// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen.h" #include "deoptimizer.h" #include "full-codegen.h" #include "safepoint-table.h" namespace v8 { namespace internal { int Deoptimizer::patch_size() { const int kCallInstructionSizeInWords = 4; return kCallInstructionSizeInWords * Assembler::kInstrSize; } void Deoptimizer::DeoptimizeFunction(JSFunction* function) { HandleScope scope; AssertNoAllocation no_allocation; if (!function->IsOptimized()) return; // Get the optimized code. Code* code = function->code(); Address code_start_address = code->instruction_start(); // Invalidate the relocation information, as it will become invalid by the // code patching below, and is not needed any more. code->InvalidateRelocation(); // For each LLazyBailout instruction insert a call to the corresponding // deoptimization entry. DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); #ifdef DEBUG Address prev_call_address = NULL; #endif for (int i = 0; i < deopt_data->DeoptCount(); i++) { if (deopt_data->Pc(i)->value() == -1) continue; Address call_address = code_start_address + deopt_data->Pc(i)->value(); Address deopt_entry = GetDeoptimizationEntry(i, LAZY); int call_size_in_bytes = MacroAssembler::CallSize(deopt_entry, RelocInfo::NONE); int call_size_in_words = call_size_in_bytes / Assembler::kInstrSize; ASSERT(call_size_in_bytes % Assembler::kInstrSize == 0); ASSERT(call_size_in_bytes <= patch_size()); CodePatcher patcher(call_address, call_size_in_words); patcher.masm()->Call(deopt_entry, RelocInfo::NONE); ASSERT(prev_call_address == NULL || call_address >= prev_call_address + patch_size()); ASSERT(call_address + patch_size() <= code->instruction_end()); #ifdef DEBUG prev_call_address = call_address; #endif } Isolate* isolate = code->GetIsolate(); // Add the deoptimizing code to the list. DeoptimizingCodeListNode* node = new DeoptimizingCodeListNode(code); DeoptimizerData* data = isolate->deoptimizer_data(); node->set_next(data->deoptimizing_code_list_); data->deoptimizing_code_list_ = node; // We might be in the middle of incremental marking with compaction. // Tell collector to treat this code object in a special way and // ignore all slots that might have been recorded on it. isolate->heap()->mark_compact_collector()->InvalidateCode(code); // Set the code for the function to non-optimized version. function->ReplaceCode(function->shared()->code()); if (FLAG_trace_deopt) { PrintF("[forced deoptimization: "); function->PrintName(); PrintF(" / %x]\n", reinterpret_cast(function)); #ifdef DEBUG if (FLAG_print_code) { code->PrintLn(); } #endif } } void Deoptimizer::PatchStackCheckCodeAt(Code* unoptimized_code, Address pc_after, Code* check_code, Code* replacement_code) { const int kInstrSize = Assembler::kInstrSize; // This structure comes from FullCodeGenerator::EmitStackCheck. // The call of the stack guard check has the following form: // sltu at, sp, t0 / slt at, a3, zero_reg (in case of count based interrupts) // beq at, zero_reg, ok // lui t9, upper // ori t9, lower // jalr t9 // nop // ----- pc_after points here ASSERT(Assembler::IsBeq(Assembler::instr_at(pc_after - 5 * kInstrSize))); // Replace the sltu instruction with load-imm 1 to at, so beq is not taken. CodePatcher patcher(pc_after - 6 * kInstrSize, 1); patcher.masm()->addiu(at, zero_reg, 1); // Replace the stack check address in the load-immediate (lui/ori pair) // with the entry address of the replacement code. ASSERT(reinterpret_cast( Assembler::target_address_at(pc_after - 4 * kInstrSize)) == reinterpret_cast(check_code->entry())); Assembler::set_target_address_at(pc_after - 4 * kInstrSize, replacement_code->entry()); // We patched the code to the following form: // addiu at, zero_reg, 1 // beq at, zero_reg, ok ;; Not changed // lui t9, upper // ori t9, lower // jalr t9 ;; Not changed // nop ;; Not changed // ----- pc_after points here unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, pc_after - 4 * kInstrSize, replacement_code); } void Deoptimizer::RevertStackCheckCodeAt(Code* unoptimized_code, Address pc_after, Code* check_code, Code* replacement_code) { // Exact opposite of the function above. const int kInstrSize = Assembler::kInstrSize; ASSERT(Assembler::IsAddImmediate( Assembler::instr_at(pc_after - 6 * kInstrSize))); ASSERT(Assembler::IsBeq(Assembler::instr_at(pc_after - 5 * kInstrSize))); // Restore the sltu instruction so beq can be taken again. CodePatcher patcher(pc_after - 6 * kInstrSize, 1); if (FLAG_count_based_interrupts) { patcher.masm()->slt(at, a3, zero_reg); } else { patcher.masm()->sltu(at, sp, t0); } // Replace the on-stack replacement address in the load-immediate (lui/ori // pair) with the entry address of the normal stack-check code. ASSERT(reinterpret_cast( Assembler::target_address_at(pc_after - 4 * kInstrSize)) == reinterpret_cast(replacement_code->entry())); Assembler::set_target_address_at(pc_after - 4 * kInstrSize, check_code->entry()); check_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, pc_after - 4 * kInstrSize, check_code); } static int LookupBailoutId(DeoptimizationInputData* data, unsigned ast_id) { ByteArray* translations = data->TranslationByteArray(); int length = data->DeoptCount(); for (int i = 0; i < length; i++) { if (static_cast(data->AstId(i)->value()) == ast_id) { TranslationIterator it(translations, data->TranslationIndex(i)->value()); int value = it.Next(); ASSERT(Translation::BEGIN == static_cast(value)); // Read the number of frames. value = it.Next(); if (value == 1) return i; } } UNREACHABLE(); return -1; } void Deoptimizer::DoComputeOsrOutputFrame() { DeoptimizationInputData* data = DeoptimizationInputData::cast( optimized_code_->deoptimization_data()); unsigned ast_id = data->OsrAstId()->value(); int bailout_id = LookupBailoutId(data, ast_id); unsigned translation_index = data->TranslationIndex(bailout_id)->value(); ByteArray* translations = data->TranslationByteArray(); TranslationIterator iterator(translations, translation_index); Translation::Opcode opcode = static_cast(iterator.Next()); ASSERT(Translation::BEGIN == opcode); USE(opcode); int count = iterator.Next(); iterator.Skip(1); // Drop JS frame count. ASSERT(count == 1); USE(count); opcode = static_cast(iterator.Next()); USE(opcode); ASSERT(Translation::JS_FRAME == opcode); unsigned node_id = iterator.Next(); USE(node_id); ASSERT(node_id == ast_id); JSFunction* function = JSFunction::cast(ComputeLiteral(iterator.Next())); USE(function); ASSERT(function == function_); unsigned height = iterator.Next(); unsigned height_in_bytes = height * kPointerSize; USE(height_in_bytes); unsigned fixed_size = ComputeFixedSize(function_); unsigned input_frame_size = input_->GetFrameSize(); ASSERT(fixed_size + height_in_bytes == input_frame_size); unsigned stack_slot_size = optimized_code_->stack_slots() * kPointerSize; unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value(); unsigned outgoing_size = outgoing_height * kPointerSize; unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size; ASSERT(outgoing_size == 0); // OSR does not happen in the middle of a call. if (FLAG_trace_osr) { PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ", reinterpret_cast(function_)); function_->PrintName(); PrintF(" => node=%u, frame=%d->%d]\n", ast_id, input_frame_size, output_frame_size); } // There's only one output frame in the OSR case. output_count_ = 1; output_ = new FrameDescription*[1]; output_[0] = new(output_frame_size) FrameDescription( output_frame_size, function_); output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT); // Clear the incoming parameters in the optimized frame to avoid // confusing the garbage collector. unsigned output_offset = output_frame_size - kPointerSize; int parameter_count = function_->shared()->formal_parameter_count() + 1; for (int i = 0; i < parameter_count; ++i) { output_[0]->SetFrameSlot(output_offset, 0); output_offset -= kPointerSize; } // Translate the incoming parameters. This may overwrite some of the // incoming argument slots we've just cleared. int input_offset = input_frame_size - kPointerSize; bool ok = true; int limit = input_offset - (parameter_count * kPointerSize); while (ok && input_offset > limit) { ok = DoOsrTranslateCommand(&iterator, &input_offset); } // There are no translation commands for the caller's pc and fp, the // context, and the function. Set them up explicitly. for (int i = StandardFrameConstants::kCallerPCOffset; ok && i >= StandardFrameConstants::kMarkerOffset; i -= kPointerSize) { uint32_t input_value = input_->GetFrameSlot(input_offset); if (FLAG_trace_osr) { const char* name = "UNKNOWN"; switch (i) { case StandardFrameConstants::kCallerPCOffset: name = "caller's pc"; break; case StandardFrameConstants::kCallerFPOffset: name = "fp"; break; case StandardFrameConstants::kContextOffset: name = "context"; break; case StandardFrameConstants::kMarkerOffset: name = "function"; break; } PrintF(" [sp + %d] <- 0x%08x ; [sp + %d] (fixed part - %s)\n", output_offset, input_value, input_offset, name); } output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset)); input_offset -= kPointerSize; output_offset -= kPointerSize; } // Translate the rest of the frame. while (ok && input_offset >= 0) { ok = DoOsrTranslateCommand(&iterator, &input_offset); } // If translation of any command failed, continue using the input frame. if (!ok) { delete output_[0]; output_[0] = input_; output_[0]->SetPc(reinterpret_cast(from_)); } else { // Set up the frame pointer and the context pointer. output_[0]->SetRegister(fp.code(), input_->GetRegister(fp.code())); output_[0]->SetRegister(cp.code(), input_->GetRegister(cp.code())); unsigned pc_offset = data->OsrPcOffset()->value(); uint32_t pc = reinterpret_cast( optimized_code_->entry() + pc_offset); output_[0]->SetPc(pc); } Code* continuation = isolate_->builtins()->builtin(Builtins::kNotifyOSR); output_[0]->SetContinuation( reinterpret_cast(continuation->entry())); if (FLAG_trace_osr) { PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ", ok ? "finished" : "aborted", reinterpret_cast(function)); function->PrintName(); PrintF(" => pc=0x%0x]\n", output_[0]->GetPc()); } } void Deoptimizer::DoComputeArgumentsAdaptorFrame(TranslationIterator* iterator, int frame_index) { JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next())); unsigned height = iterator->Next(); unsigned height_in_bytes = height * kPointerSize; if (FLAG_trace_deopt) { PrintF(" translating arguments adaptor => height=%d\n", height_in_bytes); } unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFrameSize; unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, function); output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR); // Arguments adaptor can not be topmost or bottommost. ASSERT(frame_index > 0 && frame_index < output_count_ - 1); ASSERT(output_[frame_index] == NULL); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous // frame's top and this frame's size. uint32_t top_address; top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); // Compute the incoming parameter translation. int parameter_count = height; unsigned output_offset = output_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } // Read caller's PC from the previous frame. output_offset -= kPointerSize; intptr_t callers_pc = output_[frame_index - 1]->GetPc(); output_frame->SetFrameSlot(output_offset, callers_pc); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's pc\n", top_address + output_offset, output_offset, callers_pc); } // Read caller's FP from the previous frame, and set this frame's FP. output_offset -= kPointerSize; intptr_t value = output_[frame_index - 1]->GetFp(); output_frame->SetFrameSlot(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's fp\n", fp_value, output_offset, value); } // A marker value is used in place of the context. output_offset -= kPointerSize; intptr_t context = reinterpret_cast( Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); output_frame->SetFrameSlot(output_offset, context); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; context (adaptor sentinel)\n", top_address + output_offset, output_offset, context); } // The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME. output_offset -= kPointerSize; value = reinterpret_cast(function); output_frame->SetFrameSlot(output_offset, value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; function\n", top_address + output_offset, output_offset, value); } // Number of incoming arguments. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(height - 1)); output_frame->SetFrameSlot(output_offset, value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; argc (%d)\n", top_address + output_offset, output_offset, value, height - 1); } ASSERT(0 == output_offset); Builtins* builtins = isolate_->builtins(); Code* adaptor_trampoline = builtins->builtin(Builtins::kArgumentsAdaptorTrampoline); uint32_t pc = reinterpret_cast( adaptor_trampoline->instruction_start() + isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value()); output_frame->SetPc(pc); } void Deoptimizer::DoComputeConstructStubFrame(TranslationIterator* iterator, int frame_index) { Builtins* builtins = isolate_->builtins(); Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric); JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next())); unsigned height = iterator->Next(); unsigned height_in_bytes = height * kPointerSize; if (FLAG_trace_deopt) { PrintF(" translating construct stub => height=%d\n", height_in_bytes); } unsigned fixed_frame_size = 8 * kPointerSize; unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, function); output_frame->SetFrameType(StackFrame::CONSTRUCT); // Construct stub can not be topmost or