summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/v8/src/spaces.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/spaces.cc')
-rw-r--r--src/3rdparty/v8/src/spaces.cc3131
1 files changed, 0 insertions, 3131 deletions
diff --git a/src/3rdparty/v8/src/spaces.cc b/src/3rdparty/v8/src/spaces.cc
deleted file mode 100644
index 3adb2e3..0000000
--- a/src/3rdparty/v8/src/spaces.cc
+++ /dev/null
@@ -1,3131 +0,0 @@
-// Copyright 2011 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include "v8.h"
-
-#include "macro-assembler.h"
-#include "mark-compact.h"
-#include "platform.h"
-
-namespace v8 {
-namespace internal {
-
-
-// ----------------------------------------------------------------------------
-// HeapObjectIterator
-
-HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
- // You can't actually iterate over the anchor page. It is not a real page,
- // just an anchor for the double linked page list. Initialize as if we have
- // reached the end of the anchor page, then the first iteration will move on
- // to the first page.
- Initialize(space,
- NULL,
- NULL,
- kAllPagesInSpace,
- NULL);
-}
-
-
-HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
- HeapObjectCallback size_func) {
- // You can't actually iterate over the anchor page. It is not a real page,
- // just an anchor for the double linked page list. Initialize the current
- // address and end as NULL, then the first iteration will move on
- // to the first page.
- Initialize(space,
- NULL,
- NULL,
- kAllPagesInSpace,
- size_func);
-}
-
-
-HeapObjectIterator::HeapObjectIterator(Page* page,
- HeapObjectCallback size_func) {
- Space* owner = page->owner();
- ASSERT(owner == page->heap()->old_pointer_space() ||
- owner == page->heap()->old_data_space() ||
- owner == page->heap()->map_space() ||
- owner == page->heap()->cell_space() ||
- owner == page->heap()->code_space());
- Initialize(reinterpret_cast<PagedSpace*>(owner),
- page->area_start(),
- page->area_end(),
- kOnePageOnly,
- size_func);
- ASSERT(page->WasSweptPrecisely());
-}
-
-
-void HeapObjectIterator::Initialize(PagedSpace* space,
- Address cur, Address end,
- HeapObjectIterator::PageMode mode,
- HeapObjectCallback size_f) {
- // Check that we actually can iterate this space.
- ASSERT(!space->was_swept_conservatively());
-
- space_ = space;
- cur_addr_ = cur;
- cur_end_ = end;
- page_mode_ = mode;
- size_func_ = size_f;
-}
-
-
-// We have hit the end of the page and should advance to the next block of
-// objects. This happens at the end of the page.
-bool HeapObjectIterator::AdvanceToNextPage() {
- ASSERT(cur_addr_ == cur_end_);
- if (page_mode_ == kOnePageOnly) return false;
- Page* cur_page;
- if (cur_addr_ == NULL) {
- cur_page = space_->anchor();
- } else {
- cur_page = Page::FromAddress(cur_addr_ - 1);
- ASSERT(cur_addr_ == cur_page->area_end());
- }
- cur_page = cur_page->next_page();
- if (cur_page == space_->anchor()) return false;
- cur_addr_ = cur_page->area_start();
- cur_end_ = cur_page->area_end();
- ASSERT(cur_page->WasSweptPrecisely());
- return true;
-}
-
-
-// -----------------------------------------------------------------------------
-// CodeRange
-
-
-CodeRange::CodeRange(Isolate* isolate)
- : isolate_(isolate),
- code_range_(NULL),
- free_list_(0),
- allocation_list_(0),
- current_allocation_block_index_(0) {
-}
-
-
-bool CodeRange::SetUp(const size_t requested) {
- ASSERT(code_range_ == NULL);
-
- code_range_ = new VirtualMemory(requested);
- CHECK(code_range_ != NULL);
- if (!code_range_->IsReserved()) {
- delete code_range_;
- code_range_ = NULL;
- return false;
- }
-
- // We are sure that we have mapped a block of requested addresses.
- ASSERT(code_range_->size() == requested);
- LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested));
- Address base = reinterpret_cast<Address>(code_range_->address());
- Address aligned_base =
- RoundUp(reinterpret_cast<Address>(code_range_->address()),
- MemoryChunk::kAlignment);
- size_t size = code_range_->size() - (aligned_base - base);
- allocation_list_.Add(FreeBlock(aligned_base, size));
- current_allocation_block_index_ = 0;
- return true;
-}
-
-
-int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
- const FreeBlock* right) {
- // The entire point of CodeRange is that the difference between two
- // addresses in the range can be represented as a signed 32-bit int,
- // so the cast is semantically correct.
- return static_cast<int>(left->start - right->start);
-}
-
-
-void CodeRange::GetNextAllocationBlock(size_t requested) {
- for (current_allocation_block_index_++;
- current_allocation_block_index_ < allocation_list_.length();
- current_allocation_block_index_++) {
- if (requested <= allocation_list_[current_allocation_block_index_].size) {
- return; // Found a large enough allocation block.
- }
- }
-
- // Sort and merge the free blocks on the free list and the allocation list.
- free_list_.AddAll(allocation_list_);
- allocation_list_.Clear();
- free_list_.Sort(&CompareFreeBlockAddress);
- for (int i = 0; i < free_list_.length();) {
- FreeBlock merged = free_list_[i];
- i++;
- // Add adjacent free blocks to the current merged block.
- while (i < free_list_.length() &&
- free_list_[i].start == merged.start + merged.size) {
- merged.size += free_list_[i].size;
- i++;
- }
- if (merged.size > 0) {
- allocation_list_.Add(merged);
- }
- }
- free_list_.Clear();
-
- for (current_allocation_block_index_ = 0;
- current_allocation_block_index_ < allocation_list_.length();
- current_allocation_block_index_++) {
- if (requested <= allocation_list_[current_allocation_block_index_].size) {
- return; // Found a large enough allocation block.
- }
- }
-
- // Code range is full or too fragmented.
- V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock");
-}
-
-
-Address CodeRange::AllocateRawMemory(const size_t requested_size,
- const size_t commit_size,
- size_t* allocated) {
- ASSERT(commit_size <= requested_size);
- ASSERT(current_allocation_block_index_ < allocation_list_.length());
- if (requested_size > allocation_list_[current_allocation_block_index_].size) {
- // Find an allocation block large enough. This function call may
- // call V8::FatalProcessOutOfMemory if it cannot find a large enough block.
- GetNextAllocationBlock(requested_size);
- }
- // Commit the requested memory at the start of the current allocation block.
- size_t aligned_requested = RoundUp(requested_size, MemoryChunk::kAlignment);
- FreeBlock current = allocation_list_[current_allocation_block_index_];
- if (aligned_requested >= (current.size - Page::kPageSize)) {
- // Don't leave a small free block, useless for a large object or chunk.
- *allocated = current.size;
- } else {
- *allocated = aligned_requested;
- }
- ASSERT(*allocated <= current.size);
- ASSERT(IsAddressAligned(current.start, MemoryChunk::kAlignment));
- if (!MemoryAllocator::CommitExecutableMemory(code_range_,
- current.start,
- commit_size,
- *allocated)) {
- *allocated = 0;
- return NULL;
- }
- allocation_list_[current_allocation_block_index_].start += *allocated;
- allocation_list_[current_allocation_block_index_].size -= *allocated;
- if (*allocated == current.size) {
- GetNextAllocationBlock(0); // This block is used up, get the next one.
- }
- return current.start;
-}
-
-
-bool CodeRange::CommitRawMemory(Address start, size_t length) {
- return code_range_->Commit(start, length, true);
-}
-
-
-bool CodeRange::UncommitRawMemory(Address start, size_t length) {
- return code_range_->Uncommit(start, length);
-}
-
-
-void CodeRange::FreeRawMemory(Address address, size_t length) {
- ASSERT(IsAddressAligned(address, MemoryChunk::kAlignment));
- free_list_.Add(FreeBlock(address, length));
- code_range_->Uncommit(address, length);
-}
-
-
-void CodeRange::TearDown() {
- delete code_range_; // Frees all memory in the virtual memory range.
- code_range_ = NULL;
- free_list_.Free();
- allocation_list_.Free();
-}
-
-
-// -----------------------------------------------------------------------------
-// MemoryAllocator
-//
-
-MemoryAllocator::MemoryAllocator(Isolate* isolate)
- : isolate_(isolate),
- capacity_(0),
- capacity_executable_(0),
- size_(0),
- size_executable_(0) {
-}
-
-
-bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) {
- capacity_ = RoundUp(capacity, Page::kPageSize);
- capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
- ASSERT_GE(capacity_, capacity_executable_);
-
- size_ = 0;
- size_executable_ = 0;
-
- return true;
-}
-
-
-void MemoryAllocator::TearDown() {
- // Check that spaces were torn down before MemoryAllocator.
- ASSERT(size_ == 0);
- // TODO(gc) this will be true again when we fix FreeMemory.
- // ASSERT(size_executable_ == 0);
- capacity_ = 0;
- capacity_executable_ = 0;
-}
-
-
-void MemoryAllocator::FreeMemory(VirtualMemory* reservation,
- Executability executable) {
- // TODO(gc) make code_range part of memory allocator?
- ASSERT(reservation->IsReserved());
- size_t size = reservation->size();
- ASSERT(size_ >= size);
- size_ -= size;
-
- isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
-
- if (executable == EXECUTABLE) {
- ASSERT(size_executable_ >= size);
- size_executable_ -= size;
- }
- // Code which is part of the code-range does not have its own VirtualMemory.
- ASSERT(!isolate_->code_range()->contains(
- static_cast<Address>(reservation->address())));
- ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists());
- reservation->Release();
-}
-
-
-void MemoryAllocator::FreeMemory(Address base,
- size_t size,
- Executability executable) {
- // TODO(gc) make code_range part of memory allocator?
- ASSERT(size_ >= size);
- size_ -= size;
-
- isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
-
- if (executable == EXECUTABLE) {
- ASSERT(size_executable_ >= size);
- size_executable_ -= size;
- }
- if (isolate_->code_range()->contains(static_cast<Address>(base))) {
- ASSERT(executable == EXECUTABLE);
- isolate_->code_range()->FreeRawMemory(base, size);
- } else {
- ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists());
- bool result = VirtualMemory::ReleaseRegion(base, size);
- USE(result);
- ASSERT(result);
- }
-}
-
-
-Address MemoryAllocator::ReserveAlignedMemory(size_t size,
- size_t alignment,
- VirtualMemory* controller) {
- VirtualMemory reservation(size, alignment);
-
- if (!reservation.IsReserved()) return NULL;
- size_ += reservation.size();
- Address base = RoundUp(static_cast<Address>(reservation.address()),
- alignment);
- controller->TakeControl(&reservation);
- return base;
-}
-
-
-Address MemoryAllocator::AllocateAlignedMemory(size_t reserve_size,
- size_t commit_size,
- size_t alignment,
- Executability executable,
- VirtualMemory* controller) {
- ASSERT(commit_size <= reserve_size);
- VirtualMemory reservation;
- Address base = ReserveAlignedMemory(reserve_size, alignment, &reservation);
- if (base == NULL) return NULL;
-
- if (executable == EXECUTABLE) {
- if (!CommitExecutableMemory(&reservation,
- base,
- commit_size,
- reserve_size)) {
- base = NULL;
- }
- } else {
- if (!reservation.Commit(base, commit_size, false)) {
- base = NULL;
- }
- }
-
- if (base == NULL) {
- // Failed to commit the body. Release the mapping and any partially
- // commited regions inside it.
- reservation.Release();
- return NULL;
- }
-
- controller->TakeControl(&reservation);
- return base;
-}
-
-
-void Page::InitializeAsAnchor(PagedSpace* owner) {
- set_owner(owner);
- set_prev_page(this);
- set_next_page(this);
-}
-
-
-NewSpacePage* NewSpacePage::Initialize(Heap* heap,
- Address start,
- SemiSpace* semi_space) {
- Address area_start = start + NewSpacePage::kObjectStartOffset;
- Address area_end = start + Page::kPageSize;
-
- MemoryChunk* chunk = MemoryChunk::Initialize(heap,
- start,
- Page::kPageSize,
- area_start,
- area_end,
- NOT_EXECUTABLE,
- semi_space);
- chunk->set_next_chunk(NULL);
- chunk->set_prev_chunk(NULL);
- chunk->initialize_scan_on_scavenge(true);
- bool in_to_space = (semi_space->id() != kFromSpace);
- chunk->SetFlag(in_to_space ? MemoryChunk::IN_TO_SPACE
- : MemoryChunk::IN_FROM_SPACE);
- ASSERT(!chunk->IsFlagSet(in_to_space ? MemoryChunk::IN_FROM_SPACE
- : MemoryChunk::IN_TO_SPACE));
- NewSpacePage* page = static_cast<NewSpacePage*>(chunk);
- heap->incremental_marking()->SetNewSpacePageFlags(page);
- return page;
-}
-
-
-void NewSpacePage::InitializeAsAnchor(SemiSpace* semi_space) {
- set_owner(semi_space);
- set_next_chunk(this);
- set_prev_chunk(this);
- // Flags marks this invalid page as not being in new-space.
