// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #include "v8.h" #if defined(V8_TARGET_ARCH_MIPS) #include "mips/assembler-mips-inl.h" #include "serialize.h" namespace v8 { namespace internal { #ifdef DEBUG bool CpuFeatures::initialized_ = false; #endif unsigned CpuFeatures::supported_ = 0; unsigned CpuFeatures::found_by_runtime_probing_ = 0; // Get the CPU features enabled by the build. For cross compilation the // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS // can be defined to enable FPU instructions when building the // snapshot. static uint64_t CpuFeaturesImpliedByCompiler() { uint64_t answer = 0; #ifdef CAN_USE_FPU_INSTRUCTIONS answer |= 1u << FPU; #endif // def CAN_USE_FPU_INSTRUCTIONS #ifdef __mips__ // If the compiler is allowed to use FPU then we can use FPU too in our code // generation even when generating snapshots. This won't work for cross // compilation. #if(defined(__mips_hard_float) && __mips_hard_float != 0) answer |= 1u << FPU; #endif // defined(__mips_hard_float) && __mips_hard_float != 0 #endif // def __mips__ return answer; } void CpuFeatures::Probe() { unsigned standard_features = (OS::CpuFeaturesImpliedByPlatform() | CpuFeaturesImpliedByCompiler()); ASSERT(supported_ == 0 || supported_ == standard_features); #ifdef DEBUG initialized_ = true; #endif // Get the features implied by the OS and the compiler settings. This is the // minimal set of features which is also allowed for generated code in the // snapshot. supported_ |= standard_features; if (Serializer::enabled()) { // No probing for features if we might serialize (generate snapshot). return; } // If the compiler is allowed to use fpu then we can use fpu too in our // code generation. #if !defined(__mips__) // For the simulator=mips build, use FPU when FLAG_enable_fpu is enabled. if (FLAG_enable_fpu) { supported_ |= 1u << FPU; } #else // Probe for additional features not already known to be available. if (OS::MipsCpuHasFeature(FPU)) { // This implementation also sets the FPU flags if // runtime detection of FPU returns true. supported_ |= 1u << FPU; found_by_runtime_probing_ |= 1u << FPU; } #endif } int ToNumber(Register reg) { ASSERT(reg.is_valid()); const int kNumbers[] = { 0, // zero_reg 1, // at 2, // v0 3, // v1 4, // a0 5, // a1 6, // a2 7, // a3 8, // t0 9, // t1 10, // t2 11, // t3 12, // t4 13, // t5 14, // t6 15, // t7 16, // s0 17, // s1 18, // s2 19, // s3 20, // s4 21, // s5 22, // s6 23, // s7 24, // t8 25, // t9 26, // k0 27, // k1 28, // gp 29, // sp 30, // fp 31, // ra }; return kNumbers[reg.code()]; } Register ToRegister(int num) { ASSERT(num >= 0 && num < kNumRegisters); const Register kRegisters[] = { zero_reg, at, v0, v1, a0, a1, a2, a3, t0, t1, t2, t3, t4, t5, t6, t7, s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra }; return kRegisters[num]; } // ----------------------------------------------------------------------------- // Implementation of RelocInfo. const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask | 1 << RelocInfo::INTERNAL_REFERENCE; bool RelocInfo::IsCodedSpecially() { // The deserializer needs to know whether a pointer is specially coded. Being // specially coded on MIPS means that it is a lui/ori instruction, and that is // always the case inside code objects. return true; } // Patch the code at the current address with the supplied instructions. void RelocInfo::PatchCode(byte* instructions, int instruction_count) { Instr* pc = reinterpret_cast(pc_); Instr* instr = reinterpret_cast(instructions); for (int i = 0; i < instruction_count; i++) { *(pc + i) = *(instr + i); } // Indicate that code has changed. CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); } // Patch the code at the current PC with a call to the target address. // Additional guard instructions can be added if required. void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { // Patch the code at the current address with a call to the target. UNIMPLEMENTED_MIPS(); } // ----------------------------------------------------------------------------- // Implementation of Operand and MemOperand. // See assembler-mips-inl.h for inlined constructors. Operand::Operand(Handle handle) { rm_ = no_reg; // Verify all Objects referred by code are NOT in new space. Object* obj = *handle; ASSERT(!HEAP->InNewSpace(obj)); if (obj->IsHeapObject()) { imm32_ = reinterpret_cast(handle.location()); rmode_ = RelocInfo::EMBEDDED_OBJECT; } else { // No relocation needed. imm32_ = reinterpret_cast(obj); rmode_ = RelocInfo::NONE; } } MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) { offset_ = offset; } // ----------------------------------------------------------------------------- // Specific instructions, constants, and masks. static const int kNegOffset = 0x00008000; // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r) // operations as post-increment of sp. const Instr kPopInstruction = ADDIU | (kRegister_sp_Code << kRsShift) | (kRegister_sp_Code << kRtShift) | (kPointerSize & kImm16Mask); // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp. const Instr kPushInstruction = ADDIU | (kRegister_sp_Code << kRsShift) | (kRegister_sp_Code << kRtShift) | (-kPointerSize & kImm16Mask); // sw(r, MemOperand(sp, 0)) const Instr kPushRegPattern = SW | (kRegister_sp_Code << kRsShift) | (0 & kImm16Mask); // lw(r, MemOperand(sp, 0)) const Instr kPopRegPattern = LW | (kRegister_sp_Code << kRsShift) | (0 & kImm16Mask); const Instr kLwRegFpOffsetPattern = LW | (kRegister_fp_Code << kRsShift) | (0 & kImm16Mask); const Instr kSwRegFpOffsetPattern = SW | (kRegister_fp_Code << kRsShift) | (0 & kImm16Mask); const Instr kLwRegFpNegOffsetPattern = LW | (kRegister_fp_Code << kRsShift) | (kNegOffset & kImm16Mask); const Instr kSwRegFpNegOffsetPattern = SW | (kRegister_fp_Code << kRsShift) | (kNegOffset & kImm16Mask); // A mask for the Rt register for push, pop, lw, sw instructions. const Instr kRtMask = kRtFieldMask; const Instr kLwSwInstrTypeMask = 0xffe00000; const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask; const Instr kLwSwOffsetMask = kImm16Mask; // Spare buffer. static const int kMinimalBufferSize = 4 * KB; Assembler::Assembler(Isolate* arg_isolate, void* buffer, int buffer_size) : AssemblerBase(arg_isolate), positions_recorder_(this), emit_debug_code_(FLAG_debug_code) { if (buffer == NULL) { // Do our own buffer management. if (buffer_size <= kMinimalBufferSize) { buffer_size = kMinimalBufferSize; if (isolate()->assembler_spare_buffer() != NULL) { buffer = isolate()->assembler_spare_buffer(); isolate()->set_assembler_spare_buffer(NULL); } } if (buffer == NULL) { buffer_ = NewArray(buffer_size); } else { buffer_ = static_cast(buffer); } buffer_size_ = buffer_size; own_buffer_ = true; } else { // Use externally provided buffer instead. ASSERT(buffer_size > 0); buffer_ = static_cast(buffer); buffer_size_ = buffer_size; own_buffer_ = false; } // Set up buffer pointers. ASSERT(buffer_ != NULL); pc_ = buffer_; reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); last_trampoline_pool_end_ = 0; no_trampoline_pool_before_ = 0; trampoline_pool_blocked_nesting_ = 0; // We leave space (16 * kTrampolineSlotsSize) // for BlockTrampolinePoolScope buffer. next_buffer_check_ = kMaxBranchOffset - kTrampolineSlotsSize * 16; internal_trampoline_exception_ = false; last_bound_pos_ = 0; trampoline_emitted_ = false; unbound_labels_count_ = 0; block_buffer_growth_ = false; ClearRecordedAstId(); } Assembler::~Assembler() { if (own_buffer_) { if (isolate()->assembler_spare_buffer() == NULL && buffer_size_ == kMinimalBufferSize) { isolate()->set_assembler_spare_buffer(buffer_); } else { DeleteArray(buffer_); } } } void Assembler::GetCode(CodeDesc* desc) { ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap. // Set up code descriptor. desc->buffer = buffer_; desc->buffer_size = buffer_size_; desc->instr_size = pc_offset(); desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); } void Assembler::Align(int m) { ASSERT(m >= 4 && IsPowerOf2(m)); while ((pc_offset() & (m - 1)) != 0) { nop(); } } void Assembler::CodeTargetAlign() { // No advantage to aligning branch/call targets to more than // single instruction, that I am aware of. Align(4); } Register Assembler::GetRtReg(Instr instr) { Register rt; rt.code_ = (instr & kRtFieldMask) >> kRtShift; return rt; } Register Assembler::GetRsReg(Instr instr) { Register rs; rs.code_ = (instr & kRsFieldMask) >> kRsShift; return rs; } Register Assembler::GetRdReg(Instr instr) { Register rd; rd.code_ = (instr & kRdFieldMask) >> kRdShift; return rd; } uint32_t Assembler::GetRt(Instr instr) { return (instr & kRtFieldMask) >> kRtShift; } uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; } uint32_t Assembler::GetRs(Instr instr) { return (instr & kRsFieldMask) >> kRsShift; } uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; } uint32_t Assembler::GetRd(Instr instr) { return (instr & kRdFieldMask) >> kRdShift; } uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; } uint32_t Assembler::GetSa(Instr instr) { return (instr & kSaFieldMask) >> kSaShift; } uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; } uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; } uint32_t Assembler::GetFunction(Instr instr) { return (instr & kFunctionFieldMask) >> kFunctionShift; } uint32_t Assembler::GetFunctionField(Instr instr) { return instr & kFunctionFieldMask; } uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; } uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; } bool Assembler::IsPop(Instr instr) { return (instr & ~kRtMask) == kPopRegPattern; } bool Assembler::IsPush(Instr instr) { return (instr & ~kRtMask) == kPushRegPattern; } bool Assembler::IsSwRegFpOffset(Instr instr) { return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern); } bool Assembler::IsLwRegFpOffset(Instr instr) { return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern); } bool Assembler::IsSwRegFpNegOffset(Instr instr) { return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == kSwRegFpNegOffsetPattern); } bool Assembler::IsLwRegFpNegOffset(Instr instr) { return ((instr & (kLwSwInstrTypeMask | kNegOffset)) == kLwRegFpNegOffsetPattern); } // Labels refer to positions in the (to be) generated code. // There are bound, linked, and unused labels. // // Bound labels refer to known positions in the already // generated code. pos() is the position the label refers to. // // Linked labels refer to unknown positions in the code // to be generated; pos() is the position of the last // instruction using the label. // The link chain is terminated by a value in the instruction of -1, // which is an otherwise illegal value (branch -1 is inf loop). // The instruction 16-bit offset field addresses 32-bit words, but in // code is conv to an 18-bit value addressing bytes, hence the -4 value. const int kEndOfChain = -4; // Determines the end of the Jump chain (a subset of the label link chain). const int kEndOfJumpChain = 0; bool Assembler::IsBranch(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rt_field = GetRtField(instr); uint32_t rs_field = GetRsField(instr); uint32_t label_constant = GetLabelConst(instr); // Checks if the instruction is a branch. return opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ || opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL || (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ || rt_field == BLTZAL || rt_field == BGEZAL)) || (opcode == COP1 && rs_field == BC1) || // Coprocessor branch. label_constant == 0; // Emitted label const in reg-exp engine. } bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; } bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; } bool Assembler::IsJump(Instr instr) { uint32_t opcode = GetOpcodeField(instr); uint32_t rt_field = GetRtField(instr); uint32_t rd_field = GetRdField(instr); uint32_t function_field = GetFunctionField(instr); // Checks if the instruction is a jump. return opcode == J || opcode == JAL || (opcode == SPECIAL && rt_field == 0 && ((function_field == JALR) || (rd_field == 0 && (function_field == JR)))); } bool Assembler::IsJ(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is a jump. return opcode == J; } bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; } bool Assembler::IsJr(Instr instr) { return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR; } bool Assembler::IsJalr(Instr instr) { return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JALR; } bool Assembler::IsLui(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is a load upper immediate. return opcode == LUI; } bool Assembler::IsOri(Instr instr) { uint32_t opcode = GetOpcodeField(instr); // Checks if the instruction is a load upper immediate. return opcode == ORI; } bool Assembler::IsNop(Instr instr, unsigned int type) { // See Assembler::nop(type). ASSERT(type < 32); uint32_t opcode = GetOpcodeField(instr); uint32_t rt = GetRt(instr); uint32_t rs = GetRs(instr); uint32_t sa = GetSa(instr); // nop(type) == sll(zero_reg, zero_reg, type); // Technically all these values will be 0 but // this makes more sense to the reader. bool ret = (opcode == SLL && rt == static_cast(ToNumber(zero_reg)) && rs == static_cast(ToNumber(zero_reg)) && sa == type); return ret; } int32_t Assembler::GetBranchOffset(Instr instr) { ASSERT(IsBranch(instr)); return ((int16_t)(instr & kImm16Mask)) << 2; } bool Assembler::IsLw(Instr instr) { return ((instr & kOpcodeMask) == LW); } int16_t Assembler::GetLwOffset(Instr instr) { ASSERT(IsLw(instr)); return ((instr & kImm16Mask)); } Instr Assembler::SetLwOffset(Instr instr, int16_t offset) { ASSERT(IsLw(instr)); // We actually create a new lw instruction based on the original one. Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) | (offset & kImm16Mask); return temp_instr; } bool Assembler::IsSw(Instr instr) { return ((instr & kOpcodeMask) == SW); } Instr Assembler::SetSwOffset(Instr instr, int16_t offset) { ASSERT(IsSw(instr)); return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); } bool Assembler::IsAddImmediate(Instr instr) { return ((instr & kOpcodeMask) == ADDIU); } Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) { ASSERT(IsAddImmediate(instr)); return ((instr & ~kImm16Mask) | (offset & kImm16Mask)); } bool Assembler::IsAndImmediate(Instr instr) { return GetOpcodeField(instr) == ANDI; } int Assembler::target_at(int32_t pos) { Instr instr = instr_at(pos); if ((instr & ~kImm16Mask) == 0) { // Emitted label constant, not part of a branch. if (instr == 0) { return kEndOfChain; } else { int32_t imm18 =((instr & static_cast(kImm16Mask)) << 16) >> 14; return (imm18 + pos); } } // Check we have a branch or jump instruction. ASSERT(IsBranch(instr) || IsJ(instr) || IsLui(instr)); // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming // the compiler uses arithmectic shifts for signed integers. if (IsBranch(instr)) { int32_t imm18 = ((instr & static_cast(kImm16Mask)) << 16) >> 14; if (imm18 == kEndOfChain) { // EndOfChain sentinel is returned directly, not relative to pc or pos. return kEndOfChain; } else { return pos + kBranchPCOffset + imm18; } } else if (IsLui(instr)) { Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize); Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize); ASSERT(IsOri(instr_ori)); int32_t imm = (instr_lui & static_cast(kImm16Mask)) << kLuiShift; imm |= (instr_ori & static_cast(kImm16Mask)); if (imm == kEndOfJumpChain) { // EndOfChain sentinel is returned directly, not relative to pc or pos. return kEndOfChain; } else { uint32_t instr_address = reinterpret_cast(buffer_ + pos); int32_t delta = instr_address - imm; ASSERT(pos > delta); return pos - delta; } } else { int32_t imm28 = (instr & static_cast(kImm26Mask)) << 2; if (imm28 == kEndOfJumpChain) { // EndOfChain sentinel is returned directly, not relative to pc or pos. return kEndOfChain; } else { uint32_t instr_address = reinterpret_cast(buffer_ + pos); instr_address &= kImm28Mask; int32_t delta = instr_address - imm28; ASSERT(pos > delta); return pos - delta; } } } void Assembler::target_at_put(int32_t pos, int32_t target_pos) { Instr instr = instr_at(pos); if ((instr & ~kImm16Mask) == 0) { ASSERT(target_pos == kEndOfChain || target_pos >= 0); // Emitted label constant, not part of a branch. // Make label relative to Code* of generated Code object. instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); return; } ASSERT(IsBranch(instr) || IsJ(instr) || IsLui(instr)); if (IsBranch(instr)) { int32_t imm18 = target_pos - (pos + kBranchPCOffset); ASSERT((imm18 & 3) == 0); instr &= ~kImm16Mask; int32_t imm16 = imm18 >> 2; ASSERT(is_int16(imm16)); instr_at_put(pos, instr | (imm16 & kImm16Mask)); } else if (IsLui(instr)) { Instr instr_lui = instr_at(pos + 0 * Assembler::kInstrSize); Instr instr_ori = instr_at(pos + 1 * Assembler::kInstrSize); ASSERT(IsOri(instr_ori)); uint32_t imm = (uint32_t)buffer_ + target_pos; ASSERT((imm & 3) == 0); instr_lui &= ~kImm16Mask; instr_ori &= ~kImm16Mask; instr_at_put(pos + 0 * Assembler::kInstrSize, instr_lui | ((imm & kHiMask) >> kLuiShift)); instr_at_put(pos + 1 * Assembler::kInstrSize, instr_ori | (imm & kImm16Mask)); } else { uint32_t imm28 = (uint32_t)buffer_ + target_pos; imm28 &= kImm28Mask; ASSERT((imm28 & 3) == 0); instr &= ~kImm26Mask; uint32_t imm26 = imm28 >> 2; ASSERT(is_uint26(imm26)); instr_at_put(pos, instr | (imm26 & kImm26Mask)); } } void Assembler::print(Label* L) { if (L->is_unused()) { PrintF("unused label\n"); } else if (L->is_bound()) { PrintF("bound label to %d\n", L->pos()); } else if (L->is_linked()) { Label l = *L; PrintF("unbound label"); while (l.is_linked()) { PrintF("@ %d ", l.pos()); Instr instr = instr_at(l.pos()); if ((instr & ~kImm16Mask) == 0) { PrintF("value\n"); } else { PrintF("%d\n", instr); } next(&l); } } else { PrintF("label in inconsistent state (pos = %d)\n", L->pos_); } } void Assembler::bind_to(Label* L, int pos) { ASSERT(0 <= pos && pos <= pc_offset()); // Must have valid binding position. int32_t trampoline_pos = kInvalidSlotPos; if (L->is_linked() && !trampoline_emitted_) { unbound_labels_count_--; next_buffer_check_ += kTrampolineSlotsSize; } while (L->is_linked()) { int32_t fixup_pos = L->pos(); int32_t dist = pos - fixup_pos; next(L); // Call next before overwriting link with target at fixup_pos. Instr instr = instr_at(fixup_pos); if (IsBranch(instr)) { if (dist > kMaxBranchOffset) { if (trampoline_pos == kInvalidSlotPos) { trampoline_pos = get_trampoline_entry(fixup_pos); CHECK(trampoline_pos != kInvalidSlotPos); } ASSERT((trampoline_pos - fixup_pos) <= kMaxBranchOffset); target_at_put(fixup_pos, trampoline_pos); fixup_pos = trampoline_pos; dist = pos - fixup_pos; } target_at_put(fixup_pos, pos); } else { ASSERT(IsJ(instr) || IsLui(instr)); target_at_put(fixup_pos, pos); } } L->bind_to(pos); // Keep track of the last bound label so we don't eliminate any instructions // before a bound label. if (pos > last_bound_pos_) last_bound_pos_ = pos; } void Assembler::bind(Label* L) { ASSERT(!L->is_bound()); // Label can only be bound once. bind_to(L, pc_offset()); } void Assembler::next(Label* L) { ASSERT(L->is_linked()); int link = target_at(L->pos()); if (link == kEndOfChain) { L->Unuse(); } else { ASSERT(link >= 0); L->link_to(link); } } bool Assembler::is_near(Label* L) { if (L->is_bound()) { return ((pc_offset() - L->pos()) < kMaxBranchOffset - 4 * kInstrSize); } return false; } // We have to use a temporary register for things that can be relocated even // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction // space. There is no guarantee that the relocated location can be similarly // encoded. bool Assembler::MustUseReg(RelocInfo::Mode rmode) { return rmode != RelocInfo::NONE; } void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd, uint16_t sa, SecondaryField func) { ASSERT(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa)); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (sa << kSaShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb, uint16_t lsb, SecondaryField func) { ASSERT(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb)); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (msb << kRdShift) | (lsb << kSaShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft, FPURegister fs, FPURegister fd, SecondaryField func) { ASSERT(fd.is_valid() && fs.is_valid() && ft.is_valid()); ASSERT(CpuFeatures::IsEnabled(FPU)); Instr instr = opcode | fmt | (ft.code() << kFtShift) | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, FPURegister fs, FPURegister fd, SecondaryField func) { ASSERT(fd.is_valid() && fs.is_valid() && rt.is_valid()); ASSERT(CpuFeatures::IsEnabled(FPU)); Instr instr = opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | (fd.code() << kFdShift) | func; emit(instr); } void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, FPUControlRegister fs, SecondaryField func) { ASSERT(fs.is_valid() && rt.is_valid()); ASSERT(CpuFeatures::IsEnabled(FPU)); Instr instr = opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func; emit(instr); } // Instructions with immediate value. // Registers are in the order of the instruction encoding, from left to right. void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt, int32_t j) { ASSERT(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (j & kImm16Mask); emit(instr); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF, int32_t j) { ASSERT(rs.is_valid() && (is_int16(j) || is_uint16(j))); Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask); emit(instr); } void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft, int32_t j) { ASSERT(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j))); ASSERT(CpuFeatures::IsEnabled(FPU)); Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) | (j & kImm16Mask); emit(instr); } void Assembler::GenInstrJump(Opcode opcode, uint32_t address) { BlockTrampolinePoolScope block_trampoline_pool(this); ASSERT(is_uint26(address)); Instr instr = opcode | address; emit(instr); BlockTrampolinePoolFor(1); // For associated delay slot. } // Returns the next free trampoline entry. int32_t Assembler::get_trampoline_entry(int32_t pos) { int32_t trampoline_entry = kInvalidSlotPos; if (!internal_trampoline_exception_) { if (trampoline_.start() > pos) { trampoline_entry = trampoline_.take_slot(); } if (kInvalidSlotPos == trampoline_entry) { internal_trampoline_exception_ = true; } } return trampoline_entry; } uint32_t Assembler::jump_address(Label* L) { int32_t target_pos; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { target_pos = L->pos(); // L's link. L->link_to(pc_offset()); } else { L->link_to(pc_offset()); return kEndOfJumpChain; } } uint32_t imm = (uint32_t)buffer_ + target_pos; ASSERT((imm & 3) == 0); return imm; } int32_t Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { int32_t target_pos; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { target_pos = L->pos(); L->link_to(pc_offset()); } else { L->link_to(pc_offset()); if (!trampoline_emitted_) { unbound_labels_count_++; next_buffer_check_ -= kTrampolineSlotsSize; } return kEndOfChain; } } int32_t offset = target_pos - (pc_offset() + kBranchPCOffset); ASSERT((offset & 3) == 0); ASSERT(is_int16(offset >> 2)); return offset; } void Assembler::label_at_put(Label* L, int at_offset) { int target_pos; if (L->is_bound()) { target_pos = L->pos(); instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); } else { if (L->is_linked()) { target_pos = L->pos(); // L's link. int32_t imm18 = target_pos - at_offset; ASSERT((imm18 & 3) == 0); int32_t imm16 = imm18 >> 2; ASSERT(is_int16(imm16)); instr_at_put(at_offset, (imm16 & kImm16Mask)); } else { target_pos = kEndOfChain; instr_at_put(at_offset, 0); if (!trampoline_emitted_) { unbound_labels_count_++; next_buffer_check_ -= kTrampolineSlotsSize; } } L->link_to(at_offset); } } //------- Branch and jump instructions -------- void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); } void Assembler::bal(int16_t offset) { positions_recorder()->WriteRecordedPositions(); bgezal(zero_reg, offset); } void Assembler::beq(Register rs, Register rt, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BEQ, rs, rt, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgez(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BGEZ, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgezal(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); positions_recorder()->WriteRecordedPositions(); GenInstrImmediate(REGIMM, rs, BGEZAL, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bgtz(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BGTZ, rs, zero_reg, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::blez(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BLEZ, rs, zero_reg, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bltz(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(REGIMM, rs, BLTZ, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bltzal(Register rs, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); positions_recorder()->WriteRecordedPositions(); GenInstrImmediate(REGIMM, rs, BLTZAL, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::bne(Register rs, Register rt, int16_t offset) { BlockTrampolinePoolScope block_trampoline_pool(this); GenInstrImmediate(BNE, rs, rt, offset); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::j(int32_t target) { #if DEBUG // Get pc of delay slot. uint32_t ipc = reinterpret_cast(pc_ + 1 * kInstrSize); bool in_range = ((uint32_t)(ipc^target) >> (kImm26Bits+kImmFieldShift)) == 0; ASSERT(in_range && ((target & 3) == 0)); #endif GenInstrJump(J, target >> 2); } void Assembler::jr(Register rs) { BlockTrampolinePoolScope block_trampoline_pool(this); if (rs.is(ra)) { positions_recorder()->WriteRecordedPositions(); } GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::jal(int32_t target) { #ifdef DEBUG // Get pc of delay slot. uint32_t ipc = reinterpret_cast(pc_ + 1 * kInstrSize); bool in_range = ((uint32_t)(ipc^target) >> (kImm26Bits+kImmFieldShift)) == 0; ASSERT(in_range && ((target & 3) == 0)); #endif positions_recorder()->WriteRecordedPositions(); GenInstrJump(JAL, target >> 2); } void Assembler::jalr(Register rs, Register rd) { BlockTrampolinePoolScope block_trampoline_pool(this); positions_recorder()->WriteRecordedPositions(); GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR); BlockTrampolinePoolFor(1); // For associated delay slot. } void Assembler::j_or_jr(int32_t target, Register rs) { // Get pc of delay slot. uint32_t ipc = reinterpret_cast(pc_ + 1 * kInstrSize); bool in_range = ((uint32_t)(ipc^target) >> (kImm26Bits+kImmFieldShift)) == 0; if (in_range) { j(target); } else { jr(t9); } } void Assembler::jal_or_jalr(int32_t target, Register rs) { // Get pc of delay slot. uint32_t ipc = reinterpret_cast(pc_ + 1 * kInstrSize); bool in_range = ((uint32_t)(ipc^target) >> (kImm26Bits+kImmFieldShift)) == 0; if (in_range) { jal(target); } else { jalr(t9); } } //-------Data-processing-instructions--------- // Arithmetic. void Assembler::addu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU); } void Assembler::addiu(Register rd, Register rs, int32_t j) { GenInstrImmediate(ADDIU, rs, rd, j); } void Assembler::subu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU); } void Assembler::mul(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL); } void Assembler::mult(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT); } void Assembler::multu(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU); } void Assembler::div(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV); } void Assembler::divu(Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU); } // Logical. void Assembler::and_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND); } void Assembler::andi(Register rt, Register rs, int32_t j) { ASSERT(is_uint16(j)); GenInstrImmediate(ANDI, rs, rt, j); } void Assembler::or_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR); } void Assembler::ori(Register rt, Register rs, int32_t j) { ASSERT(is_uint16(j)); GenInstrImmediate(ORI, rs, rt, j); } void Assembler::xor_(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR); } void Assembler::xori(Register rt, Register rs, int32_t j) { ASSERT(is_uint16(j)); GenInstrImmediate(XORI, rs, rt, j); } void Assembler::nor(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR); } // Shifts. void Assembler::sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop) { // Don't allow nop instructions in the form sll zero_reg, zero_reg to be // generated using the sll instruction. They must be generated using // nop(int/NopMarkerTypes) or MarkCode(int/NopMarkerTypes) pseudo // instructions. ASSERT(coming_from_nop || !(rd.is(zero_reg) && rt.is(zero_reg))); GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SLL); } void Assembler::sllv(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV); } void Assembler::srl(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRL); } void Assembler::srlv(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV); } void Assembler::sra(Register rd, Register rt, uint16_t sa) { GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa, SRA); } void Assembler::srav(Register rd, Register rt, Register rs) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV); } void Assembler::rotr(Register rd, Register rt, uint16_t sa) { // Should be called via MacroAssembler::Ror. ASSERT(rd.is_valid() && rt.is_valid() && is_uint5(sa)); ASSERT(kArchVariant == kMips32r2); Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (sa << kSaShift) | SRL; emit(instr); } void Assembler::rotrv(Register rd, Register rt, Register rs) { // Should be called via MacroAssembler::Ror. ASSERT(rd.is_valid() && rt.is_valid() && rs.is_valid() ); ASSERT(kArchVariant == kMips32r2); Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) | (rd.code() << kRdShift) | (1 << kSaShift) | SRLV; emit(instr); } //------------Memory-instructions------------- // Helper for base-reg + offset, when offset is larger than int16. void Assembler::LoadRegPlusOffsetToAt(const MemOperand& src) { ASSERT(!src.rm().is(at)); lui(at, src.offset_ >> kLuiShift); ori(at, at, src.offset_ & kImm16Mask); // Load 32-bit offset. addu(at, at, src.rm()); // Add base register. } void Assembler::lb(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LB, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(LB, at, rd, 0); // Equiv to lb(rd, MemOperand(at, 0)); } } void Assembler::lbu(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(LBU, at, rd, 0); // Equiv to lbu(rd, MemOperand(at, 0)); } } void Assembler::lh(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LH, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(LH, at, rd, 0); // Equiv to lh(rd, MemOperand(at, 0)); } } void Assembler::lhu(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(LHU, at, rd, 0); // Equiv to lhu(rd, MemOperand(at, 0)); } } void Assembler::lw(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(LW, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to load. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(LW, at, rd, 0); // Equiv to lw(rd, MemOperand(at, 0)); } } void Assembler::lwl(Register rd, const MemOperand& rs) { GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_); } void Assembler::lwr(Register rd, const MemOperand& rs) { GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_); } void Assembler::sb(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(SB, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to store. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(SB, at, rd, 0); // Equiv to sb(rd, MemOperand(at, 0)); } } void Assembler::sh(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(SH, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to store. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(SH, at, rd, 0); // Equiv to sh(rd, MemOperand(at, 0)); } } void Assembler::sw(Register rd, const MemOperand& rs) { if (is_int16(rs.offset_)) { GenInstrImmediate(SW, rs.rm(), rd, rs.offset_); } else { // Offset > 16 bits, use multiple instructions to store. LoadRegPlusOffsetToAt(rs); GenInstrImmediate(SW, at, rd, 0); // Equiv to sw(rd, MemOperand(at, 0)); } } void Assembler::swl(Register rd, const MemOperand& rs) { GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_); } void Assembler::swr(Register rd, const MemOperand& rs) { GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_); } void Assembler::lui(Register rd, int32_t j) { ASSERT(is_uint16(j)); GenInstrImmediate(LUI, zero_reg, rd, j); } //-------------Misc-instructions-------------- // Break / Trap instructions. void Assembler::break_(uint32_t code, bool break_as_stop) { ASSERT((code & ~0xfffff) == 0); // We need to invalidate breaks that could be stops as well because the // simulator expects a char pointer after the stop instruction. // See constants-mips.h for explanation. ASSERT((break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) || (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode))); Instr break_instr = SPECIAL | BREAK | (code << 6); emit(break_instr); } void Assembler::stop(const char* msg, uint32_t code) { ASSERT(code > kMaxWatchpointCode); ASSERT(code <= kMaxStopCode); #if defined(V8_HOST_ARCH_MIPS) break_(0x54321); #else // V8_HOST_ARCH_MIPS BlockTrampolinePoolFor(2); // The Simulator will handle the stop instruction and get the message address. // On MIPS stop() is just a special kind of break_(). break_(code, true); emit(reinterpret_cast(msg)); #endif } void Assembler::tge(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tgeu(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tlt(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tltu(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::teq(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } void Assembler::tne(Register rs, Register rt, uint16_t code) { ASSERT(is_uint10(code)); Instr instr = SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6; emit(instr); } // Move from HI/LO register. void Assembler::mfhi(Register rd) { GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI); } void Assembler::mflo(Register rd) { GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO); } // Set on less than instructions. void Assembler::slt(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT); } void Assembler::sltu(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU); } void Assembler::slti(Register rt, Register rs, int32_t j) { GenInstrImmediate(SLTI, rs, rt, j); } void Assembler::sltiu(Register rt, Register rs, int32_t j) { GenInstrImmediate(SLTIU, rs, rt, j); } // Conditional move. void Assembler::movz(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ); } void Assembler::movn(Register rd, Register rs, Register rt) { GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN); } void Assembler::movt(Register rd, Register rs, uint16_t cc) { Register rt; rt.code_ = (cc & 0x0007) << 2 | 1; GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); } void Assembler::movf(Register rd, Register rs, uint16_t cc) { Register rt; rt.code_ = (cc & 0x0007) << 2 | 0; GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI); } // Bit twiddling. void Assembler::clz(Register rd, Register rs) { // Clz instr requires same GPR number in 'rd' and 'rt' fields. GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ); } void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Ins. // Ins instr has 'rt' field as dest, and two uint5: msb, lsb. ASSERT(kArchVariant == kMips32r2); GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS); } void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) { // Should be called via MacroAssembler::Ext. // Ext instr has 'rt' field as dest, and two uint5: msb, lsb. ASSERT(kArchVariant == kMips32r2); GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT); } //--------Coprocessor-instructions---------------- // Load, store, move. void Assembler::lwc1(FPURegister fd, const MemOperand& src) { GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); } void Assembler::ldc1(FPURegister fd, const MemOperand& src) { // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit // load to two 32-bit loads. GenInstrImmediate(LWC1, src.rm(), fd, src.offset_); FPURegister nextfpreg; nextfpreg.setcode(fd.code() + 1); GenInstrImmediate(LWC1, src.rm(), nextfpreg, src.offset_ + 4); } void Assembler::swc1(FPURegister fd, const MemOperand& src) { GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); } void Assembler::sdc1(FPURegister fd, const MemOperand& src) { // Workaround for non-8-byte alignment of HeapNumber, convert 64-bit // store to two 32-bit stores. GenInstrImmediate(SWC1, src.rm(), fd, src.offset_); FPURegister nextfpreg; nextfpreg.setcode(fd.code() + 1); GenInstrImmediate(SWC1, src.rm(), nextfpreg, src.offset_ + 4); } void Assembler::mtc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MTC1, rt, fs, f0); } void Assembler::mfc1(Register rt, FPURegister fs) { GenInstrRegister(COP1, MFC1, rt, fs, f0); } void Assembler::ctc1(Register rt, FPUControlRegister fs) { GenInstrRegister(COP1, CTC1, rt, fs); } void Assembler::cfc1(Register rt, FPUControlRegister fs) { GenInstrRegister(COP1, CFC1, rt, fs); } void Assembler::DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) { uint64_t i; memcpy(&i, &d, 8); *lo = i & 0xffffffff; *hi = i >> 32; } // Arithmetic. void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, ADD_D); } void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, SUB_D); } void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, MUL_D); } void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) { GenInstrRegister(COP1, D, ft, fs, fd, DIV_D); } void Assembler::abs_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, ABS_D); } void Assembler::mov_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, MOV_D); } void Assembler::neg_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, NEG_D); } void Assembler::sqrt_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D); } // Conversions. void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S); } void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D); } void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S); } void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D); } void Assembler::round_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S); } void Assembler::round_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D); } void Assembler::floor_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S); } void Assembler::floor_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D); } void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S); } void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D); } void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) { ASSERT(kArchVariant == kMips32r2); GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S); } void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) { ASSERT(kArchVariant == kMips32r2); GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D); } void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) { ASSERT(kArchVariant == kMips32r2); GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S); } void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) { ASSERT(kArchVariant == kMips32r2); GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D); } void Assembler::round_l_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S); } void Assembler::round_l_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D); } void Assembler::floor_l_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S); } void Assembler::floor_l_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D); } void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S); } void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D); } void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W); } void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) { ASSERT(kArchVariant == kMips32r2); GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L); } void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D); } void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W); } void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) { ASSERT(kArchVariant == kMips32r2); GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L); } void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) { GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S); } // Conditions. void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister fs, FPURegister ft, uint16_t cc) { ASSERT(CpuFeatures::IsEnabled(FPU)); ASSERT(is_uint3(cc)); ASSERT((fmt & ~(31 << kRsShift)) == 0); Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift | cc << 8 | 3 << 4 | cond; emit(instr); } void Assembler::fcmp(FPURegister src1, const double src2, FPUCondition cond) { ASSERT(CpuFeatures::IsEnabled(FPU)); ASSERT(src2 == 0.0); mtc1(zero_reg, f14); cvt_d_w(f14, f14); c(cond, D, src1, f14, 0); } void Assembler::bc1f(int16_t offset, uint16_t cc) { ASSERT(CpuFeatures::IsEnabled(FPU)); ASSERT(is_uint3(cc)); Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask); emit(instr); } void Assembler::bc1t(int16_t offset, uint16_t cc) { ASSERT(CpuFeatures::IsEnabled(FPU)); ASSERT(is_uint3(cc)); Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask); emit(instr); } // Debugging. void Assembler::RecordJSReturn() { positions_recorder()->WriteRecordedPositions(); CheckBuffer(); RecordRelocInfo(RelocInfo::JS_RETURN); } void Assembler::RecordDebugBreakSlot() { positions_recorder()->WriteRecordedPositions(); CheckBuffer(); RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); } void Assembler::RecordComment(const char* msg) { if (FLAG_code_comments) { CheckBuffer(); RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast(msg)); } } int Assembler::RelocateInternalReference(byte* pc, intptr_t pc_delta) { Instr instr = instr_at(pc); ASSERT(IsJ(instr) || IsLui(instr)); if (IsLui(instr)) { Instr instr_lui = instr_at(pc + 0 * Assembler::kInstrSize); Instr instr_ori = instr_at(pc + 1 * Assembler::kInstrSize); ASSERT(IsOri(instr_ori)); int32_t imm = (instr_lui & static_cast(kImm16Mask)) << kLuiShift; imm |= (instr_ori & static_cast(kImm16Mask)); if (imm == kEndOfJumpChain) { return 0; // Number of instructions patched. } imm += pc_delta; ASSERT((imm & 3) == 0); instr_lui &= ~kImm16Mask; instr_ori &= ~kImm16Mask; instr_at_put(pc + 0 * Assembler::kInstrSize, instr_lui | ((imm >> kLuiShift) & kImm16Mask)); instr_at_put(pc + 1 * Assembler::kInstrSize, instr_ori | (imm & kImm16Mask)); return 2; // Number of instructions patched. } else { uint32_t imm28 = (instr & static_cast(kImm26Mask)) << 2; if ((int32_t)imm28 == kEndOfJumpChain) { return 0; // Number of instructions patched. } imm28 += pc_delta; imm28 &= kImm28Mask; ASSERT((imm28 & 3) == 0); instr &= ~kImm26Mask; uint32_t imm26 = imm28 >> 2; ASSERT(is_uint26(imm26)); instr_at_put(pc, instr | (imm26 & kImm26Mask)); return 1; // Number of instructions patched. } } void Assembler::GrowBuffer() { if (!own_buffer_) FATAL("external code buffer is too small"); // Compute new buffer size. CodeDesc desc; // The new buffer. if (buffer_size_ < 4*KB) { desc.buffer_size = 4*KB; } else if (buffer_size_ < 1*MB) { desc.buffer_size = 2*buffer_size_; } else { desc.buffer_size = buffer_size_ + 1*MB; } CHECK_GT(desc.buffer_size, 0); // No overflow. // Set up new buffer. desc.buffer = NewArray(desc.buffer_size); desc.instr_size = pc_offset(); desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); // Copy the data. int pc_delta = desc.buffer - buffer_; int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); memmove(desc.buffer, buffer_, desc.instr_size); memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(), desc.reloc_size); // Switch buffers. DeleteArray(buffer_); buffer_ = desc.buffer; buffer_size_ = desc.buffer_size; pc_ += pc_delta; reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); // Relocate runtime entries. for (RelocIterator it(desc); !it.done(); it.next()) { RelocInfo::Mode rmode = it.rinfo()->rmode(); if (rmode == RelocInfo::INTERNAL_REFERENCE) { byte* p = reinterpret_cast(it.rinfo()->pc()); RelocateInternalReference(p, pc_delta); } } ASSERT(!overflow()); } void Assembler::db(uint8_t data) { CheckBuffer(); *reinterpret_cast(pc_) = data; pc_ += sizeof(uint8_t); } void Assembler::dd(uint32_t data) { CheckBuffer(); *reinterpret_cast(pc_) = data; pc_ += sizeof(uint32_t); } void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { // We do not try to reuse pool constants. RelocInfo rinfo(pc_, rmode, data, NULL); if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) { // Adjust code for new modes. ASSERT(RelocInfo::IsDebugBreakSlot(rmode) || RelocInfo::IsJSReturn(rmode) || RelocInfo::IsComment(rmode) || RelocInfo::IsPosition(rmode)); // These modes do not need an entry in the constant pool. } if (rinfo.rmode() != RelocInfo::NONE) { // Don't record external references unless the heap will be serialized. if (rmode == RelocInfo::EXTERNAL_REFERENCE) { #ifdef DEBUG if (!Serializer::enabled()) { Serializer::TooLateToEnableNow(); } #endif if (!Serializer::enabled() && !emit_debug_code()) { return; } } ASSERT(buffer_space() >= kMaxRelocSize); // Too late to grow buffer here. if (rmode == RelocInfo::CODE_TARGET_WITH_ID) { RelocInfo reloc_info_with_ast_id(pc_, rmode, RecordedAstId(), NULL); ClearRecordedAstId(); reloc_info_writer.Write(&reloc_info_with_ast_id); } else { reloc_info_writer.Write(&rinfo); } } } void Assembler::BlockTrampolinePoolFor(int instructions) { BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize); } void Assembler::CheckTrampolinePool() { // Some small sequences of instructions must not be broken up by the // insertion of a trampoline pool; such sequences are protected by setting // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_, // which are both checked here. Also, recursive calls to CheckTrampolinePool // are blocked by trampoline_pool_blocked_nesting_. if ((trampoline_pool_blocked_nesting_ > 0) || (pc_offset() < no_trampoline_pool_before_)) { // Emission is currently blocked; make sure we try again as soon as // possible. if (trampoline_pool_blocked_nesting_ > 0) { next_buffer_check_ = pc_offset() + kInstrSize; } else { next_buffer_check_ = no_trampoline_pool_before_; } return; } ASSERT(!trampoline_emitted_); ASSERT(unbound_labels_count_ >= 0); if (unbound_labels_count_ > 0) { // First we emit jump (2 instructions), then we emit trampoline pool. { BlockTrampolinePoolScope block_trampoline_pool(this); Label after_pool; b(&after_pool); nop(); int pool_start = pc_offset(); for (int i = 0; i < unbound_labels_count_; i++) { uint32_t imm32; imm32 = jump_address(&after_pool); { BlockGrowBufferScope block_buf_growth(this); // Buffer growth (and relocation) must be blocked for internal // references until associated instructions are emitted and available // to be patched. RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); lui(at, (imm32 & kHiMask) >> kLuiShift); ori(at, at, (imm32 & kImm16Mask)); } jr(at); nop(); } bind(&after_pool); trampoline_ = Trampoline(pool_start, unbound_labels_count_); trampoline_emitted_ = true; // As we are only going to emit trampoline once, we need to prevent any // further emission. next_buffer_check_ = kMaxInt; } } else { // Number of branches to unbound label at this point is zero, so we can // move next buffer check to maximum. next_buffer_check_ = pc_offset() + kMaxBranchOffset - kTrampolineSlotsSize * 16; } return; } Address Assembler::target_address_at(Address pc) { Instr instr1 = instr_at(pc); Instr instr2 = instr_at(pc + kInstrSize); // Interpret 2 instructions generated by li: lui/ori if ((GetOpcodeField(instr1) == LUI) && (GetOpcodeField(instr2) == ORI)) { // Assemble the 32 bit value. return reinterpret_cast