bottommost. ASSERT(frame_index > 0 && frame_index < output_count_ - 1); ASSERT(output_[frame_index] == NULL); output_[frame_index] = output_frame; // The top address of the frame is computed from the previous // frame's top and this frame's size. uint32_t top_address; top_address = output_[frame_index - 1]->GetTop() - output_frame_size; output_frame->SetTop(top_address); // Compute the incoming parameter translation. int parameter_count = height; unsigned output_offset = output_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } // Read caller's PC from the previous frame. output_offset -= kPointerSize; intptr_t callers_pc = output_[frame_index - 1]->GetPc(); output_frame->SetFrameSlot(output_offset, callers_pc); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's pc\n", top_address + output_offset, output_offset, callers_pc); } // Read caller's FP from the previous frame, and set this frame's FP. output_offset -= kPointerSize; intptr_t value = output_[frame_index - 1]->GetFp(); output_frame->SetFrameSlot(output_offset, value); intptr_t fp_value = top_address + output_offset; output_frame->SetFp(fp_value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's fp\n", fp_value, output_offset, value); } // The context can be gotten from the previous frame. output_offset -= kPointerSize; value = output_[frame_index - 1]->GetContext(); output_frame->SetFrameSlot(output_offset, value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; context\n", top_address + output_offset, output_offset, value); } // A marker value is used in place of the function. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(StackFrame::CONSTRUCT)); output_frame->SetFrameSlot(output_offset, value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; function (construct sentinel)\n", top_address + output_offset, output_offset, value); } // The output frame reflects a JSConstructStubGeneric frame. output_offset -= kPointerSize; value = reinterpret_cast(construct_stub); output_frame->SetFrameSlot(output_offset, value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; code object\n", top_address + output_offset, output_offset, value); } // Number of incoming arguments. output_offset -= kPointerSize; value = reinterpret_cast(Smi::FromInt(height - 1)); output_frame->SetFrameSlot(output_offset, value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; argc (%d)\n", top_address + output_offset, output_offset, value, height - 1); } // Constructor function being invoked by the stub. output_offset -= kPointerSize; value = reinterpret_cast(function); output_frame->SetFrameSlot(output_offset, value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; constructor function\n", top_address + output_offset, output_offset, value); } // The newly allocated object was passed as receiver in the artificial // constructor stub environment created by HEnvironment::CopyForInlining(). output_offset -= kPointerSize; value = output_frame->GetFrameSlot(output_frame_size - kPointerSize); output_frame->SetFrameSlot(output_offset, value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; allocated receiver\n", top_address + output_offset, output_offset, value); } ASSERT(0 == output_offset); uint32_t pc = reinterpret_cast( construct_stub->instruction_start() + isolate_->heap()->construct_stub_deopt_pc_offset()->value()); output_frame->SetPc(pc); } // This code is very similar to ia32/arm code, but relies on register names // (fp, sp) and how the frame is laid out. void Deoptimizer::DoComputeJSFrame(TranslationIterator* iterator, int frame_index) { // Read the ast node id, function, and frame height for this output frame. int node_id = iterator->Next(); JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next())); unsigned height = iterator->Next(); unsigned height_in_bytes = height * kPointerSize; if (FLAG_trace_deopt) { PrintF(" translating "); function->PrintName(); PrintF(" => node=%d, height=%d\n", node_id, height_in_bytes); } // The 'fixed' part of the frame consists of the incoming parameters and // the part described by JavaScriptFrameConstants. unsigned fixed_frame_size = ComputeFixedSize(function); unsigned input_frame_size = input_->GetFrameSize(); unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, function); output_frame->SetFrameType(StackFrame::JAVA_SCRIPT); bool is_bottommost = (0 == frame_index); bool is_topmost = (output_count_ - 1 == frame_index); ASSERT(frame_index >= 0 && frame_index < output_count_); ASSERT(output_[frame_index] == NULL); output_[frame_index] = output_frame; // The top address for