- // All real new-space pages will be in new-space.
- SetFlags(0, ~0);
-}
-
-
-MemoryChunk* MemoryChunk::Initialize(Heap* heap,
- Address base,
- size_t size,
- Address area_start,
- Address area_end,
- Executability executable,
- Space* owner) {
- MemoryChunk* chunk = FromAddress(base);
-
- ASSERT(base == chunk->address());
-
- chunk->heap_ = heap;
- chunk->size_ = size;
- chunk->area_start_ = area_start;
- chunk->area_end_ = area_end;
- chunk->flags_ = 0;
- chunk->set_owner(owner);
- chunk->InitializeReservedMemory();
- chunk->slots_buffer_ = NULL;
- chunk->skip_list_ = NULL;
- chunk->write_barrier_counter_ = kWriteBarrierCounterGranularity;
- chunk->progress_bar_ = 0;
- chunk->high_water_mark_ = static_cast<int>(area_start - base);
- chunk->parallel_sweeping_ = 0;
- chunk->ResetLiveBytes();
- Bitmap::Clear(chunk);
- chunk->initialize_scan_on_scavenge(false);
- chunk->SetFlag(WAS_SWEPT_PRECISELY);
-
- ASSERT(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset);
- ASSERT(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset);
-
- if (executable == EXECUTABLE) {
- chunk->SetFlag(IS_EXECUTABLE);
- }
-
- if (owner == heap->old_data_space()) {
- chunk->SetFlag(CONTAINS_ONLY_DATA);
- }
-
- return chunk;
-}
-
-
-// Commit MemoryChunk area to the requested size.
-bool MemoryChunk::CommitArea(size_t requested) {
- size_t guard_size = IsFlagSet(IS_EXECUTABLE) ?
- MemoryAllocator::CodePageGuardSize() : 0;
- size_t header_size = area_start() - address() - guard_size;
- size_t commit_size = RoundUp(header_size + requested, OS::CommitPageSize());
- size_t committed_size = RoundUp(header_size + (area_end() - area_start()),
- OS::CommitPageSize());
-
- if (commit_size > committed_size) {
- // Commit size should be less or equal than the reserved size.
- ASSERT(commit_size <= size() - 2 * guard_size);
- // Append the committed area.
- Address start = address() + committed_size + guard_size;
- size_t length = commit_size - committed_size;
- if (reservation_.IsReserved()) {
- if (!reservation_.Commit(start, length, IsFlagSet(IS_EXECUTABLE))) {
- return false;
- }
- } else {
- CodeRange* code_range = heap_->isolate()->code_range();
- ASSERT(code_range->exists() && IsFlagSet(IS_EXECUTABLE));
- if (!code_range->CommitRawMemory(start, length)) return false;
- }
-
- if (Heap::ShouldZapGarbage()) {
- heap_->isolate()->memory_allocator()->ZapBlock(start, length);
- }
- } else if (commit_size < committed_size) {
- ASSERT(commit_size > 0);
- // Shrink the committed area.
- size_t length = committed_size - commit_size;
- Address start = address() + committed_size + guard_size - length;
- if (reservation_.IsReserved()) {
- if (!reservation_.Uncommit(start, length)) return false;
- } else {
- CodeRange* code_range = heap_->isolate()->code_range();
- ASSERT(code_range->exists() && IsFlagSet(IS_EXECUTABLE));
- if (!code_range->UncommitRawMemory(start, length)) return false;
- }
- }
-
- area_end_ = area_start_ + requested;
- return true;
-}
-
-
-void MemoryChunk::InsertAfter(MemoryChunk* other) {
- next_chunk_ = other->next_chunk_;
- prev_chunk_ = other;
- other->next_chunk_->prev_chunk_ = this;
- other->next_chunk_ = this;
-}
-
-
-void MemoryChunk::Unlink() {
- if (!InNewSpace() && IsFlagSet(SCAN_ON_SCAVENGE)) {
- heap_->decrement_scan_on_scavenge_pages();
- ClearFlag(SCAN_ON_SCAVENGE);
- }
- next_chunk_->prev_chunk_ = prev_chunk_;
- prev_chunk_->next_chunk_ = next_chunk_;
- prev_chunk_ = NULL;
- next_chunk_ = NULL;
-}
-
-
-MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t reserve_area_size,
- intptr_t commit_area_size,
- Executability executable,
- Space* owner) {
- ASSERT(commit_area_size <= reserve_area_size);
-
- size_t chunk_size;
- Heap* heap = isolate_->heap();
- Address base = NULL;
- VirtualMemory reservation;
- Address area_start = NULL;
- Address area_end = NULL;
-
- //
- // MemoryChunk layout:
- //
- // Executable
- // +----------------------------+<- base aligned with MemoryChunk::kAlignment
- // | Header |
- // +----------------------------+<- base + CodePageGuardStartOffset
- // | Guard |
- // +----------------------------+<- area_start_
- // | Area |
- // +----------------------------+<- area_end_ (area_start + commit_area_size)
- // | Committed but not used |
- // +----------------------------+<- aligned at OS page boundary
- // | Reserved but not committed |
- // +----------------------------+<- aligned at OS page boundary
- // | Guard |
- // +----------------------------+<- base + chunk_size
- //
- // Non-executable
- // +----------------------------+<- base aligned with MemoryChunk::kAlignment
- // | Header |
- // +----------------------------+<- area_start_ (base + kObjectStartOffset)
- // | Area |
- // +----------------------------+<- area_end_ (area_start + commit_area_size)
- // | Committed but not used |
- // +----------------------------+<- aligned at OS page boundary
- // | Reserved but not committed |
- // +----------------------------+<- base + chunk_size
- //
-
- if (executable == EXECUTABLE) {
- chunk_size = RoundUp(CodePageAreaStartOffset() + reserve_area_size,
- OS::CommitPageSize()) + CodePageGuardSize();
-
- // Check executable memory limit.
- if (size_executable_ + chunk_size > capacity_executable_) {
- LOG(isolate_,
- StringEvent("MemoryAllocator::AllocateRawMemory",
- "V8 Executable Allocation capacity exceeded"));
- return NULL;
- }
-
- // Size of header (not executable) plus area (executable).
- size_t commit_size = RoundUp(CodePageGuardStartOffset() + commit_area_size,
- OS::CommitPageSize());
- // Allocate executable memory either from code range or from the
- // OS.
- if (isolate_->code_range()->exists()) {
- base = isolate_->code_range()->AllocateRawMemory(chunk_size,
- commit_size,
- &chunk_size);
- ASSERT(IsAligned(reinterpret_cast<intptr_t>(base),
- MemoryChunk::kAlignment));
- if (base == NULL) return NULL;
- size_ += chunk_size;
- // Update executable memory size.
- size_executable_ += chunk_size;
- } else {
- base = AllocateAlignedMemory(chunk_size,
- commit_size,
- MemoryChunk::kAlignment,
- executable,
- &reservation);
- if (base == NULL) return NULL;
- // Update executable memory size.
- size_executable_ += reservation.size();
- }
-
- if (Heap::ShouldZapGarbage()) {
- ZapBlock(base, CodePageGuardStartOffset());
- ZapBlock(base + CodePageAreaStartOffset(), commit_area_size);
- }
-
- area_start = base + CodePageAreaStartOffset();
- area_end = area_start + commit_area_size;
- } else {
- chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size,
- OS::CommitPageSize());
- size_t commit_size = RoundUp(MemoryChunk::kObjectStartOffset +
- commit_area_size, OS::CommitPageSize());
- base = AllocateAlignedMemory(chunk_size,
- commit_size,
- MemoryChunk::kAlignment,
- executable,
- &reservation);
-
- if (base == NULL) return NULL;
-
- if (Heap::ShouldZapGarbage()) {
- ZapBlock(base, Page::kObjectStartOffset + commit_area_size);
- }
-
- area_start = base + Page::kObjectStartOffset;
- area_end = area_start + commit_area_size;
- }
-
- // Use chunk_size for statistics and callbacks because we assume that they
- // treat reserved but not-yet committed memory regions of chunks as allocated.
- isolate_->counters()->memory_allocated()->
- Increment(static_cast<int>(chunk_size));
-
- LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size));
- if (owner != NULL) {
- ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
- PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size);
- }
-
- MemoryChunk* result = MemoryChunk::Initialize(heap,
- base,
- chunk_size,
- area_start,
- area_end,
- executable,
- owner);
- result->set_reserved_memory(&reservation);
- return result;
-}
-
-
-Page* MemoryAllocator::AllocatePage(intptr_t size,
- PagedSpace* owner,
- Executability executable) {
- MemoryChunk* chunk = AllocateChunk(size, size, executable, owner);
-
- if (chunk == NULL) return NULL;
-
- return Page::Initialize(isolate_->heap(), chunk, executable, owner);
-}
-
-
-LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size,
- Space* owner,
- Executability executable) {
- MemoryChunk* chunk = AllocateChunk(object_size,
- object_size,
- executable,
- owner);
- if (chunk == NULL) return NULL;
- return LargePage::Initialize(isolate_->heap(), chunk);
-}
-
-
-void MemoryAllocator::Free(MemoryChunk* chunk) {
- LOG(isolate_, DeleteEvent("MemoryChunk", chunk));
- if (chunk->owner() != NULL) {
- ObjectSpace space =
- static_cast<ObjectSpace>(1 << chunk->owner()->identity());
- PerformAllocationCallback(space, kAllocationActionFree, chunk->size());
- }
-
- isolate_->heap()->RememberUnmappedPage(
- reinterpret_cast<Address>(chunk), chunk->IsEvacuationCandidate());
-
- delete chunk->slots_buffer();
- delete chunk->skip_list();
-
- VirtualMemory* reservation = chunk->reserved_memory();
- if (reservation->IsReserved()) {
- FreeMemory(reservation, chunk->executable());
- } else {
- FreeMemory(chunk->address(),
- chunk->size(),
- chunk->executable());
- }
-}
-
-
-bool MemoryAllocator::CommitBlock(Address start,
- size_t size,
- Executability executable) {
- if (!VirtualMemory::CommitRegion(start, size, executable)) return false;
-
- if (Heap::ShouldZapGarbage()) {
- ZapBlock(start, size);
- }
-
- isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
- return true;
-}
-
-
-bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
- if (!VirtualMemory::UncommitRegion(start, size)) return false;
- isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
- return true;
-}
-
-
-void MemoryAllocator::ZapBlock(Address start, size_t size) {
- for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
- Memory::Address_at(start + s) = kZapValue;
- }
-}
-
-
-void MemoryAllocator::PerformAllocationCallback(ObjectSpace space,
- AllocationAction action,
- size_t size) {
- for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
- MemoryAllocationCallbackRegistration registration =
- memory_allocation_callbacks_[i];
- if ((registration.space & space) == space &&
- (registration.action & action) == action)
- registration.callback(space, action, static_cast<int>(size));
- }
-}
-
-
-bool MemoryAllocator::MemoryAllocationCallbackRegistered(
- MemoryAllocationCallback callback) {
- for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
- if (memory_allocation_callbacks_[i].callback == callback) return true;
- }
- return false;
-}
-
-
-void MemoryAllocator::AddMemoryAllocationCallback(
- MemoryAllocationCallback callback,
- ObjectSpace space,
- AllocationAction action) {
- ASSERT(callback != NULL);
- MemoryAllocationCallbackRegistration registration(callback, space, action);
- ASSERT(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback));
- return memory_allocation_callbacks_.Add(registration);
-}
-
-
-void MemoryAllocator::RemoveMemoryAllocationCallback(
- MemoryAllocationCallback callback) {
- ASSERT(callback != NULL);
- for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
- if (memory_allocation_callbacks_[i].callback == callback) {
- memory_allocation_callbacks_.Remove(i);
- return;
- }
- }
- UNREACHABLE();
-}
-
-
-#ifdef DEBUG
-void MemoryAllocator::ReportStatistics() {
- float pct = static_cast<float>(capacity_ - size_) / capacity_;
- PrintF(" capacity: %" V8_PTR_PREFIX "d"
- ", used: %" V8_PTR_PREFIX "d"
- ", available: %%%d\n\n",
- capacity_, size_, static_cast<int>(pct*100));
-}
-#endif
-
-
-int MemoryAllocator::CodePageGuardStartOffset() {
- // We are guarding code pages: the first OS page after the header
- // will be protected as non-writable.