( (GetImmediate16(instr1) << 16) | GetImmediate16(instr2)); } // We should never get here, force a bad address if we do. UNREACHABLE(); return (Address)0x0; } // MIPS and ia32 use opposite encoding for qNaN and sNaN, such that ia32 // qNaN is a MIPS sNaN, and ia32 sNaN is MIPS qNaN. If running from a heap // snapshot generated on ia32, the resulting MIPS sNaN must be quieted. // OS::nan_value() returns a qNaN. void Assembler::QuietNaN(HeapObject* object) { HeapNumber::cast(object)->set_value(OS::nan_value()); } // On Mips, a target address is stored in a lui/ori instruction pair, each // of which load 16 bits of the 32-bit address to a register. // Patching the address must replace both instr, and flush the i-cache. // // There is an optimization below, which emits a nop when the address // fits in just 16 bits. This is unlikely to help, and should be benchmarked, // and possibly removed. void Assembler::set_target_address_at(Address pc, Address target) { Instr instr2 = instr_at(pc + kInstrSize); uint32_t rt_code = GetRtField(instr2); uint32_t* p = reinterpret_cast(pc); uint32_t itarget = reinterpret_cast(target); #ifdef DEBUG // Check we have the result from a li macro-instruction, using instr pair. Instr instr1 = instr_at(pc); CHECK((GetOpcodeField(instr1) == LUI && GetOpcodeField(instr2) == ORI)); #endif // Must use 2 instructions to insure patchable code => just use lui and ori. // lui rt, upper-16. // ori rt rt, lower-16. *p = LUI | rt_code | ((itarget & kHiMask) >> kLuiShift); *(p+1) = ORI | rt_code | (rt_code << 5) | (itarget & kImm16Mask); // The following code is an optimization for the common case of Call() // or Jump() which is load to register, and jump through register: // li(t9, address); jalr(t9) (or jr(t9)). // If the destination address is in the same 256 MB page as the call, it // is faster to do a direct jal, or j, rather than jump thru register, since // that lets the cpu pipeline prefetch the target address. However each // time the address above is patched, we have to patch the direct jal/j // instruction, as well as possibly revert to jalr/jr if we now cross a // 256 MB page. Note that with the jal/j instructions, we do not need to // load the register, but that code is left, since it makes it easy to // revert this process. A further optimization could try replacing the // li sequence with nops. // This optimization can only be applied if the rt-code from instr2 is the // register used for the jalr/jr. Finally, we have to skip 'jr ra', which is // mips return. Occasionally this lands after an li(). Instr instr3 = instr_at(pc + 2 * kInstrSize); uint32_t ipc = reinterpret_cast(pc + 3 * kInstrSize); bool in_range = ((uint32_t)(ipc ^ itarget) >> (kImm26Bits + kImmFieldShift)) == 0; uint32_t target_field = (uint32_t)(itarget & kJumpAddrMask) >> kImmFieldShift; bool patched_jump = false; #ifndef ALLOW_JAL_IN_BOUNDARY_REGION // This is a workaround to the 24k core E156 bug (affect some 34k cores also). // Since the excluded space is only 64KB out of 256MB (0.02 %), we will just // apply this workaround for all cores so we don't have to identify the core. if (in_range) { // The 24k core E156 bug has some very specific requirements, we only check // the most simple one: if the address of the delay slot instruction is in // the first or last 32 KB of the 256 MB segment. uint32_t segment_mask = ((256 * MB) - 1) ^ ((32 * KB) - 1); uint32_t ipc_segment_addr = ipc & segment_mask; if (ipc_segment_addr == 0 || ipc_segment_addr == segment_mask) in_range = false; } #endif if (IsJalr(instr3)) { // Try to convert JALR to JAL. if (in_range && GetRt(instr2) == GetRs(instr3)) { *(p+2) = JAL | target_field; patched_jump = true; } } else if (IsJr(instr3)) { // Try to convert JR to J, skip returns (jr ra). bool is_ret = static_cast(GetRs(instr3)) == ra.code(); if (in_range && !is_ret && GetRt(instr2) == GetRs(instr3)) { *(p+2) = J | target_field; patched_jump = true; } } else if (IsJal(instr3)) { if (in_range) { // We are patching an already converted JAL. *(p+2) = JAL | target_field; } else { // Patch JAL, but out of range, revert to JALR. // JALR rs reg is the rt reg specified in the ORI instruction. uint32_t rs_field = GetRt(instr2) << kRsShift; uint32_t rd_field = ra.code() << kRdShift; // Return-address (ra) reg. *(p+2) = SPECIAL | rs_field | rd_field | JALR; } patched_jump = true; } else if (IsJ(instr3)) { if (in_range) { // We are patching an already converted J (jump). *(p+2) = J | target_field; } else { // Trying patch J, but out of range, just go back to JR. // JR 'rs' reg is the 'rt' reg specified in the ORI instruction (instr2). uint32_t rs_field = GetRt(instr2) << kRsShift; *(p+2) = SPECIAL | rs_field | JR; } patched_jump = true; } CPU::FlushICache(pc, (patched_jump ? 3 : 2) * sizeof(int32_t)); } void Assembler::JumpLabelToJumpRegister(Address pc) { // Address pc points to lui/ori instructions. // Jump to label may follow at pc + 2 * kInstrSize. uint32_t* p = reinterpret_cast(pc); #ifdef DEBUG Instr instr1 = instr_at(pc); #endif Instr instr2 = instr_at(pc + 1 * kInstrSize); Instr instr3 = instr_at(pc + 2 * kInstrSize); bool patched = false; if (IsJal(instr3)) { ASSERT(GetOpcodeField(instr1) == LUI); ASSERT(GetOpcodeField(instr2) == ORI); uint32_t rs_field = GetRt(instr2) << kRsShift; uint32_t rd_field = ra.code() << kRdShift; // Return-address (ra) reg. *(p+2) = SPECIAL | rs_field | rd_field | JALR; patched = true; } else if (IsJ(instr3)) { ASSERT(GetOpcodeField(instr1) == LUI); ASSERT(GetOpcodeField(instr2) == ORI); uint32_t rs_field = GetRt(instr2) << kRsShift; *(p+2) = SPECIAL | rs_field | JR; patched = true; } if (patched) { CPU::FlushICache(pc+2, sizeof(Address)); } } } } // namespace v8::internal #endif // V8_TARGET_ARCH_MIPS