// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Declares a Simulator for MIPS instructions if we are not generating a native // MIPS binary. This Simulator allows us to run and debug MIPS code generation // on regular desktop machines. // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro, // which will start execution in the Simulator or forwards to the real entry // on a MIPS HW platform. #ifndef V8_MIPS_SIMULATOR_MIPS_H_ #define V8_MIPS_SIMULATOR_MIPS_H_ #include "allocation.h" #include "constants-mips.h" #if !defined(USE_SIMULATOR) // Running without a simulator on a native mips platform. namespace v8 { namespace internal { // When running without a simulator we call the entry directly. #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ entry(p0, p1, p2, p3, p4) typedef int (*mips_regexp_matcher)(String*, int, const byte*, const byte*, void*, int*, Address, int, Isolate*); // Call the generated regexp code directly. The code at the entry address // should act as a function matching the type arm_regexp_matcher. // The fifth argument is a dummy that reserves the space used for // the return address added by the ExitFrame in native calls. #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \ (FUNCTION_CAST(entry)( \ p0, p1, p2, p3, NULL, p4, p5, p6, p7)) #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ reinterpret_cast(try_catch_address) // The stack limit beyond which we will throw stack overflow errors in // generated code. Because generated code on mips uses the C stack, we // just use the C stack limit. class SimulatorStack : public v8::internal::AllStatic { public: static inline uintptr_t JsLimitFromCLimit(Isolate* isolate, uintptr_t c_limit) { return c_limit; } static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { return try_catch_address; } static inline void UnregisterCTryCatch() { } }; } } // namespace v8::internal // Calculated the stack limit beyond which we will throw stack overflow errors. // This macro must be called from a C++ method. It relies on being able to take // the address of "this" to get a value on the current execution stack and then // calculates the stack limit based on that value. // NOTE: The check for overflow is not safe as there is no guarantee that the // running thread has its stack in all memory up to address 0x00000000. #define GENERATED_CODE_STACK_LIMIT(limit) \ (reinterpret_cast(this) >= limit ? \ reinterpret_cast(this) - limit : 0) #else // !defined(USE_SIMULATOR) // Running with a simulator. #include "hashmap.h" #include "assembler.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // Utility functions class CachePage { public: static const int LINE_VALID = 0; static const int LINE_INVALID = 1; static const int kPageShift = 12; static const int kPageSize = 1 << kPageShift; static const int kPageMask = kPageSize - 1; static const int kLineShift = 2; // The cache line is only 4 bytes right now. static const int kLineLength = 1 << kLineShift; static const int kLineMask = kLineLength - 1; CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } char* ValidityByte(int offset) { return &validity_map_[offset >> kLineShift]; } char* CachedData(int offset) { return &data_[offset]; } private: char data_[kPageSize]; // The cached data. static const int kValidityMapSize = kPageSize >> kLineShift; char validity_map_[kValidityMapSize]; // One byte per line. }; class Simulator { public: friend class MipsDebugger; // Registers are declared in order. See SMRL chapter 2. enum Register { no_reg = -1, zero_reg = 0, at, v0, v1, a0, a1, a2, a3, t0, t1, t2, t3, t4, t5, t6, t7, s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, s8, ra, // LO, HI, and pc. LO, HI, pc, // pc must be the last register. kNumSimuRegisters, // aliases fp = s8 }; // Coprocessor registers. // Generated code will always use doubles. So we will only use even registers. enum FPURegister { f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, // f12 and f14 are arguments FPURegisters. f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29, f30, f31, kNumFPURegisters }; explicit Simulator(Isolate* isolate); ~Simulator(); // The currently executing Simulator instance. Potentially there can be one // for each native thread. static Simulator* current(v8::internal::Isolate* isolate); // Accessors for register state. Reading the pc value adheres to the MIPS // architecture specification and is off by a 8 from the currently executing // instruction. void set_register(int reg, int32_t value); int32_t get_register(int reg) const; // Same for FPURegisters. void set_fpu_register(int fpureg, int32_t value); void set_fpu_register_float(int fpureg, float value); void set_fpu_register_double(int fpureg, double value); int32_t get_fpu_register(int fpureg) const; int64_t get_fpu_register_long(int fpureg) const; float get_fpu_register_float(int fpureg) const; double get_fpu_register_double(int fpureg) const; void set_fcsr_bit(uint32_t cc, bool value); bool test_fcsr_bit(uint32_t cc); bool set_fcsr_round_error(double original, double rounded); // Special case of set_register and get_register to access the raw PC value. void set_pc(int32_t value); int32_t get_pc() const; // Accessor to the internal simulator stack area. uintptr_t StackLimit() const; // Executes MIPS instructions until the PC reaches end_sim_pc. void Execute(); // Call on program start. static void Initialize(Isolate* isolate); // V8 generally calls into generated JS code with 5 parameters and into // generated RegExp code with 7 parameters. This is a convenience function, // which sets up the simulator state and grabs the result on return. int32_t Call(byte* entry, int argument_count, ...); // Push an address onto the JS stack. uintptr_t PushAddress(uintptr_t address); // Pop an address from the JS stack. uintptr_t PopAddress(); // Debugger input. void set_last_debugger_input(char* input); char* last_debugger_input() { return last_debugger_input_; } // ICache checking. static void FlushICache(v8::internal::HashMap* i_cache, void* start, size_t size); // Returns true if pc register contains one of the 'special_values' defined // below (bad_ra, end_sim_pc). bool