- return RoundUp(Page::kObjectStartOffset, OS::CommitPageSize());
-}
-
-
-int MemoryAllocator::CodePageGuardSize() {
- return static_cast<int>(OS::CommitPageSize());
-}
-
-
-int MemoryAllocator::CodePageAreaStartOffset() {
- // We are guarding code pages: the first OS page after the header
- // will be protected as non-writable.
- return CodePageGuardStartOffset() + CodePageGuardSize();
-}
-
-
-int MemoryAllocator::CodePageAreaEndOffset() {
- // We are guarding code pages: the last OS page will be protected as
- // non-writable.
- return Page::kPageSize - static_cast<int>(OS::CommitPageSize());
-}
-
-
-bool MemoryAllocator::CommitExecutableMemory(VirtualMemory* vm,
- Address start,
- size_t commit_size,
- size_t reserved_size) {
- // Commit page header (not executable).
- if (!vm->Commit(start,
- CodePageGuardStartOffset(),
- false)) {
- return false;
- }
-
- // Create guard page after the header.
- if (!vm->Guard(start + CodePageGuardStartOffset())) {
- return false;
- }
-
- // Commit page body (executable).
- if (!vm->Commit(start + CodePageAreaStartOffset(),
- commit_size - CodePageGuardStartOffset(),
- true)) {
- return false;
- }
-
- // Create guard page before the end.
- if (!vm->Guard(start + reserved_size - CodePageGuardSize())) {
- return false;
- }
-
- return true;
-}
-
-
-// -----------------------------------------------------------------------------
-// MemoryChunk implementation
-
-void MemoryChunk::IncrementLiveBytesFromMutator(Address address, int by) {
- MemoryChunk* chunk = MemoryChunk::FromAddress(address);
- if (!chunk->InNewSpace() && !static_cast<Page*>(chunk)->WasSwept()) {
- static_cast<PagedSpace*>(chunk->owner())->IncrementUnsweptFreeBytes(-by);
- }
- chunk->IncrementLiveBytes(by);
-}
-
-// -----------------------------------------------------------------------------
-// PagedSpace implementation
-
-PagedSpace::PagedSpace(Heap* heap,
- intptr_t max_capacity,
- AllocationSpace id,
- Executability executable)
- : Space(heap, id, executable),
- free_list_(this),
- was_swept_conservatively_(false),
- first_unswept_page_(Page::FromAddress(NULL)),
- unswept_free_bytes_(0) {
- if (id == CODE_SPACE) {
- area_size_ = heap->isolate()->memory_allocator()->
- CodePageAreaSize();
- } else {
- area_size_ = Page::kPageSize - Page::kObjectStartOffset;
- }
- max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
- * AreaSize();
- accounting_stats_.Clear();
-
- allocation_info_.top = NULL;
- allocation_info_.limit = NULL;
-
- anchor_.InitializeAsAnchor(this);
-}
-
-
-bool PagedSpace::SetUp() {
- return true;
-}
-
-
-bool PagedSpace::HasBeenSetUp() {
- return true;
-}
-
-
-void PagedSpace::TearDown() {
- PageIterator iterator(this);
- while (iterator.has_next()) {
- heap()->isolate()->memory_allocator()->Free(iterator.next());
- }
- anchor_.set_next_page(&anchor_);
- anchor_.set_prev_page(&anchor_);
- accounting_stats_.Clear();
-}
-
-
-size_t PagedSpace::CommittedPhysicalMemory() {
- if (!VirtualMemory::HasLazyCommits()) return CommittedMemory();
- MemoryChunk::UpdateHighWaterMark(allocation_info_.top);
- size_t size = 0;
- PageIterator it(this);
- while (it.has_next()) {
- size += it.next()->CommittedPhysicalMemory();
- }
- return size;
-}
-
-
-MaybeObject* PagedSpace::FindObject(Address addr) {
- // Note: this function can only be called on precisely swept spaces.
- ASSERT(!heap()->mark_compact_collector()->in_use());
-
- if (!Contains(addr)) return Failure::Exception();
-
- Page* p = Page::FromAddress(addr);
- HeapObjectIterator it(p, NULL);
- for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
- Address cur = obj->address();
- Address next = cur + obj->Size();
- if ((cur <= addr) && (addr < next)) return obj;
- }
-
- UNREACHABLE();
- return Failure::Exception();
-}
-
-bool PagedSpace::CanExpand() {
- ASSERT(max_capacity_ % AreaSize() == 0);
-
- if (Capacity() == max_capacity_) return false;
-
- ASSERT(Capacity() < max_capacity_);
-
- // Are we going to exceed capacity for this space?
- if ((Capacity() + Page::kPageSize) > max_capacity_) return false;
-
- return true;
-}
-
-bool PagedSpace::Expand() {
- if (!CanExpand()) return false;
-
- intptr_t size = AreaSize();
-
- if (anchor_.next_page() == &anchor_) {
- size = SizeOfFirstPage();
- }
-
- Page* p = heap()->isolate()->memory_allocator()->AllocatePage(
- size, this, executable());
- if (p == NULL) return false;
-
- ASSERT(Capacity() <= max_capacity_);
-
- p->InsertAfter(anchor_.prev_page());
-
- return true;
-}
-
-
-intptr_t PagedSpace::SizeOfFirstPage() {
- int size = 0;
- switch (identity()) {
- case OLD_POINTER_SPACE:
- size = 64 * kPointerSize * KB;
- break;
- case OLD_DATA_SPACE:
- size = 192 * KB;
- break;
- case MAP_SPACE:
- size = 16 * kPointerSize * KB;
- break;
- case CELL_SPACE:
- size = 16 * kPointerSize * KB;
- break;
- case CODE_SPACE:
- if (kPointerSize == 8) {
- // On x64 we allocate code pages in a special way (from the reserved
- // 2Byte area). That part of the code is not yet upgraded to handle
- // small pages.
- size = AreaSize();
- } else {
- size = 384 * KB;
- }
- break;
- default:
- UNREACHABLE();
- }
- return Min(size, AreaSize());
-}
-
-
-int PagedSpace::CountTotalPages() {
- PageIterator it(this);
- int count = 0;
- while (it.has_next()) {
- it.next();
- count++;
- }
- return count;
-}
-
-
-void PagedSpace::ReleasePage(Page* page) {
- ASSERT(page->LiveBytes() == 0);
- ASSERT(AreaSize() == page->area_size());
-
- // Adjust list of unswept pages if the page is the head of the list.
- if (first_unswept_page_ == page) {
- first_unswept_page_ = page->next_page();
- if (first_unswept_page_ == anchor()) {
- first_unswept_page_ = Page::FromAddress(NULL);
- }
- }
-
- if (page->WasSwept()) {
- intptr_t size = free_list_.EvictFreeListItems(page);
- accounting_stats_.AllocateBytes(size);
- ASSERT_EQ(AreaSize(), static_cast<int>(size));
- } else {
- DecreaseUnsweptFreeBytes(page);
- }
-
- if (Page::FromAllocationTop(allocation_info_.top) == page) {
- allocation_info_.top = allocation_info_.limit = NULL;
- }
-
- page->Unlink();
- if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) {
- heap()->isolate()->memory_allocator()->Free(page);
- } else {
- heap()->QueueMemoryChunkForFree(page);
- }
-
- ASSERT(Capacity() > 0);
- accounting_stats_.ShrinkSpace(AreaSize());
-}
-
-
-#ifdef DEBUG
-void PagedSpace::Print() { }
-#endif
-
-#ifdef VERIFY_HEAP
-void PagedSpace::Verify(ObjectVisitor* visitor) {
- // We can only iterate over the pages if they were swept precisely.
- if (was_swept_conservatively_) return;
-
- bool allocation_pointer_found_in_space =
- (allocation_info_.top == allocation_info_.limit);
- PageIterator page_iterator(this);
- while (page_iterator.has_next()) {
- Page* page = page_iterator.next();
- CHECK(page->owner() == this);
- if (page == Page::FromAllocationTop(allocation_info_.top)) {
- allocation_pointer_found_in_space = true;
- }
- CHECK(page->WasSweptPrecisely());
- HeapObjectIterator it(page, NULL);
- Address end_of_previous_object = page->area_start();
- Address top = page->area_end();
- int black_size = 0;
- for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
- CHECK(end_of_previous_object <= object->address());
-
- // The first word should be a map, and we expect all map pointers to
- // be in map space.
- Map* map = object->map();
- CHECK(map->IsMap());
- CHECK(heap()->map_space()->Contains(map));
-
- // Perform space-specific object verification.
- VerifyObject(object);
-
- // The object itself should look OK.
- object->Verify();
-
- // All the interior pointers should be contained in the heap.
- int size = object->Size();
- object->IterateBody(map->instance_type(), size, visitor);
- if (Marking::IsBlack(Marking::MarkBitFrom(object))) {
- black_size += size;
- }
-
- CHECK(object->address() + size <= top);
- end_of_previous_object = object->address() + size;
- }
- CHECK_LE(black_size, page->LiveBytes());
- }
- CHECK(allocation_pointer_found_in_space);
-}
-#endif // VERIFY_HEAP
-
-// -----------------------------------------------------------------------------
-// NewSpace implementation
-
-
-bool NewSpace::SetUp(int reserved_semispace_capacity,
- int maximum_semispace_capacity) {
- // Set up new space based on the preallocated memory block defined by
- // start and size. The provided space is divided into two semi-spaces.
- // To support fast containment testing in the new space, the size of
- // this chunk must be a power of two and it must be aligned to its size.
- int initial_semispace_capacity = heap()->InitialSemiSpaceSize();
-
- size_t size = 2 * reserved_semispace_capacity;
- Address base =
- heap()->isolate()->memory_allocator()->ReserveAlignedMemory(
- size, size, &reservation_);
- if (base == NULL) return false;
-
- chunk_base_ = base;
- chunk_size_ = static_cast<uintptr_t>(size);
- LOG(heap()->isolate(), NewEvent("InitialChunk", chunk_base_, chunk_size_));
-
- ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);
- ASSERT(IsPowerOf2(maximum_semispace_capacity));
-
- // Allocate and set up the histogram arrays if necessary.
- allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
- promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
-
-#define SET_NAME(name) allocated_histogram_[name].set_name(#name); \
- promoted_histogram_[name].set_name(#name);
- INSTANCE_TYPE_LIST(SET_NAME)
-#undef SET_NAME
-
- ASSERT(reserved_semispace_capacity == heap()->ReservedSemiSpaceSize());
- ASSERT(static_cast<intptr_t>(chunk_size_) >=
- 2 * heap()->ReservedSemiSpaceSize());
- ASSERT(IsAddressAligned(chunk_base_, 2 * reserved_semispace_capacity, 0));
-
- to_space_.SetUp(chunk_base_,
- initial_semispace_capacity,
- maximum_semispace_capacity);
- from_space_.SetUp(chunk_base_ + reserved_semispace_capacity,
- initial_semispace_capacity,
- maximum_semispace_capacity);
- if (!to_space_.Commit()) {
- return false;
- }
- ASSERT(!from_space_.is_committed()); // No need to use memory yet.
-
- start_ = chunk_base_;
- address_mask_ = ~(2 * reserved_semispace_capacity - 1);
- object_mask_ = address_mask_ | kHeapObjectTagMask;
- object_expected_ = reinterpret_cast<uintptr_t>(start_) | kHeapObjectTag;
-
- ResetAllocationInfo();
-
- return true;
-}
-
-
-void NewSpace::TearDown() {
- if (allocated_histogram_) {
- DeleteArray(allocated_histogram_);
- allocated_histogram_ = NULL;
- }
- if (promoted_histogram_) {
- DeleteArray(promoted_histogram_);
- promoted_histogram_ = NULL;
- }
-
- start_ = NULL;
- allocation_info_.top = NULL;
- allocation_info_.limit = NULL;
-
- to_space_.TearDown();
- from_space_.TearDown();
-
- LOG(heap()->isolate(), DeleteEvent("InitialChunk", chunk_base_));
-
- ASSERT(reservation_.IsReserved());
- heap()->isolate()->memory_allocator()->FreeMemory(&reservation_,
- NOT_EXECUTABLE);
- chunk_base_ = NULL;
- chunk_size_ = 0;
-}
-
-
-void NewSpace::Flip() {
- SemiSpace::Swap(&from_space_, &to_space_);
-}
-
-
-void NewSpace::Grow() {
- // Double the semispace size but only up to maximum capacity.
