* stream) {
- key()->PrintNameTo(stream);
- stream->Add(" ");
- object()->PrintNameTo(stream);
-}
-
-
-void HBitwise::PrintDataTo(StringStream* stream) {
- stream->Add(Token::Name(op_));
- stream->Add(" ");
- HBitwiseBinaryOperation::PrintDataTo(stream);
-}
-
-
-void HPhi::InferRepresentation(HInferRepresentation* h_infer) {
- ASSERT(CheckFlag(kFlexibleRepresentation));
- // If there are non-Phi uses, and all of them have observed the same
- // representation, than that's what this Phi is going to use.
- Representation new_rep = RepresentationObservedByAllNonPhiUses();
- if (!new_rep.IsNone()) {
- UpdateRepresentation(new_rep, h_infer, "unanimous use observations");
- return;
- }
- new_rep = RepresentationFromInputs();
- UpdateRepresentation(new_rep, h_infer, "inputs");
- new_rep = RepresentationFromUses();
- UpdateRepresentation(new_rep, h_infer, "uses");
- new_rep = RepresentationFromUseRequirements();
- UpdateRepresentation(new_rep, h_infer, "use requirements");
-}
-
-
-Representation HPhi::RepresentationObservedByAllNonPhiUses() {
- int non_phi_use_count = 0;
- for (int i = Representation::kInteger32;
- i < Representation::kNumRepresentations; ++i) {
- non_phi_use_count += non_phi_uses_[i];
- }
- if (non_phi_use_count <= 1) return Representation::None();
- for (int i = 0; i < Representation::kNumRepresentations; ++i) {
- if (non_phi_uses_[i] == non_phi_use_count) {
- return Representation::FromKind(static_cast<Representation::Kind>(i));
- }
- }
- return Representation::None();
-}
-
-
-Representation HPhi::RepresentationFromInputs() {
- bool double_occurred = false;
- bool int32_occurred = false;
- for (int i = 0; i < OperandCount(); ++i) {
- HValue* value = OperandAt(i);
- if (value->IsUnknownOSRValue()) {
- HPhi* hint_value = HUnknownOSRValue::cast(value)->incoming_value();
- if (hint_value != NULL) {
- Representation hint = hint_value->representation();
- if (hint.IsTagged()) return hint;
- if (hint.IsDouble()) double_occurred = true;
- if (hint.IsInteger32()) int32_occurred = true;
- }
- continue;
- }
- if (value->representation().IsDouble()) double_occurred = true;
- if (value->representation().IsInteger32()) int32_occurred = true;
- if (value->representation().IsTagged()) {
- if (value->IsConstant()) {
- HConstant* constant = HConstant::cast(value);
- if (constant->IsConvertibleToInteger()) {
- int32_occurred = true;
- } else if (constant->HasNumberValue()) {
- double_occurred = true;
- } else {
- return Representation::Tagged();
- }
- } else {
- if (value->IsPhi() && !IsConvertibleToInteger()) {
- return Representation::Tagged();
- }
- }
- }
- }
-
- if (double_occurred) return Representation::Double();
-
- if (int32_occurred) return Representation::Integer32();
-
- return Representation::None();
-}
-
-
-Representation HPhi::RepresentationFromUseRequirements() {
- Representation all_uses_require = Representation::None();
- bool all_uses_require_the_same = true;
- for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
- // We check for observed_input_representation elsewhere.
- Representation use_rep =
- it.value()->RequiredInputRepresentation(it.index());
- // No useful info from this use -> look at the next one.
- if (use_rep.IsNone()) {
- continue;
- }
- if (use_rep.Equals(all_uses_require)) {
- continue;
- }
- // This use's representation contradicts what we've seen so far.
- if (!all_uses_require.IsNone()) {
- ASSERT(!use_rep.Equals(all_uses_require));
- all_uses_require_the_same = false;
- break;
- }
- // Otherwise, initialize observed representation.
- all_uses_require = use_rep;
- }
- if (all_uses_require_the_same) {
- return all_uses_require;
- }
-
- return Representation::None();
-}
-
-
-// Node-specific verification code is only included in debug mode.
-#ifdef DEBUG
-
-void HPhi::Verify() {
- ASSERT(OperandCount() == block()->predecessors()->length());
- for (int i = 0; i < OperandCount(); ++i) {
- HValue* value = OperandAt(i);
- HBasicBlock* defining_block = value->block();
- HBasicBlock* predecessor_block = block()->predecessors()->at(i);
- ASSERT(defining_block == predecessor_block ||
- defining_block->Dominates(predecessor_block));
- }
-}
-
-
-void HSimulate::Verify() {
- HInstruction::Verify();
- ASSERT(HasAstId());
-}
-
-
-void HCheckSmi::Verify() {
- HInstruction::Verify();
- ASSERT(HasNoUses());
-}
-
-
-void HCheckNonSmi::Verify() {
- HInstruction::Verify();
- ASSERT(HasNoUses());
-}
-
-
-void HCheckFunction::Verify() {
- HInstruction::Verify();
- ASSERT(HasNoUses());
-}
-
-#endif
-
-} } // namespace v8::internal