has_bad_pc() const; private: enum special_values { // Known bad pc value to ensure that the simulator does not execute // without being properly setup. bad_ra = -1, // A pc value used to signal the simulator to stop execution. Generally // the ra is set to this value on transition from native C code to // simulated execution, so that the simulator can "return" to the native // C code. end_sim_pc = -2, // Unpredictable value. Unpredictable = 0xbadbeaf }; // Unsupported instructions use Format to print an error and stop execution. void Format(Instruction* instr, const char* format); // Read and write memory. inline uint32_t ReadBU(int32_t addr); inline int32_t ReadB(int32_t addr); inline void WriteB(int32_t addr, uint8_t value); inline void WriteB(int32_t addr, int8_t value); inline uint16_t ReadHU(int32_t addr, Instruction* instr); inline int16_t ReadH(int32_t addr, Instruction* instr); // Note: Overloaded on the sign of the value. inline void WriteH(int32_t addr, uint16_t value, Instruction* instr); inline void WriteH(int32_t addr, int16_t value, Instruction* instr); inline int ReadW(int32_t addr, Instruction* instr); inline void WriteW(int32_t addr, int value, Instruction* instr); inline double ReadD(int32_t addr, Instruction* instr); inline void WriteD(int32_t addr, double value, Instruction* instr); // Operations depending on endianness. // Get Double Higher / Lower word. inline int32_t GetDoubleHIW(double* addr); inline int32_t GetDoubleLOW(double* addr); // Set Double Higher / Lower word. inline int32_t SetDoubleHIW(double* addr); inline int32_t SetDoubleLOW(double* addr); // Executing is handled based on the instruction type. void DecodeTypeRegister(Instruction* instr); // Helper function for DecodeTypeRegister. void ConfigureTypeRegister(Instruction* instr, int32_t& alu_out, int64_t& i64hilo, uint64_t& u64hilo, int32_t& next_pc, bool& do_interrupt); void DecodeTypeImmediate(Instruction* instr); void DecodeTypeJump(Instruction* instr); // Used for breakpoints and traps. void SoftwareInterrupt(Instruction* instr); // Stop helper functions. bool IsWatchpoint(uint32_t code); void PrintWatchpoint(uint32_t code); void HandleStop(uint32_t code, Instruction* instr); bool IsStopInstruction(Instruction* instr); bool IsEnabledStop(uint32_t code); void EnableStop(uint32_t code); void DisableStop(uint32_t code); void IncreaseStopCounter(uint32_t code); void PrintStopInfo(uint32_t code); // Executes one instruction. void InstructionDecode(Instruction* instr); // Execute one instruction placed in a branch delay slot. void BranchDelayInstructionDecode(Instruction* instr) { if (instr->InstructionBits() == nopInstr) { // Short-cut generic nop instructions. They are always valid and they // never change the simulator state. set_register(pc, reinterpret_cast(instr) + Instruction::kInstrSize); return; } if (instr->IsForbiddenInBranchDelay()) { V8_Fatal(__FILE__, __LINE__, "Eror:Unexpected %i opcode in a branch delay slot.", instr->OpcodeValue()); } InstructionDecode(instr); } // ICache. static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr); static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start, int size); static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page); enum Exception { none, kIntegerOverflow, kIntegerUnderflow, kDivideByZero, kNumExceptions }; int16_t exceptions[kNumExceptions]; // Exceptions. void SignalExceptions(); // Runtime call support. static void* RedirectExternalReference(void* external_function, ExternalReference::Type type); // For use in calls that take double value arguments. void GetFpArgs(double* x, double* y); void GetFpArgs(double* x); void GetFpArgs(double* x, int32_t* y); void SetFpResult(const double& result); // Architecture state. // Registers. int32_t registers_[kNumSimuRegisters]; // Coprocessor Registers. int32_t FPUregisters_[kNumFPURegisters]; // FPU control register. uint32_t FCSR_; // Simulator support. // Allocate 1MB for stack. static const size_t stack_size_ = 1 * 1024*1024; char* stack_; bool pc_modified_; int icount_; int break_count_; // Debugger input. char* last_debugger_input_; // Icache simulation. v8::internal::HashMap* i_cache_; v8::internal::Isolate* isolate_; // Registered breakpoints. Instruction* break_pc_; Instr break_instr_; // Stop is disabled if bit 31 is set. static const uint32_t kStopDisabledBit = 1 << 31; // A stop is enabled, meaning the simulator will stop when meeting the // instruction, if bit 31 of watched_stops[code].count is unset. // The value watched_stops[code].count & ~(1 << 31) indicates how many times // the breakpoint was hit or gone through. struct StopCountAndDesc { uint32_t count; char* desc; }; StopCountAndDesc watched_stops[kMaxStopCode + 1]; }; // When running with the simulator transition into simulated execution at this // point. #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ reinterpret_cast(Simulator::current(Isolate::Current())->Call( \ FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4)) #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7) \ Simulator::current(Isolate::Current())->Call( \ entry, 9, p0, p1, p2, p3, NULL, p4, p5, p6, p7) #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ try_catch_address == NULL ? \ NULL : *(reinterpret_cast(try_catch_address)) // The simulator has its own stack. Thus it has a different stack limit from // the C-based native code. Setting the c_limit to indicate a very small // stack cause stack overflow errors, since the simulator ignores the input. // This is unlikely to be an issue in practice, though it might cause testing // trouble down the line. class SimulatorStack : public v8::internal::AllStatic { public: static inline uintptr_t JsLimitFromCLimit(Isolate* isolate, uintptr_t c_limit) { return Simulator::current(isolate)->StackLimit(); } static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { Simulator* sim = Simulator::current(Isolate::Current()); return sim->PushAddress(try_catch_address); } static inline void UnregisterCTryCatch() { Simulator::current(Isolate::Current())->PopAddress(); } }; } } // namespace v8::internal #endif // !defined(USE_SIMULATOR) #endif // V8_MIPS_SIMULATOR_MIPS_H_