- ASSERT(Capacity() < MaximumCapacity());
- int new_capacity = Min(MaximumCapacity(), 2 * static_cast<int>(Capacity()));
- if (to_space_.GrowTo(new_capacity)) {
- // Only grow from space if we managed to grow to-space.
- if (!from_space_.GrowTo(new_capacity)) {
- // If we managed to grow to-space but couldn't grow from-space,
- // attempt to shrink to-space.
- if (!to_space_.ShrinkTo(from_space_.Capacity())) {
- // We are in an inconsistent state because we could not
- // commit/uncommit memory from new space.
- V8::FatalProcessOutOfMemory("Failed to grow new space.");
- }
- }
- }
- ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
-}
-
-
-void NewSpace::Shrink() {
- int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt());
- int rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize);
- if (rounded_new_capacity < Capacity() &&
- to_space_.ShrinkTo(rounded_new_capacity)) {
- // Only shrink from-space if we managed to shrink to-space.
- from_space_.Reset();
- if (!from_space_.ShrinkTo(rounded_new_capacity)) {
- // If we managed to shrink to-space but couldn't shrink from
- // space, attempt to grow to-space again.
- if (!to_space_.GrowTo(from_space_.Capacity())) {
- // We are in an inconsistent state because we could not
- // commit/uncommit memory from new space.
- V8::FatalProcessOutOfMemory("Failed to shrink new space.");
- }
- }
- }
- allocation_info_.limit = to_space_.page_high();
- ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
-}
-
-
-void NewSpace::UpdateAllocationInfo() {
- MemoryChunk::UpdateHighWaterMark(allocation_info_.top);
- allocation_info_.top = to_space_.page_low();
- allocation_info_.limit = to_space_.page_high();
-
- // Lower limit during incremental marking.
- if (heap()->incremental_marking()->IsMarking() &&
- inline_allocation_limit_step() != 0) {
- Address new_limit =
- allocation_info_.top + inline_allocation_limit_step();
- allocation_info_.limit = Min(new_limit, allocation_info_.limit);
- }
- ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
-}
-
-
-void NewSpace::ResetAllocationInfo() {
- to_space_.Reset();
- UpdateAllocationInfo();
- pages_used_ = 0;
- // Clear all mark-bits in the to-space.
- NewSpacePageIterator it(&to_space_);
- while (it.has_next()) {
- Bitmap::Clear(it.next());
- }
-}
-
-
-bool NewSpace::AddFreshPage() {
- Address top = allocation_info_.top;
- if (NewSpacePage::IsAtStart(top)) {
- // The current page is already empty. Don't try to make another.
-
- // We should only get here if someone asks to allocate more
- // than what can be stored in a single page.
- // TODO(gc): Change the limit on new-space allocation to prevent this
- // from happening (all such allocations should go directly to LOSpace).
- return false;
- }
- if (!to_space_.AdvancePage()) {
- // Failed to get a new page in to-space.
- return false;
- }
-
- // Clear remainder of current page.
- Address limit = NewSpacePage::FromLimit(top)->area_end();
- if (heap()->gc_state() == Heap::SCAVENGE) {
- heap()->promotion_queue()->SetNewLimit(limit);
- heap()->promotion_queue()->ActivateGuardIfOnTheSamePage();
- }
-
- int remaining_in_page = static_cast<int>(limit - top);
- heap()->CreateFillerObjectAt(top, remaining_in_page);
- pages_used_++;
- UpdateAllocationInfo();
-
- return true;
-}
-
-
-MaybeObject* NewSpace::SlowAllocateRaw(int size_in_bytes) {
- Address old_top = allocation_info_.top;
- Address new_top = old_top + size_in_bytes;
- Address high = to_space_.page_high();
- if (allocation_info_.limit < high) {
- // Incremental marking has lowered the limit to get a
- // chance to do a step.
- allocation_info_.limit = Min(
- allocation_info_.limit + inline_allocation_limit_step_,
- high);
- int bytes_allocated = static_cast<int>(new_top - top_on_previous_step_);
- heap()->incremental_marking()->Step(
- bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD);
- top_on_previous_step_ = new_top;
- return AllocateRaw(size_in_bytes);
- } else if (AddFreshPage()) {
- // Switched to new page. Try allocating again.
- int bytes_allocated = static_cast<int>(old_top - top_on_previous_step_);
- heap()->incremental_marking()->Step(
- bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD);
- top_on_previous_step_ = to_space_.page_low();
- return AllocateRaw(size_in_bytes);
- } else {
- return Failure::RetryAfterGC();
- }
-}
-
-
-#ifdef VERIFY_HEAP
-// We do not use the SemiSpaceIterator because verification doesn't assume
-// that it works (it depends on the invariants we are checking).
-void NewSpace::Verify() {
- // The allocation pointer should be in the space or at the very end.
- ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
-
- // There should be objects packed in from the low address up to the
- // allocation pointer.
- Address current = to_space_.first_page()->area_start();
- CHECK_EQ(current, to_space_.space_start());
-
- while (current != top()) {
- if (!NewSpacePage::IsAtEnd(current)) {
- // The allocation pointer should not be in the middle of an object.
- CHECK(!NewSpacePage::FromLimit(current)->ContainsLimit(top()) ||
- current < top());
-
- HeapObject* object = HeapObject::FromAddress(current);
-
- // The first word should be a map, and we expect all map pointers to
- // be in map space.
- Map* map = object->map();
- CHECK(map->IsMap());
- CHECK(heap()->map_space()->Contains(map));
-
- // The object should not be code or a map.
- CHECK(!object->IsMap());
- CHECK(!object->IsCode());
-
- // The object itself should look OK.
- object->Verify();
-
- // All the interior pointers should be contained in the heap.
- VerifyPointersVisitor visitor;
- int size = object->Size();
- object->IterateBody(map->instance_type(), size, &visitor);
-
- current += size;
- } else {
- // At end of page, switch to next page.
- NewSpacePage* page = NewSpacePage::FromLimit(current)->next_page();
- // Next page should be valid.
- CHECK(!page->is_anchor());
- current = page->area_start();
- }
- }
-
- // Check semi-spaces.
- CHECK_EQ(from_space_.id(), kFromSpace);
- CHECK_EQ(to_space_.id(), kToSpace);
- from_space_.Verify();
- to_space_.Verify();
-}
-#endif
-
-// -----------------------------------------------------------------------------
-// SemiSpace implementation
-
-void SemiSpace::SetUp(Address start,
- int initial_capacity,
- int maximum_capacity) {
- // Creates a space in the young generation. The constructor does not
- // allocate memory from the OS. A SemiSpace is given a contiguous chunk of
- // memory of size 'capacity' when set up, and does not grow or shrink
- // otherwise. In the mark-compact collector, the memory region of the from
- // space is used as the marking stack. It requires contiguous memory
- // addresses.
- ASSERT(maximum_capacity >= Page::kPageSize);
- initial_capacity_ = RoundDown(initial_capacity, Page::kPageSize);
- capacity_ = initial_capacity;
- maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize);
- committed_ = false;
- start_ = start;
- address_mask_ = ~(maximum_capacity - 1);
- object_mask_ = address_mask_ | kHeapObjectTagMask;
- object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
- age_mark_ = start_;
-}
-
-
-void SemiSpace::TearDown() {
- start_ = NULL;
- capacity_ = 0;
-}
-
-
-bool SemiSpace::Commit() {
- ASSERT(!is_committed());
- int pages = capacity_ / Page::kPageSize;
- Address end = start_ + maximum_capacity_;
- Address start = end - pages * Page::kPageSize;
- if (!heap()->isolate()->memory_allocator()->CommitBlock(start,
- capacity_,
- executable())) {
- return false;
- }
-
- NewSpacePage* page = anchor();
- for (int i = 1; i <= pages; i++) {
- NewSpacePage* new_page =
- NewSpacePage::Initialize(heap(), end - i * Page::kPageSize, this);
- new_page->InsertAfter(page);
- page = new_page;
- }
-
- committed_ = true;
- Reset();
- return true;
-}
-
-
-bool SemiSpace::Uncommit() {
- ASSERT(is_committed());
- Address start = start_ + maximum_capacity_ - capacity_;
- if (!heap()->isolate()->memory_allocator()->UncommitBlock(start, capacity_)) {
- return false;
- }
- anchor()->set_next_page(anchor());
- anchor()->set_prev_page(anchor());
-
- committed_ = false;
- return true;
-}
-
-
-size_t SemiSpace::CommittedPhysicalMemory() {
- if (!is_committed()) return 0;
- size_t size = 0;
- NewSpacePageIterator it(this);
- while (it.has_next()) {
- size += it.next()->CommittedPhysicalMemory();
- }
- return size;
-}
-
-
-bool SemiSpace::GrowTo(int new_capacity) {
- if (!is_committed()) {
- if (!Commit()) return false;
- }
- ASSERT((new_capacity & Page::kPageAlignmentMask) == 0);
- ASSERT(new_capacity <= maximum_capacity_);
- ASSERT(new_capacity > capacity_);
- int pages_before = capacity_ / Page::kPageSize;
- int pages_after = new_capacity / Page::kPageSize;
-
- Address end = start_ + maximum_capacity_;
- Address start = end - new_capacity;
- size_t delta = new_capacity - capacity_;
-
- ASSERT(IsAligned(delta, OS::AllocateAlignment()));
- if (!heap()->isolate()->memory_allocator()->CommitBlock(
- start, delta, executable())) {
- return false;
- }
- capacity_ = new_capacity;
- NewSpacePage* last_page = anchor()->prev_page();
- ASSERT(last_page != anchor());
- for (int i = pages_before + 1; i <= pages_after; i++) {
- Address page_address = end - i * Page::kPageSize;
- NewSpacePage* new_page = NewSpacePage::Initialize(heap(),
- page_address,
- this);
- new_page->InsertAfter(last_page);
- Bitmap::Clear(new_page);
- // Duplicate the flags that was set on the old page.
- new_page->SetFlags(last_page->GetFlags(),
- NewSpacePage::kCopyOnFlipFlagsMask);
- last_page = new_page;
- }
- return true;
-}
-
-
-bool SemiSpace::ShrinkTo(int new_capacity) {
- ASSERT((new_capacity & Page::kPageAlignmentMask) == 0);
- ASSERT(new_capacity >= initial_capacity_);
- ASSERT(new_capacity < capacity_);
- if (is_committed()) {
- // Semispaces grow backwards from the end of their allocated capacity,
- // so we find the before and after start addresses relative to the
- // end of the space.
- Address space_end = start_ + maximum_capacity_;
- Address old_start = space_end - capacity_;
- size_t delta = capacity_ - new_capacity;
- ASSERT(IsAligned(delta, OS::AllocateAlignment()));
-
- MemoryAllocator* allocator = heap()->isolate()->memory_allocator();
- if (!allocator->UncommitBlock(old_start, delta)) {
- return false;
- }
-
- int pages_after = new_capacity / Page::kPageSize;
- NewSpacePage* new_last_page =
- NewSpacePage::FromAddress(space_end - pages_after * Page::kPageSize);
- new_last_page->set_next_page(anchor());
- anchor()->set_prev_page(new_last_page);
- ASSERT((current_page_ <= first_page()) && (current_page_ >= new_last_page));
- }
-
- capacity_ = new_capacity;
-
- return true;
-}
-
-
-void SemiSpace::FlipPages(intptr_t flags, intptr_t mask) {
- anchor_.set_owner(this);
- // Fixup back-pointers to anchor. Address of anchor changes
- // when we swap.