the bottommost output frame can be computed from // the input frame pointer and the output frame's height. For all // subsequent output frames, it can be computed from the previous one's // top address and the current frame's size. uint32_t top_address; if (is_bottommost) { // 2 = context and function in the frame. top_address = input_->GetRegister(fp.code()) - (2 * kPointerSize) - height_in_bytes; } else { top_address = output_[frame_index - 1]->GetTop() - output_frame_size; } output_frame->SetTop(top_address); // Compute the incoming parameter translation. int parameter_count = function->shared()->formal_parameter_count() + 1; unsigned output_offset = output_frame_size; unsigned input_offset = input_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } input_offset -= (parameter_count * kPointerSize); // There are no translation commands for the caller's pc and fp, the // context, and the function. Synthesize their values and set them up // explicitly. // // The caller's pc for the bottommost output frame is the same as in the // input frame. For all subsequent output frames, it can be read from the // previous one. This frame's pc can be computed from the non-optimized // function code and AST id of the bailout. output_offset -= kPointerSize; input_offset -= kPointerSize; intptr_t value; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = output_[frame_index - 1]->GetPc(); } output_frame->SetFrameSlot(output_offset, value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's pc\n", top_address + output_offset, output_offset, value); } // The caller's frame pointer for the bottommost output frame is the same // as in the input frame. For all subsequent output frames, it can be // read from the previous one. Also compute and set this frame's frame // pointer. output_offset -= kPointerSize; input_offset -= kPointerSize; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = output_[frame_index - 1]->GetFp(); } output_frame->SetFrameSlot(output_offset, value); intptr_t fp_value = top_address + output_offset; ASSERT(!is_bottommost || input_->GetRegister(fp.code()) == fp_value); output_frame->SetFp(fp_value); if (is_topmost) { output_frame->SetRegister(fp.code(), fp_value); } if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; caller's fp\n", fp_value, output_offset, value); } // For the bottommost output frame the context can be gotten from the input // frame. For all subsequent output frames it can be gotten from the function // so long as we don't inline functions that need local contexts. output_offset -= kPointerSize; input_offset -= kPointerSize; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = reinterpret_cast(function->context()); } output_frame->SetFrameSlot(output_offset, value); output_frame->SetContext(value); if (is_topmost) output_frame->SetRegister(cp.code(), value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; context\n", top_address + output_offset, output_offset, value); } // The function was mentioned explicitly in the BEGIN_FRAME. output_offset -= kPointerSize; input_offset -= kPointerSize; value = reinterpret_cast(function); // The function for the bottommost output frame should also agree with the // input frame. ASSERT(!is_bottommost || input_->GetFrameSlot(input_offset) == value); output_frame->SetFrameSlot(output_offset, value); if (FLAG_trace_deopt) { PrintF(" 0x%08x: [top + %d] <- 0x%08x ; function\n", top_address + output_offset, output_offset, value); } // Translate the rest of the frame. for (unsigned i = 0; i < height; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } ASSERT(0 == output_offset); // Compute this frame's PC, state, and continuation. Code* non_optimized_code = function->shared()->code(); FixedArray* raw_data = non_optimized_code->deoptimization_data(); DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data); Address start = non_optimized_code->instruction_start(); unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared()); unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state); uint32_t pc_value = reinterpret_cast(start + pc_offset); output_frame->SetPc(pc_value); FullCodeGenerator::State state = FullCodeGenerator::StateField::decode(pc_and_state); output_frame->SetState(Smi::FromInt(state)); // Set the continuation for the topmost frame. if (is_topmost && bailout_type_ != DEBUGGER) { Builtins* builtins = isolate_->builtins(); Code* continuation = (bailout_type_ == EAGER) ? builtins->builtin(Builtins::kNotifyDeoptimized) : builtins->builtin(Builtins::kNotifyLazyDeoptimized); output_frame->SetContinuation( reinterpret_cast(continuation->entry())); } } void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) { // Set