- anchor_.prev_page()->set_next_page(&anchor_);
- anchor_.next_page()->set_prev_page(&anchor_);
-
- bool becomes_to_space = (id_ == kFromSpace);
- id_ = becomes_to_space ? kToSpace : kFromSpace;
- NewSpacePage* page = anchor_.next_page();
- while (page != &anchor_) {
- page->set_owner(this);
- page->SetFlags(flags, mask);
- if (becomes_to_space) {
- page->ClearFlag(MemoryChunk::IN_FROM_SPACE);
- page->SetFlag(MemoryChunk::IN_TO_SPACE);
- page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
- page->ResetLiveBytes();
- } else {
- page->SetFlag(MemoryChunk::IN_FROM_SPACE);
- page->ClearFlag(MemoryChunk::IN_TO_SPACE);
- }
- ASSERT(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE));
- ASSERT(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) ||
- page->IsFlagSet(MemoryChunk::IN_FROM_SPACE));
- page = page->next_page();
- }
-}
-
-
-void SemiSpace::Reset() {
- ASSERT(anchor_.next_page() != &anchor_);
- current_page_ = anchor_.next_page();
-}
-
-
-void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
- // We won't be swapping semispaces without data in them.
- ASSERT(from->anchor_.next_page() != &from->anchor_);
- ASSERT(to->anchor_.next_page() != &to->anchor_);
-
- // Swap bits.
- SemiSpace tmp = *from;
- *from = *to;
- *to = tmp;
-
- // Fixup back-pointers to the page list anchor now that its address
- // has changed.
- // Swap to/from-space bits on pages.
- // Copy GC flags from old active space (from-space) to new (to-space).
- intptr_t flags = from->current_page()->GetFlags();
- to->FlipPages(flags, NewSpacePage::kCopyOnFlipFlagsMask);
-
- from->FlipPages(0, 0);
-}
-
-
-void SemiSpace::set_age_mark(Address mark) {
- ASSERT(NewSpacePage::FromLimit(mark)->semi_space() == this);
- age_mark_ = mark;
- // Mark all pages up to the one containing mark.
- NewSpacePageIterator it(space_start(), mark);
- while (it.has_next()) {
- it.next()->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
- }
-}
-
-
-#ifdef DEBUG
-void SemiSpace::Print() { }
-#endif
-
-#ifdef VERIFY_HEAP
-void SemiSpace::Verify() {
- bool is_from_space = (id_ == kFromSpace);
- NewSpacePage* page = anchor_.next_page();
- CHECK(anchor_.semi_space() == this);
- while (page != &anchor_) {
- CHECK(page->semi_space() == this);
- CHECK(page->InNewSpace());
- CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE
- : MemoryChunk::IN_TO_SPACE));
- CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE
- : MemoryChunk::IN_FROM_SPACE));
- CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING));
- if (!is_from_space) {
- // The pointers-from-here-are-interesting flag isn't updated dynamically
- // on from-space pages, so it might be out of sync with the marking state.
- if (page->heap()->incremental_marking()->IsMarking()) {
- CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
- } else {
- CHECK(!page->IsFlagSet(
- MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
- }
- // TODO(gc): Check that the live_bytes_count_ field matches the
- // black marking on the page (if we make it match in new-space).
- }
- CHECK(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE));
- CHECK(page->prev_page()->next_page() == page);
- page = page->next_page();
- }
-}
-#endif
-
-#ifdef DEBUG
-void SemiSpace::AssertValidRange(Address start, Address end) {
- // Addresses belong to same semi-space
- NewSpacePage* page = NewSpacePage::FromLimit(start);
- NewSpacePage* end_page = NewSpacePage::FromLimit(end);
- SemiSpace* space = page->semi_space();
- CHECK_EQ(space, end_page->semi_space());
- // Start address is before end address, either on same page,
- // or end address is on a later page in the linked list of
- // semi-space pages.
- if (page == end_page) {
- CHECK(start <= end);
- } else {
- while (page != end_page) {
- page = page->next_page();
- CHECK_NE(page, space->anchor());
- }
- }
-}
-#endif
-
-
-// -----------------------------------------------------------------------------
-// SemiSpaceIterator implementation.
-SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
- Initialize(space->bottom(), space->top(), NULL);
-}
-
-
-SemiSpaceIterator::SemiSpaceIterator(NewSpace* space,
- HeapObjectCallback size_func) {
- Initialize(space->bottom(), space->top(), size_func);
-}
-
-
-SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) {
- Initialize(start, space->top(), NULL);
-}
-
-
-SemiSpaceIterator::SemiSpaceIterator(Address from, Address to) {
- Initialize(from, to, NULL);
-}
-
-
-void SemiSpaceIterator::Initialize(Address start,
- Address end,
- HeapObjectCallback size_func) {
- SemiSpace::AssertValidRange(start, end);
- current_ = start;
- limit_ = end;
- size_func_ = size_func;
-}
-
-
-#ifdef DEBUG
-// heap_histograms is shared, always clear it before using it.
-static void ClearHistograms() {
- Isolate* isolate = Isolate::Current();
- // We reset the name each time, though it hasn't changed.
-#define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name);
- INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
-#undef DEF_TYPE_NAME
-
-#define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear();
- INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
-#undef CLEAR_HISTOGRAM
-
- isolate->js_spill_information()->Clear();
-}
-
-
-static void ClearCodeKindStatistics() {
- Isolate* isolate = Isolate::Current();
- for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
- isolate->code_kind_statistics()[i] = 0;
- }
-}
-
-
-static void ReportCodeKindStatistics() {
- Isolate* isolate = Isolate::Current();
- const char* table[Code::NUMBER_OF_KINDS] = { NULL };
-
-#define CASE(name) \
- case Code::name: table[Code::name] = #name; \
- break
-
- for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
- switch (static_cast<Code::Kind>(i)) {
- CASE(FUNCTION);
- CASE(OPTIMIZED_FUNCTION);
- CASE(STUB);
- CASE(COMPILED_STUB);
- CASE(BUILTIN);
- CASE(LOAD_IC);
- CASE(KEYED_LOAD_IC);
- CASE(STORE_IC);
- CASE(KEYED_STORE_IC);
- CASE(CALL_IC);
- CASE(KEYED_CALL_IC);
- CASE(UNARY_OP_IC);
- CASE(BINARY_OP_IC);
- CASE(COMPARE_IC);
- CASE(TO_BOOLEAN_IC);
- }
- }
-
-#undef CASE
-
- PrintF("\n Code kind histograms: \n");
- for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
- if (isolate->code_kind_statistics()[i] > 0) {
- PrintF(" %-20s: %10d bytes\n", table[i],
- isolate->code_kind_statistics()[i]);
- }
- }
- PrintF("\n");
-}
-
-
-static int CollectHistogramInfo(HeapObject* obj) {
- Isolate* isolate = Isolate::Current();
- InstanceType type = obj->map()->instance_type();
- ASSERT(0 <= type && type <= LAST_TYPE);
- ASSERT(isolate->heap_histograms()[type].name() != NULL);
- isolate->heap_histograms()[type].increment_number(1);
- isolate->heap_histograms()[type].increment_bytes(obj->Size());
-
- if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
- JSObject::cast(obj)->IncrementSpillStatistics(
- isolate->js_spill_information());
- }
-
- return obj->Size();
-}
-
-
-static void ReportHistogram(bool print_spill) {
- Isolate* isolate = Isolate::Current();
- PrintF("\n Object Histogram:\n");
- for (int i = 0; i <= LAST_TYPE; i++) {
- if (isolate->heap_histograms()[i].number() > 0) {
- PrintF(" %-34s%10d (%10d bytes)\n",
- isolate->heap_histograms()[i].name(),
- isolate->heap_histograms()[i].number(),
- isolate->heap_histograms()[i].bytes());
- }
- }
- PrintF("\n");
-
- // Summarize string types.
- int string_number = 0;
- int string_bytes = 0;
-#define INCREMENT(type, size, name, camel_name) \
- string_number += isolate->heap_histograms()[type].number(); \
- string_bytes += isolate->heap_histograms()[type].bytes();
- STRING_TYPE_LIST(INCREMENT)
-#undef INCREMENT
- if (string_number > 0) {
- PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
- string_bytes);
- }
-
- if (FLAG_collect_heap_spill_statistics && print_spill) {
- isolate->js_spill_information()->Print();
- }
-}
-#endif // DEBUG
-
-
-// Support for statistics gathering for --heap-stats and --log-gc.
-void NewSpace::ClearHistograms() {
- for (int i = 0; i <= LAST_TYPE; i++) {
- allocated_histogram_[i].clear();
- promoted_histogram_[i].clear();
- }
-}
-
-// Because the copying collector does not touch garbage objects, we iterate
-// the new space before a collection to get a histogram of allocated objects.
-// This only happens when --log-gc flag is set.
-void NewSpace::CollectStatistics() {
- ClearHistograms();
- SemiSpaceIterator it(this);
- for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next())
- RecordAllocation(obj);
-}
-
-
-static void DoReportStatistics(Isolate* isolate,
- HistogramInfo* info, const char* description) {
- LOG(isolate, HeapSampleBeginEvent("NewSpace", description));
- // Lump all the string types together.
- int string_number = 0;
- int string_bytes = 0;
-#define INCREMENT(type, size, name, camel_name) \
- string_number += info[type].number(); \
- string_bytes += info[type].bytes();
- STRING_TYPE_LIST(INCREMENT)
-#undef INCREMENT
- if (string_number > 0) {
- LOG(isolate,
- HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
- }
-
- // Then do the other types.
- for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
- if (info[i].number() > 0) {
- LOG(isolate,
- HeapSampleItemEvent(info[i].name(), info[i].number(),
- info[i].bytes()));
- }
- }
- LOG(isolate, HeapSampleEndEvent("NewSpace", description));
-}
-
-
-void NewSpace::ReportStatistics() {
-#ifdef DEBUG
- if (FLAG_heap_stats) {
- float pct = static_cast<float>(Available()) / Capacity();
- PrintF(" capacity: %" V8_PTR_PREFIX "d"
- ", available: %" V8_PTR_PREFIX "d, %%%d\n",
- Capacity(), Available(), static_cast<int>(pct*100));
- PrintF("\n Object Histogram:\n");
- for (int i = 0; i <= LAST_TYPE; i++) {
- if (allocated_histogram_[i].number() > 0) {
- PrintF(" %-34s%10d (%10d bytes)\n",
- allocated_histogram_[i].name(),
- allocated_histogram_[i].number(),
- allocated_histogram_[i].bytes());
- }
- }
- PrintF("\n");
- }
-#endif // DEBUG
-
- if (FLAG_log_gc) {
- Isolate* isolate = ISOLATE;
- DoReportStatistics(isolate, allocated_histogram_, "allocated");
- DoReportStatistics(isolate, promoted_histogram_, "promoted");
- }
-}
-
-
-void NewSpace::RecordAllocation(HeapObject* obj) {
- InstanceType type = obj->map()->instance_type();
- ASSERT(0 <= type && type <= LAST_TYPE);
- allocated_histogram_[type].increment_number(1);
- allocated_histogram_[type].increment_bytes(obj->Size());
-}
-
-
-void NewSpace::RecordPromotion(HeapObject* obj) {
- InstanceType type = obj->map()->instance_type();
- ASSERT(0 <= type && type <= LAST_TYPE);
- promoted_histogram_[type].increment_number(1);
- promoted_histogram_[type].increment_bytes(obj->Size());
-}
-
-
-size_t NewSpace::CommittedPhysicalMemory() {
- if (!VirtualMemory::HasLazyCommits()) return CommittedMemory();
- MemoryChunk::UpdateHighWaterMark(allocation_info_.top);
- size_t size = to_space_.CommittedPhysicalMemory();
- if (from_space_.is_committed()) {
- size += from_space_.CommittedPhysicalMemory();
- }
- return size;
-}
-
-// -----------------------------------------------------------------------------
-// Free lists for old object spaces implementation
-
-void FreeListNode::set_size(Heap* heap, int size_in_bytes) {
- ASSERT(size_in_bytes > 0);
- ASSERT(IsAligned(size_in_bytes, kPointerSize));
-
- // We write a map and possibly size information to the block. If the block
- // is big enough to be a FreeSpace with at least one extra word (the next
- // pointer), we set its map to be the free space map and its size to an
- // appropriate array length for the desired size from HeapObject::Size().
- // If the block is too small (eg, one or two words), to hold both a size
- // field and a next pointer, we give it a filler map that gives it the
- // correct size.
- if (size_in_bytes > FreeSpace::kHeaderSize) {
- set_map_no_write_barrier(heap->raw_unchecked_free_space_map());
- // Can't use FreeSpace::cast because it fails during deserialization.
- FreeSpace* this_as_free_space = reinterpret_cast<FreeSpace*>(this);
- this_as_free_space->set_size(size_in_bytes);
- } else if (size_in_bytes == kPointerSize) {
- set_map_no_write_barrier(heap->raw_unchecked_one_pointer_filler_map());
- } else if (size_in_bytes == 2 * kPointerSize) {
- set_map_no_write_barrier(heap->raw_unchecked_two_pointer_filler_map());
- } else {
- UNREACHABLE();
- }
- // We would like to ASSERT(Size() == size_in_bytes) but this would fail during
- // deserialization because the free space map is not done yet.
-}
-
-
-FreeListNode* FreeListNode::next() {
- ASSERT(IsFreeListNode(this));
- if (map() == GetHeap()->raw_unchecked_free_space_map()) {
- ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize);
- return reinterpret_cast<FreeListNode*>(
- Memory::Address_at(address() + kNextOffset));
- } else {
- return reinterpret_cast<FreeListNode*>(
- Memory::Address_at(address() + kPointerSize));
- }
-}
-
-
-FreeListNode** FreeListNode::next_address() {
- ASSERT(IsFreeListNode(this));
- if (map() == GetHeap()->raw_unchecked_free_space_map()) {
- ASSERT(Size() >= kNextOffset + kPointerSize);
- return reinterpret_cast<FreeListNode**>(address() + kNextOffset);
- } else {
- return reinterpret_cast<FreeListNode**>(address() + kPointerSize);
- }
-}
-
-
-void FreeListNode::set_next(FreeListNode* next) {
- ASSERT(IsFreeListNode(this));
- // While we are booting the VM the free space map will actually be null. So
- // we have to make sure that we don't try to use it for anything at that
- // stage.
- if (map() == GetHeap()->raw_unchecked_free_space_map()) {
- ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize);
- Memory::Address_at(address() + kNextOffset) =
- reinterpret_cast<Address>(next);
- } else {
- Memory::Address_at(address() + kPointerSize) =
- reinterpret_cast<Address>(next);
- }
-}
-
-
-intptr_t FreeListCategory::Concatenate(FreeListCategory* category) {
- intptr_t free_bytes = 0;
- if (category->top_ != NULL) {
- ASSERT(category->end_ != NULL);
- // This is safe (not going to deadlock) since Concatenate operations
- // are never performed on the same free lists at the same time in
- // reverse order.
- ScopedLock lock_target(mutex_);
- ScopedLock lock_source(category->mutex());
- free_bytes = category->available();
- if (end_ == NULL) {
- end_ = category->end();
- } else {
- category->end()->set_next(top_);
- }
- top_ = category->top();
- available_ += category->available();
- category->Reset();
- }
- return free_bytes;
-}
-
-
-void FreeListCategory::Reset() {
- top_ = NULL;
- end_ = NULL;
- available_ = 0;
-}
-
-
-intptr_t FreeListCategory::CountFreeListItemsInList(Page* p) {
- int sum = 0;
- FreeListNode* n = top_;
- while (n != NULL) {
- if (Page::FromAddress(n->address()) == p) {
- FreeSpace* free_space = reinterpret_cast<FreeSpace*>(n);
- sum += free_space->Size();
- }
- n = n->next();
- }
- return sum;
-}
-
-
-intptr_t FreeListCategory::EvictFreeListItemsInList(Page* p) {
- int sum = 0;
- FreeListNode** n = &top_;
- while (*n != NULL) {
- if (Page::FromAddress((*n)->address()) == p) {
- FreeSpace* free_space = reinterpret_cast<FreeSpace*>(*n);
- sum += free_space->Size();
- *n = (*n)->next();
- } else {
- n = (*n)->next_address();
- }
- }
- if (top_ == NULL) {
- end_ = NULL;
- }
- available_ -= sum;
- return sum;
-}
-
-
-FreeListNode* FreeListCategory::PickNodeFromList(int *node_size) {
- FreeListNode* node = top_;
-
- if (node == NULL) return NULL;
-
- while (node != NULL &&
- Page::FromAddress(node->address())->IsEvacuationCandidate()) {
- available_ -= node->Size();
- node = node->next();
- }
-
- if (node != NULL) {
- set_top(node->next());
- *node_size = node->Size();
- available_ -= *node_size;
- } else {
- set_top(NULL);
- }
-
- if (top() == NULL) {
- set_end(NULL);
- }
-
- return node;
-}
-
-
-void FreeListCategory::Free(FreeListNode* node, int size_in_bytes) {
- node->set_next(top_);
- top_ = node;
- if (end_ == NULL) {
- end_ = node;
- }
- available_ += size_in_bytes;
-}
-
-
-void FreeListCategory::RepairFreeList(Heap* heap) {
- FreeListNode* n = top_;
- while (n != NULL) {
- Map** map_location = reinterpret_cast<Map**>(n->address());
- if (*map_location == NULL) {
- *map_location = heap->free_space_map();
- } else {
- ASSERT(*map_location == heap->free_space_map());
- }
- n = n->next();
- }
-}
-
-
-FreeList::FreeList(PagedSpace* owner)
- : owner_(owner), heap_(owner->heap()) {
- Reset();
-}
-
-
-intptr_t FreeList::Concatenate(FreeList* free_list) {
- intptr_t free_bytes = 0;
- free_bytes += small_list_.Concatenate(free_list->small_list());
- free_bytes += medium_list_.Concatenate(free_list->medium_list());
- free_bytes += large_list_.Concatenate(free_list->large_list());
- free_bytes += huge_list_.Concatenate(free_list->huge_list());
- return free_bytes;
-}
-
-
-void FreeList::Reset() {
- small_list_.Reset();
- medium_list_.Reset();
- large_list_.Reset();
- huge_list_.Reset();
-}
-
-
-int FreeList::Free(Address start, int size_in_bytes) {
- if (size_in_bytes == 0) return 0;
-
- FreeListNode* node = FreeListNode::FromAddress(start);
- node->set_size(heap_, size_in_bytes);
-
- // Early return to drop too-small blocks on the floor.
- if (size_in_bytes < kSmallListMin) return size_in_bytes;
-
- // Insert other blocks at the head of a free list of the appropriate
- // magnitude.
- if (size_in_bytes <= kSmallListMax) {
- small_list_.Free(node, size_in_bytes);
- } else if (size_in_bytes <= kMediumListMax) {
- medium_list_.Free(node, size_in_bytes);
- } else if (size_in_bytes <= kLargeListMax) {
- large_list_.Free(node, size_in_bytes);
- } else {
- huge_list_.Free(node, size_in_bytes);
- }
-
- ASSERT(IsVeryLong() || available() == SumFreeLists());
- return 0;
-}
-
-
-FreeListNode* FreeList::FindNodeFor(int size_in_bytes, int* node_size) {
- FreeListNode* node = NULL;
-
- if (size_in_bytes <= kSmallAllocationMax) {
- node = small_list_.PickNodeFromList(node_size);
- if (node != NULL) return node;
- }
-
- if (size_in_bytes <= kMediumAllocationMax) {
- node = medium_list_.PickNodeFromList(node_size);
- if (node != NULL) return node;
- }
-
- if (size_in_bytes <= kLargeAllocationMax) {
- node = large_list_.PickNodeFromList(node_size);
- if (node != NULL) return node;
- }
-
- int huge_list_available = huge_list_.available();
- for (FreeListNode** cur = huge_list_.GetTopAddress();
- *cur != NULL;
- cur = (*cur)->next_address()) {
- FreeListNode* cur_node = *cur;
- while (cur_node != NULL &&
- Page::FromAddress(cur_node->address())->IsEvacuationCandidate()) {
- huge_list_available -= reinterpret_cast<FreeSpace*>(cur_node)->Size();
- cur_node = cur_node->next();
- }
-
- *cur = cur_node;
- if (cur_node == NULL) {
- huge_list_.set_end(NULL);
- break;
- }
-
- ASSERT((*cur)->map() == heap_->raw_unchecked_free_space_map());
- FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(*cur);
- int size = cur_as_free_space->Size();
- if (size >= size_in_bytes) {
- // Large enough node found. Unlink it from the list.
- node = *cur;
- *cur = node->next();
- *node_size = size;
- huge_list_available -= size;
- break;
- }
- }
-
- if (huge_list_.top() == NULL) {
- huge_list_.set_end(NULL);
- }
-
- huge_list_.set_available(huge_list_available);
- ASSERT(IsVeryLong() || available() == SumFreeLists());
-
- return node;
-}
-
-
-// Allocation on the old space free list. If it succeeds then a new linear
-// allocation space has been set up with the top and limit of the space. If
-// the allocation fails then NULL is returned, and the caller can perform a GC
-// or allocate a new page before retrying.
-HeapObject* FreeList::Allocate(int size_in_bytes) {
- ASSERT(0 < size_in_bytes);
- ASSERT(size_in_bytes <= kMaxBlockSize);
- ASSERT(IsAligned(size_in_bytes, kPointerSize));
- // Don't free list allocate if there is linear space available.
- ASSERT(owner_->limit() - owner_->top() < size_in_bytes);
-
- int new_node_size = 0;
- FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size);
- if (new_node == NULL) return NULL;
-
-
- int bytes_left = new_node_size - size_in_bytes;
- ASSERT(bytes_left >= 0);
-
- int old_linear_size = static_cast<int>(owner_->limit() - owner_->top());
- // Mark the old linear allocation area with a free space map so it can be
- // skipped when scanning the heap. This also puts it back in the free list
- // if it is big enough.
- owner_->Free(owner_->top(), old_linear_size);
-
- owner_->heap()->incremental_marking()->OldSpaceStep(
- size_in_bytes - old_linear_size);
-
-#ifdef DEBUG
- for (int i = 0; i < size_in_bytes / kPointerSize; i++) {
- reinterpret_cast<Object**>(new_node->address())[i] =
- Smi::FromInt(kCodeZapValue);
- }
-#endif
-
- // The old-space-step might have finished sweeping and restarted marking.
- // Verify that it did not turn the page of the new node into an evacuation
- // candidate.
- ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_node));
-
- const int kThreshold = IncrementalMarking::kAllocatedThreshold;
-
- // Memory in the linear allocation area is counted as allocated. We may free
- // a little of this again immediately - see below.
- owner_->Allocate(new_node_size);
-
- if (bytes_left > kThreshold &&
- owner_->heap()->incremental_marking()->IsMarkingIncomplete() &&
- FLAG_incremental_marking_steps) {
- int linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold);
- // We don't want to give too large linear areas to the allocator while
- // incremental marking is going on, because we won't check again whether
- // we want to do another increment until the linear area is used up.
- owner_->Free(new_node->address() + size_in_bytes + linear_size,
- new_node_size - size_in_bytes - linear_size);
- owner_->SetTop(new_node->address() + size_in_bytes,
- new_node->address() + size_in_bytes + linear_size);
- } else if (bytes_left > 0) {
- // Normally we give the rest of the node to the allocator as its new
- // linear allocation area.
- owner_->SetTop(new_node->address() + size_in_bytes,
- new_node->address() + new_node_size);
- } else {
- // TODO(gc) Try not freeing linear allocation region when bytes_left
- // are zero.
- owner_->SetTop(NULL, NULL);
- }
-
- return new_node;
-}
-
-
-void FreeList::CountFreeListItems(Page* p, SizeStats* sizes) {
- sizes->huge_size_ = huge_list_.CountFreeListItemsInList(p);
- if (sizes->huge_size_ < p->area_size()) {
- sizes->small_size_ = small_list_.CountFreeListItemsInList(p);
- sizes->medium_size_ = medium_list_.CountFreeListItemsInList(p);
- sizes->large_size_ = large_list_.CountFreeListItemsInList(p);
- } else {
- sizes->small_size_ = 0;
- sizes->medium_size_ = 0;
- sizes->large_size_ = 0;
- }
-}
-
-
-intptr_t FreeList::EvictFreeListItems(Page* p) {
- intptr_t sum = huge_list_.EvictFreeListItemsInList(p);
-
- if (sum < p->area_size()) {
- sum += small_list_.EvictFreeListItemsInList(p) +
- medium_list_.EvictFreeListItemsInList(p) +
- large_list_.EvictFreeListItemsInList(p);
- }
-
- return sum;
-}
-
-
-void FreeList::RepairLists(Heap* heap) {
- small_list_.RepairFreeList(heap);
- medium_list_.RepairFreeList(heap);
- large_list_.RepairFreeList(heap);
- huge_list_.RepairFreeList(heap);
-}
-
-
-#ifdef DEBUG
-intptr_t FreeListCategory::SumFreeList() {
- intptr_t sum = 0;
- FreeListNode* cur = top_;
- while (cur != NULL) {
- ASSERT(cur->map() == cur->GetHeap()->raw_unchecked_free_space_map());
- FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(cur);
- sum += cur_as_free_space->Size();
- cur = cur->next();
- }
- return sum;
-}
-
-
-static const int kVeryLongFreeList = 500;
-
-
-int FreeListCategory::FreeListLength() {
- int length = 0;
- FreeListNode* cur = top_;
- while (cur != NULL) {
- length++;
- cur = cur->next();
- if (length == kVeryLongFreeList) return length;
- }
- return length;
-}
-
-
-bool FreeList::IsVeryLong() {
- if (small_list_.FreeListLength() == kVeryLongFreeList) return true;
- if (medium_list_.FreeListLength() == kVeryLongFreeList) return true;
- if (large_list_.FreeListLength() == kVeryLongFreeList) return true;
- if (huge_list_.FreeListLength() == kVeryLongFreeList) return true;
- return false;
-}
-
-
-// This can take a very long time because it is linear in the number of entries
-// on the free list, so it should not be called if FreeListLength returns
-// kVeryLongFreeList.