the register values. The values are not important as there are no // callee saved registers in JavaScript frames, so all registers are // spilled. Registers fp and sp are set to the correct values though. for (int i = 0; i < Register::kNumRegisters; i++) { input_->SetRegister(i, i * 4); } input_->SetRegister(sp.code(), reinterpret_cast(frame->sp())); input_->SetRegister(fp.code(), reinterpret_cast(frame->fp())); for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; i++) { input_->SetDoubleRegister(i, 0.0); } // Fill the frame content from the actual data on the frame. for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) { input_->SetFrameSlot(i, Memory::uint32_at(tos + i)); } } #define __ masm()-> // This code tries to be close to ia32 code so that any changes can be // easily ported. void Deoptimizer::EntryGenerator::Generate() { GeneratePrologue(); Isolate* isolate = masm()->isolate(); CpuFeatures::Scope scope(FPU); // Unlike on ARM we don't save all the registers, just the useful ones. // For the rest, there are gaps on the stack, so the offsets remain the same. const int kNumberOfRegisters = Register::kNumRegisters; RegList restored_regs = kJSCallerSaved | kCalleeSaved; RegList saved_regs = restored_regs | sp.bit() | ra.bit(); const int kDoubleRegsSize = kDoubleSize * FPURegister::kNumAllocatableRegisters; // Save all FPU registers before messing with them. __ Subu(sp, sp, Operand(kDoubleRegsSize)); for (int i = 0; i < FPURegister::kNumAllocatableRegisters; ++i) { FPURegister fpu_reg = FPURegister::FromAllocationIndex(i); int offset = i * kDoubleSize; __ sdc1(fpu_reg, MemOperand(sp, offset)); } // Push saved_regs (needed to populate FrameDescription::registers_). // Leave gaps for other registers. __ Subu(sp, sp, kNumberOfRegisters * kPointerSize); for (int16_t i = kNumberOfRegisters - 1; i >= 0; i--) { if ((saved_regs & (1 << i)) != 0) { __ sw(ToRegister(i), MemOperand(sp, kPointerSize * i)); } } const int kSavedRegistersAreaSize = (kNumberOfRegisters * kPointerSize) + kDoubleRegsSize; // Get the bailout id from the stack. __ lw(a2, MemOperand(sp, kSavedRegistersAreaSize)); // Get the address of the location in the code object if possible (a3) (return // address for lazy deoptimization) and compute the fp-to-sp delta in // register t0. if (type() == EAGER) { __ mov(a3, zero_reg); // Correct one word for bailout id. __ Addu(t0, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize))); } else if (type() == OSR) { __ mov(a3, ra); // Correct one word for bailout id. __ Addu(t0, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize))); } else { __ mov(a3, ra); // Correct two words for bailout id and return address. __ Addu(t0, sp, Operand(kSavedRegistersAreaSize + (2 * kPointerSize))); } __ Subu(t0, fp, t0); // Allocate a new deoptimizer object. // Pass four arguments in a0 to a3 and fifth & sixth arguments on stack. __ PrepareCallCFunction(6, t1); __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ li(a1, Operand(type())); // bailout type, // a2: bailout id already loaded. // a3: code address or 0 already loaded. __ sw(t0, CFunctionArgumentOperand(5)); // Fp-to-sp delta. __ li(t1, Operand(ExternalReference::isolate_address())); __ sw(t1, CFunctionArgumentOperand(6)); // Isolate. // Call Deoptimizer::New(). { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate), 6); } // Preserve "deoptimizer" object in register v0 and get the input // frame descriptor pointer to a1 (deoptimizer->input_); // Move deopt-obj to a0 for call to Deoptimizer::ComputeOutputFrames() below. __ mov(a0, v0); __ lw(a1, MemOperand(v0, Deoptimizer::input_offset())); // Copy core registers into FrameDescription::registers_[kNumRegisters]. ASSERT(Register::kNumRegisters == kNumberOfRegisters); for (int i = 0; i < kNumberOfRegisters; i++) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); if ((saved_regs & (1 << i)) != 0) { __ lw(a2, MemOperand(sp, i * kPointerSize)); __ sw(a2, MemOperand(a1, offset)); } else if (FLAG_debug_code) { __ li(a2, kDebugZapValue); __ sw(a2, MemOperand(a1, offset)); } } // Copy FPU registers to // double_registers_[DoubleRegister::kNumAllocatableRegisters] int double_regs_offset = FrameDescription::double_registers_offset(); for (int i = 0; i < FPURegister::kNumAllocatableRegisters; ++i) { int dst_offset = i * kDoubleSize + double_regs_offset; int src_offset = i * kDoubleSize + kNumberOfRegisters * kPointerSize; __ ldc1(f0, MemOperand(sp, src_offset)); __ sdc1(f0, MemOperand(a1, dst_offset)); } // Remove the bailout id, eventually return address, and the saved registers // from the stack. if (type() == EAGER || type() == OSR) { __ Addu(sp, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize))); } else { __ Addu(sp, sp, Operand(kSavedRegistersAreaSize + (2 * kPointerSize))); } // Compute a pointer to the unwinding limit in register a2; that is // the first stack slot not part of the input frame. __ lw(a2, MemOperand(a1, FrameDescription::frame_size_offset())); __ Addu(a2, a2, sp); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ Addu(a3, a1, Operand(FrameDescription::frame_content_offset())); Label pop_loop; __ bind(&pop_loop); __ pop(t0); __ sw(t0, MemOperand(a3, 0)); __ Branch(USE_DELAY_SLOT, &pop_loop, ne, a2, Operand(sp)); __ addiu(a3, a3, sizeof(uint32_t)); // In delay slot. // Compute the output frame in the deoptimizer. __ push(a0); // Preserve deoptimizer object across call. // a0: deoptimizer object; a1: scratch. __ PrepareCallCFunction(1, a1); // Call Deoptimizer::ComputeOutputFrames(). { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction( ExternalReference::compute_output_frames_function(isolate), 1); } __ pop(a0); // Restore deoptimizer object (class Deoptimizer). // Replace the current (input) frame with the output frames. Label outer_push_loop, inner_push_loop; // Outer loop state: a0 = current "FrameDescription** output_", // a1 = one past the last FrameDescription**. __ lw(a1, MemOperand(a0, Deoptimizer::output_count_offset())); __ lw(a0, MemOperand(a0, Deoptimizer::output_offset())); // a0 is output_. __ sll(a1, a1, kPointerSizeLog2); // Count to offset. __ addu(a1, a0, a1); // a1 = one past the last FrameDescription**. __ bind(&outer_push_loop); // Inner loop state: a2 = current FrameDescription*, a3 = loop index. __ lw(a2, MemOperand(a0, 0)); // output_[ix] __ lw(a3, MemOperand(a2, FrameDescription::frame_size_offset())); __ bind(&inner_push_loop); __ Subu(a3, a3, Operand(sizeof(uint32_t))); __ Addu(t2, a2, Operand(a3)); __ lw(t3, MemOperand(t2, FrameDescription::frame_content_offset())); __ push(t3); __ Branch(&inner_push_loop, ne, a3, Operand(zero_reg)); __ Addu(a0, a0, Operand(kPointerSize)); __ Branch(&outer_push_loop, lt, a0, Operand(a1)); // Push state, pc, and continuation from the last output frame. if (type() != OSR) { __ lw(t2, MemOperand(a2, FrameDescription::state_offset())); __ push(t2); } __ lw(t2, MemOperand(a2, FrameDescription::pc_offset())); __ push(t2); __ lw(t2, MemOperand(a2, FrameDescription::continuation_offset())); __ push(t2); // Technically restoring 'at' should work unless zero_reg is also restored // but it's safer to check for this. ASSERT(!(at.bit() & restored_regs)); // Restore the registers from the last output frame. __ mov(at, a2); for (int i = kNumberOfRegisters - 1; i >= 0; i--) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); if ((restored_regs & (1 << i)) != 0) { __ lw(ToRegister(i), MemOperand(at, offset)); } } __ InitializeRootRegister(); __ pop(at); // Get continuation, leave pc on stack. __ pop(ra); __ Jump(at); __ stop("Unreachable."); } // Maximum size of a table entry generated below. const int Deoptimizer::table_entry_size_ = 9 * Assembler::kInstrSize; void Deoptimizer::TableEntryGenerator::GeneratePrologue() { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm()); // Create a sequence of deoptimization entries. Note that any // registers may be still live. Label table_start; __ bind(&table_start); for (int i = 0; i < count(); i++) { Label start; __ bind(&start); if (type() != EAGER) { // Emulate ia32 like call by pushing return address to stack. __ addiu(sp, sp, -2 * kPointerSize); __ sw(ra, MemOperand(sp, 1 * kPointerSize)); } else { __ addiu(sp, sp, -1 * kPointerSize); } // Jump over the remaining deopt entries (including this one). // This code is always reached by calling Jump, which puts the target (label // start) into t9. const int remaining_entries = (count() - i) * table_entry_size_; __ Addu(t9, t9, remaining_entries); // 'at' was clobbered so we can only load the current entry value here. __ li(at, i); __ jr(t9); // Expose delay slot. __ sw(at, MemOperand(sp, 0 * kPointerSize)); // In the delay slot. // Pad the rest of the code. while (table_entry_size_ > (masm()->SizeOfCodeGeneratedSince(&start))) { __ nop(); } ASSERT_EQ(table_entry_size_, masm()->SizeOfCodeGeneratedSince(&start)); } ASSERT_EQ(masm()->SizeOfCodeGeneratedSince(&table_start), count() * table_entry_size_); } #undef __ } } // namespace v8::internal