-intptr_t FreeList::SumFreeLists() {
- intptr_t sum = small_list_.SumFreeList();
- sum += medium_list_.SumFreeList();
- sum += large_list_.SumFreeList();
- sum += huge_list_.SumFreeList();
- return sum;
-}
-#endif
-
-
-// -----------------------------------------------------------------------------
-// OldSpace implementation
-
-bool NewSpace::ReserveSpace(int bytes) {
- // We can't reliably unpack a partial snapshot that needs more new space
- // space than the minimum NewSpace size. The limit can be set lower than
- // the end of new space either because there is more space on the next page
- // or because we have lowered the limit in order to get periodic incremental
- // marking. The most reliable way to ensure that there is linear space is
- // to do the allocation, then rewind the limit.
- ASSERT(bytes <= InitialCapacity());
- MaybeObject* maybe = AllocateRaw(bytes);
- Object* object = NULL;
- if (!maybe->ToObject(&object)) return false;
- HeapObject* allocation = HeapObject::cast(object);
- Address top = allocation_info_.top;
- if ((top - bytes) == allocation->address()) {
- allocation_info_.top = allocation->address();
- return true;
- }
- // There may be a borderline case here where the allocation succeeded, but
- // the limit and top have moved on to a new page. In that case we try again.
- return ReserveSpace(bytes);
-}
-
-
-void PagedSpace::PrepareForMarkCompact() {
- // We don't have a linear allocation area while sweeping. It will be restored
- // on the first allocation after the sweep.
- // Mark the old linear allocation area with a free space map so it can be
- // skipped when scanning the heap.
- int old_linear_size = static_cast<int>(limit() - top());
- Free(top(), old_linear_size);
- SetTop(NULL, NULL);
-
- // Stop lazy sweeping and clear marking bits for unswept pages.
- if (first_unswept_page_ != NULL) {
- Page* p = first_unswept_page_;
- do {
- // Do not use ShouldBeSweptLazily predicate here.
- // New evacuation candidates were selected but they still have
- // to be swept before collection starts.
- if (!p->WasSwept()) {
- Bitmap::Clear(p);
- if (FLAG_gc_verbose) {
- PrintF("Sweeping 0x%" V8PRIxPTR " lazily abandoned.\n",
- reinterpret_cast<intptr_t>(p));
- }
- }
- p = p->next_page();
- } while (p != anchor());
- }
- first_unswept_page_ = Page::FromAddress(NULL);
- unswept_free_bytes_ = 0;
-
- // Clear the free list before a full GC---it will be rebuilt afterward.
- free_list_.Reset();
-}
-
-
-bool PagedSpace::ReserveSpace(int size_in_bytes) {
- ASSERT(size_in_bytes <= AreaSize());
- ASSERT(size_in_bytes == RoundSizeDownToObjectAlignment(size_in_bytes));
- Address current_top = allocation_info_.top;
- Address new_top = current_top + size_in_bytes;
- if (new_top <= allocation_info_.limit) return true;
-
- HeapObject* new_area = free_list_.Allocate(size_in_bytes);
- if (new_area == NULL) new_area = SlowAllocateRaw(size_in_bytes);
- if (new_area == NULL) return false;
-
- int old_linear_size = static_cast<int>(limit() - top());
- // Mark the old linear allocation area with a free space so it can be
- // skipped when scanning the heap. This also puts it back in the free list
- // if it is big enough.
- Free(top(), old_linear_size);
-
- SetTop(new_area->address(), new_area->address() + size_in_bytes);
- return true;
-}
-
-
-// After we have booted, we have created a map which represents free space
-// on the heap. If there was already a free list then the elements on it
-// were created with the wrong FreeSpaceMap (normally NULL), so we need to
-// fix them.
-void PagedSpace::RepairFreeListsAfterBoot() {
- free_list_.RepairLists(heap());
-}
-
-
-// You have to call this last, since the implementation from PagedSpace
-// doesn't know that memory was 'promised' to large object space.
-bool LargeObjectSpace::ReserveSpace(int bytes) {
- return heap()->OldGenerationCapacityAvailable() >= bytes &&
- (!heap()->incremental_marking()->IsStopped() ||
- heap()->OldGenerationSpaceAvailable() >= bytes);
-}
-
-
-bool PagedSpace::AdvanceSweeper(intptr_t bytes_to_sweep) {
- if (IsLazySweepingComplete()) return true;
-
- intptr_t freed_bytes = 0;
- Page* p = first_unswept_page_;
- do {
- Page* next_page = p->next_page();
- if (ShouldBeSweptLazily(p)) {
- if (FLAG_gc_verbose) {
- PrintF("Sweeping 0x%" V8PRIxPTR " lazily advanced.\n",
- reinterpret_cast<intptr_t>(p));
- }
- DecreaseUnsweptFreeBytes(p);
- freed_bytes +=
- MarkCompactCollector::
- SweepConservatively<MarkCompactCollector::SWEEP_SEQUENTIALLY>(
- this, NULL, p);
- }
- p = next_page;
- } while (p != anchor() && freed_bytes < bytes_to_sweep);
-
- if (p == anchor()) {
- first_unswept_page_ = Page::FromAddress(NULL);
- } else {
- first_unswept_page_ = p;
- }
-
- heap()->FreeQueuedChunks();
-
- return IsLazySweepingComplete();
-}
-
-
-void PagedSpace::EvictEvacuationCandidatesFromFreeLists() {
- if (allocation_info_.top >= allocation_info_.limit) return;
-
- if (Page::FromAllocationTop(allocation_info_.top)->IsEvacuationCandidate()) {
- // Create filler object to keep page iterable if it was iterable.
- int remaining =
- static_cast<int>(allocation_info_.limit - allocation_info_.top);
- heap()->CreateFillerObjectAt(allocation_info_.top, remaining);
-
- allocation_info_.top = NULL;
- allocation_info_.limit = NULL;
- }
-}
-
-
-bool PagedSpace::EnsureSweeperProgress(intptr_t size_in_bytes) {
- MarkCompactCollector* collector = heap()->mark_compact_collector();
- if (collector->AreSweeperThreadsActivated()) {
- if (FLAG_concurrent_sweeping) {
- if (collector->StealMemoryFromSweeperThreads(this) < size_in_bytes) {
- collector->WaitUntilSweepingCompleted();
- collector->FinalizeSweeping();
- return true;
- }
- return false;
- }
- return true;
- } else {
- return AdvanceSweeper(size_in_bytes);
- }
-}
-
-
-HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) {
- // Allocation in this space has failed.
-
- // If there are unswept pages advance lazy sweeper a bounded number of times
- // until we find a size_in_bytes contiguous piece of memory
- const int kMaxSweepingTries = 5;
- bool sweeping_complete = false;
-
- for (int i = 0; i < kMaxSweepingTries && !sweeping_complete; i++) {
- sweeping_complete = EnsureSweeperProgress(size_in_bytes);
-
- // Retry the free list allocation.
- HeapObject* object = free_list_.Allocate(size_in_bytes);
- if (object != NULL) return object;
- }
-
- // Free list allocation failed and there is no next page. Fail if we have
- // hit the old generation size limit that should cause a garbage
- // collection.
- if (!heap()->always_allocate() &&
- heap()->OldGenerationAllocationLimitReached()) {
- return NULL;
- }
-
- // Try to expand the space and allocate in the new next page.
- if (Expand()) {
- return free_list_.Allocate(size_in_bytes);
- }
-
- // Last ditch, sweep all the remaining pages to try to find space. This may
- // cause a pause.
- if (!IsLazySweepingComplete()) {
- EnsureSweeperProgress(kMaxInt);
-
- // Retry the free list allocation.
- HeapObject* object = free_list_.Allocate(size_in_bytes);
- if (object != NULL) return object;
- }
-
- // Finally, fail.
- return NULL;
-}
-
-
-#ifdef DEBUG
-void PagedSpace::ReportCodeStatistics() {
- Isolate* isolate = Isolate::Current();
- CommentStatistic* comments_statistics =
- isolate->paged_space_comments_statistics();
- ReportCodeKindStatistics();
- PrintF("Code comment statistics (\" [ comment-txt : size/ "
- "count (average)\"):\n");
- for (int i = 0; i <= CommentStatistic::kMaxComments; i++) {
- const CommentStatistic& cs = comments_statistics[i];
- if (cs.size > 0) {
- PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count,
- cs.size/cs.count);
- }
- }
- PrintF("\n");
-}
-
-
-void PagedSpace::ResetCodeStatistics() {
- Isolate* isolate = Isolate::Current();
- CommentStatistic* comments_statistics =
- isolate->paged_space_comments_statistics();
- ClearCodeKindStatistics();
- for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
- comments_statistics[i].Clear();
- }
- comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown";
- comments_statistics[CommentStatistic::kMaxComments].size = 0;
- comments_statistics[CommentStatistic::kMaxComments].count = 0;
-}
-
-
-// Adds comment to 'comment_statistics' table. Performance OK as long as
-// 'kMaxComments' is small
-static void EnterComment(Isolate* isolate, const char* comment, int delta) {
- CommentStatistic* comments_statistics =
- isolate->paged_space_comments_statistics();
- // Do not count empty comments
- if (delta <= 0) return;
- CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments];
- // Search for a free or matching entry in 'comments_statistics': 'cs'
- // points to result.
- for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
- if (comments_statistics[i].comment == NULL) {
- cs = &comments_statistics[i];
- cs->comment = comment;
- break;
- } else if (strcmp(comments_statistics[i].comment, comment) == 0) {
- cs = &comments_statistics[i];
- break;
- }
- }
- // Update entry for 'comment'
- cs->size += delta;
- cs->count += 1;
-}
-
-
-// Call for each nested comment start (start marked with '[ xxx', end marked
-// with ']'. RelocIterator 'it' must point to a comment reloc info.
-static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) {
- ASSERT(!it->done());
- ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT);
- const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
- if (tmp[0] != '[') {
- // Not a nested comment; skip
- return;
- }
-
- // Search for end of nested comment or a new nested comment
- const char* const comment_txt =
- reinterpret_cast<const char*>(it->rinfo()->data());
- const byte* prev_pc = it->rinfo()->pc();
- int flat_delta = 0;
- it->next();
- while (true) {
- // All nested comments must be terminated properly, and therefore exit
- // from loop.
- ASSERT(!it->done());
- if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
- const char* const txt =
- reinterpret_cast<const char*>(it->rinfo()->data());
- flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc);
- if (txt[0] == ']') break; // End of nested comment
- // A new comment
- CollectCommentStatistics(isolate, it);
- // Skip code that was covered with previous comment
- prev_pc = it->rinfo()->pc();
- }
- it->next();
- }
- EnterComment(isolate, comment_txt, flat_delta);
-}
-
-
-// Collects code size statistics:
-// - by code kind
-// - by code comment
-void PagedSpace::CollectCodeStatistics() {
- Isolate* isolate = heap()->isolate();
- HeapObjectIterator obj_it(this);
- for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
- if (obj->IsCode()) {
- Code* code = Code::cast(obj);
- isolate->code_kind_statistics()[code->kind()] += code->Size();
- RelocIterator it(code);
- int delta = 0;
- const byte* prev_pc = code->instruction_start();
- while (!it.done()) {
- if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
- delta += static_cast<int>(it.rinfo()->pc() - prev_pc);
- CollectCommentStatistics(isolate, &it);
- prev_pc = it.rinfo()->pc();
- }
- it.next();
- }
-
- ASSERT(code->instruction_start() <= prev_pc &&
- prev_pc <= code->instruction_end());
- delta += static_cast<int>(code->instruction_end() - prev_pc);
- EnterComment(isolate, "NoComment", delta);
- }
- }
-}
-
-
-void PagedSpace::ReportStatistics() {
- int pct = static_cast<int>(Available() * 100 / Capacity());
- PrintF(" capacity: %" V8_PTR_PREFIX "d"
- ", waste: %" V8_PTR_PREFIX "d"
- ", available: %" V8_PTR_PREFIX "d, %%%d\n",
- Capacity(), Waste(), Available(), pct);
-
- if (was_swept_conservatively_) return;
- ClearHistograms();
- HeapObjectIterator obj_it(this);
- for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next())
- CollectHistogramInfo(obj);
- ReportHistogram(true);
-}
-#endif
-
-// -----------------------------------------------------------------------------
-// FixedSpace implementation
-
-void FixedSpace::PrepareForMarkCompact() {
- // Call prepare of the super class.
- PagedSpace::PrepareForMarkCompact();
-
- // During a non-compacting collection, everything below the linear
- // allocation pointer except wasted top-of-page blocks is considered
- // allocated and we will rediscover available bytes during the
- // collection.
- accounting_stats_.AllocateBytes(free_list_.available());
-
- // Clear the free list before a full GC---it will be rebuilt afterward.
- free_list_.Reset();
-}
-
-
-// -----------------------------------------------------------------------------
-// MapSpace implementation
-// TODO(mvstanton): this is weird...the compiler can't make a vtable unless
-// there is at least one non-inlined virtual function. I would prefer to hide
-// the VerifyObject definition behind VERIFY_HEAP.
-
-void MapSpace::VerifyObject(HeapObject* object) {
- // The object should be a map or a free-list node.
- CHECK(object->IsMap() || object->IsFreeSpace());
-}
-
-
-// -----------------------------------------------------------------------------
-// GlobalPropertyCellSpace implementation
-// TODO(mvstanton): this is weird...the compiler can't make a vtable unless
-// there is at least one non-inlined virtual function. I would prefer to hide
-// the VerifyObject definition behind VERIFY_HEAP.
-
-void CellSpace::VerifyObject(HeapObject* object) {
- // The object should be a global object property cell or a free-list node.
- CHECK(object->IsJSGlobalPropertyCell() ||
- object->map() == heap()->two_pointer_filler_map());
-}
-
-
-// -----------------------------------------------------------------------------
-// LargeObjectIterator
-
-LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
- current_ = space->first_page_;
- size_func_ = NULL;
-}
-
-
-LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space,
- HeapObjectCallback size_func) {
- current_ = space->first_page_;
- size_func_ = size_func;
-}
-
-
-HeapObject* LargeObjectIterator::Next() {
- if (current_ == NULL) return NULL;
-
- HeapObject* object = current_->GetObject();
- current_ = current_->next_page();
- return object;
-}
-
-
-// -----------------------------------------------------------------------------
-// LargeObjectSpace
-static bool ComparePointers(void* key1, void* key2) {
- return key1 == key2;
-}
-
-
-LargeObjectSpace::LargeObjectSpace(Heap* heap,
- intptr_t max_capacity,
- AllocationSpace id)
- : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis
- max_capacity_(max_capacity),
- first_page_(NULL),
- size_(0),
- page_count_(0),
- objects_size_(0),
- chunk_map_(ComparePointers, 1024) {}
-
-
-bool LargeObjectSpace::SetUp() {
- first_page_ = NULL;
- size_ = 0;
- page_count_ = 0;
- objects_size_ = 0;
- chunk_map_.Clear();
- return true;
-}
-
-
-void LargeObjectSpace::TearDown() {
- while (first_page_ != NULL) {
- LargePage* page = first_page_;
- first_page_ = first_page_->next_page();
- LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address()));
-
- ObjectSpace space = static_cast<ObjectSpace>(1 << identity());
- heap()->isolate()->memory_allocator()->PerformAllocationCallback(
- space, kAllocationActionFree, page->size());
- heap()->isolate()->memory_allocator()->Free(page);
- }
- SetUp();
-}
-
-
-MaybeObject* LargeObjectSpace::AllocateRaw(int object_size,
- Executability executable) {
- // Check if we want to force a GC before growing the old space further.
- // If so, fail the allocation.
- if (!heap()->always_allocate() &&
- heap()->OldGenerationAllocationLimitReached()) {
- return Failure::RetryAfterGC(identity());
- }
-
- if (Size() + object_size > max_capacity_) {
- return Failure::RetryAfterGC(identity());
- }
-
- LargePage* page = heap()->isolate()->memory_allocator()->
- AllocateLargePage(object_size, this, executable);
- if (page == NULL) return Failure::RetryAfterGC(identity());
- ASSERT(page->area_size() >= object_size);
-
- size_ += static_cast<int>(page->size());
- objects_size_ += object_size;
- page_count_++;
- page->set_next_page(first_page_);
- first_page_ = page;
-
- // Register all MemoryChunk::kAlignment-aligned chunks covered by
- // this large page in the chunk map.
- uintptr_t base = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment;
- uintptr_t limit = base + (page->size() - 1) / MemoryChunk::kAlignment;
- for (uintptr_t key = base; key <= limit; key++) {
- HashMap::Entry* entry = chunk_map_.Lookup(reinterpret_cast<void*>(key),
- static_cast<uint32_t>(key),
- true);
- ASSERT(entry != NULL);
- entry->value = page;
- }
-
- HeapObject* object = page->GetObject();
-
- if (Heap::ShouldZapGarbage()) {
- // Make the object consistent so the heap can be verified in OldSpaceStep.
- // We only need to do this in debug builds or if verify_heap is on.
- reinterpret_cast<Object**>(object->address())[0] =
- heap()->fixed_array_map();
- reinterpret_cast<Object**>(object->address())[1] = Smi::FromInt(0);
- }
-
- heap()->incremental_marking()->OldSpaceStep(object_size);
- return object;
-}
-
-
-size_t LargeObjectSpace::CommittedPhysicalMemory() {
- if (!VirtualMemory::HasLazyCommits()) return CommittedMemory();
- size_t size = 0;
- LargePage* current = first_page_;
- while (current != NULL) {
- size += current->CommittedPhysicalMemory();
- current = current->next_page();
- }
- return size;
-}
-
-
-// GC support
-MaybeObject* LargeObjectSpace::FindObject(Address a) {
- LargePage* page = FindPage(a);
- if (page != NULL) {
- return page->GetObject();
- }
- return Failure::Exception();
-}
-
-
-LargePage* LargeObjectSpace::FindPage(Address a) {
- uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment;
- HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key),
- static_cast<uint32_t>(key),
- false);
- if (e != NULL) {
- ASSERT(e->value != NULL);
- LargePage* page = reinterpret_cast<LargePage*>(e->value);
- ASSERT(page->is_valid());
- if (page->Contains(a)) {
- return page;
- }
- }
- return NULL;
-}
-
-
-void LargeObjectSpace::FreeUnmarkedObjects() {
- LargePage* previous = NULL;
- LargePage* current = first_page_;
- while (current != NULL) {
- HeapObject* object = current->GetObject();
- // Can this large page contain pointers to non-trivial objects. No other
- // pointer object is this big.
- bool is_pointer_object = object->IsFixedArray();
- MarkBit mark_bit = Marking::MarkBitFrom(object);
- if (mark_bit.Get()) {
- mark_bit.Clear();
- Page::FromAddress(object->address())->ResetProgressBar();
- Page::FromAddress(object->address())->ResetLiveBytes();
- previous = current;
- current = current->next_page();
- } else {
- LargePage* page = current;
- // Cut the chunk out from the chunk list.
- current = current->next_page();
- if (previous == NULL) {
- first_page_ = current;
- } else {
- previous->set_next_page(current);
- }
-
- // Free the chunk.
- heap()->mark_compact_collector()->ReportDeleteIfNeeded(
- object, heap()->isolate());
- size_ -= static_cast<int>(page->size());
- objects_size_ -= object->Size();
- page_count_--;
-
- // Remove entries belonging to this page.
- // Use variable alignment to help pass length check (<= 80 characters)
- // of single line in tools/presubmit.py.
- const intptr_t alignment = MemoryChunk::kAlignment;
- uintptr_t base = reinterpret_cast<uintptr_t>(page)/alignment;
- uintptr_t limit = base + (page->size()-1)/alignment;
- for (uintptr_t key = base; key <= limit; key++) {
- chunk_map_.Remove(reinterpret_cast<void*>(key),
- static_cast<uint32_t>(key));
- }
-
- if (is_pointer_object) {
- heap()->QueueMemoryChunkForFree(page);
- } else {
- heap()->isolate()->memory_allocator()->Free(page);
- }
- }
- }
- heap()->FreeQueuedChunks();
-}
-
-
-bool LargeObjectSpace::Contains(HeapObject* object) {
- Address address = object->address();
- MemoryChunk* chunk = MemoryChunk::FromAddress(address);
-
- bool owned = (chunk->owner() == this);
-
- SLOW_ASSERT(!owned || !FindObject(address)->IsFailure());
-
- return owned;
-}
-
-
-#ifdef VERIFY_HEAP
-// We do not assume that the large object iterator works, because it depends
-// on the invariants we are checking during verification.
-void LargeObjectSpace::Verify() {
- for (LargePage* chunk = first_page_;
- chunk != NULL;
- chunk = chunk->next_page()) {
- // Each chunk contains an object that starts at the large object page's
- // object area start.
- HeapObject* object = chunk->GetObject();
- Page* page = Page::FromAddress(object->address());
- CHECK(object->address() == page->area_start());
-
- // The first word should be a map, and we expect all map pointers to be
- // in map space.
- Map* map = object->map();
- CHECK(map->IsMap());
- CHECK(heap()->map_space()->Contains(map));
-
- // We have only code, sequential strings, external strings
- // (sequential strings that have been morphed into external
- // strings), fixed arrays, and byte arrays in large object space.
- CHECK(object->IsCode() || object->IsSeqString() ||
- object->IsExternalString() || object->IsFixedArray() ||
- object->IsFixedDoubleArray() || object->IsByteArray());
-
- // The object itself should look OK.
- object->Verify();
-
- // Byte arrays and strings don't have interior pointers.
- if (object->IsCode()) {
- VerifyPointersVisitor code_visitor;
- object->IterateBody(map->instance_type(),
- object->Size(),
- &code_visitor);
- } else if (object->IsFixedArray()) {
- FixedArray* array = FixedArray::cast(object);
- for (int j = 0; j < array->length(); j++) {
- Object* element = array->get(j);
- if (element->IsHeapObject()) {
- HeapObject* element_object = HeapObject::cast(element);
- CHECK(heap()->Contains(element_object));
- CHECK(element_object->map()->IsMap());
- }
- }
- }
- }
-}
-#endif
-
-
-#ifdef DEBUG
-void LargeObjectSpace::Print() {
- LargeObjectIterator it(this);
- for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
- obj->Print();
- }
-}
-
-
-void LargeObjectSpace::ReportStatistics() {
- PrintF(" size: %" V8_PTR_PREFIX "d\n", size_);
- int num_objects = 0;
- ClearHistograms();
- LargeObjectIterator it(this);
- for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
- num_objects++;
- CollectHistogramInfo(obj);
- }
-
- PrintF(" number of objects %d, "
- "size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_);
- if (num_objects > 0) ReportHistogram(false);
-}
-
-
-void LargeObjectSpace::CollectCodeStatistics() {
- Isolate* isolate = heap()->isolate();
- LargeObjectIterator obj_it(this);
- for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
- if (obj->IsCode()) {
- Code* code = Code::cast(obj);
- isolate->code_kind_statistics()[code->kind()] += code->Size();
- }
- }
-}
-
-
-void Page::Print() {
- // Make a best-effort to print the objects in the page.
- PrintF("Page@%p in %s\n",
- this->address(),
- AllocationSpaceName(this->owner()->identity()));
- printf(" --------------------------------------\n");
- HeapObjectIterator objects(this, heap()->GcSafeSizeOfOldObjectFunction());
- unsigned mark_size = 0;
- for (HeapObject* object = objects.Next();
- object != NULL;
- object = objects.Next()) {
- bool is_marked = Marking::MarkBitFrom(object).Get();
- PrintF(" %c ", (is_marked ? '!' : ' ')); // Indent a little.
- if (is_marked) {
- mark_size += heap()->GcSafeSizeOfOldObjectFunction()(object);
- }
- object->ShortPrint();
- PrintF("\n");
- }
- printf(" --------------------------------------\n");
- printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes());
-}
-
-#endif // DEBUG
-
-} } // namespace v8::internal