// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Platform specific code for FreeBSD goes here. For the POSIX comaptible parts // the implementation is in platform-posix.cc. #include #include #include #include #include #include #include #include #include // mmap & munmap #include // mmap & munmap #include // open #include // open #include // getpagesize // If you don't have execinfo.h then you need devel/libexecinfo from ports. #include // backtrace, backtrace_symbols #include // index #include #include #include #undef MAP_TYPE #include "v8.h" #include "v8threads.h" #include "platform-posix.h" #include "platform.h" #include "vm-state-inl.h" namespace v8 { namespace internal { // 0 is never a valid thread id on FreeBSD since tids and pids share a // name space and pid 0 is used to kill the group (see man 2 kill). static const pthread_t kNoThread = (pthread_t) 0; double ceiling(double x) { // Correct as on OS X if (-1.0 < x && x < 0.0) { return -0.0; } else { return ceil(x); } } static Mutex* limit_mutex = NULL; void OS::PostSetUp() { POSIXPostSetUp(); } void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { __asm__ __volatile__("" : : : "memory"); *ptr = value; } uint64_t OS::CpuFeaturesImpliedByPlatform() { return 0; // FreeBSD runs on anything. } int OS::ActivationFrameAlignment() { // 16 byte alignment on FreeBSD return 16; } const char* OS::LocalTimezone(double time) { if (isnan(time)) return ""; time_t tv = static_cast(floor(time/msPerSecond)); struct tm* t = localtime(&tv); if (NULL == t) return ""; return t->tm_zone; } double OS::LocalTimeOffset() { time_t tv = time(NULL); struct tm* t = localtime(&tv); // tm_gmtoff includes any daylight savings offset, so subtract it. return static_cast(t->tm_gmtoff * msPerSecond - (t->tm_isdst > 0 ? 3600 * msPerSecond : 0)); } // We keep the lowest and highest addresses mapped as a quick way of // determining that pointers are outside the heap (used mostly in assertions // and verification). The estimate is conservative, i.e., not all addresses in // 'allocated' space are actually allocated to our heap. The range is // [lowest, highest), inclusive on the low and and exclusive on the high end. static void* lowest_ever_allocated = reinterpret_cast(-1); static void* highest_ever_allocated = reinterpret_cast(0); static void UpdateAllocatedSpaceLimits(void* address, int size) { ASSERT(limit_mutex != NULL); ScopedLock lock(limit_mutex); lowest_ever_allocated = Min(lowest_ever_allocated, address); highest_ever_allocated = Max(highest_ever_allocated, reinterpret_cast(reinterpret_cast(address) + size)); } bool OS::IsOutsideAllocatedSpace(void* address) { return address < lowest_ever_allocated || address >= highest_ever_allocated; } size_t OS::AllocateAlignment() { return getpagesize(); } void* OS::Allocate(const size_t requested, size_t* allocated, bool executable) { const size_t msize = RoundUp(requested, getpagesize()); int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0); void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0); if (mbase == MAP_FAILED) { LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed")); return NULL; } *allocated = msize; UpdateAllocatedSpaceLimits(mbase, msize); return mbase; } void OS::Free(void* buf, const size_t length) { // TODO(1240712): munmap has a return value which is ignored here. int result = munmap(buf, length); USE(result); ASSERT(result == 0); } void OS::Sleep(int milliseconds) { unsigned int ms = static_cast(milliseconds); usleep(1000 * ms); } void OS::Abort() { // Redirect to std abort to signal abnormal program termination. abort(); } void OS::DebugBreak() { #if (defined(__arm__) || defined(__thumb__)) # if defined(CAN_USE_ARMV5_INSTRUCTIONS) asm("bkpt 0"); # endif #else asm("int $3"); #endif } class PosixMemoryMappedFile : public OS::MemoryMappedFile { public: PosixMemoryMappedFile(FILE* file, void* memory, int size) : file_(file), memory_(memory), size_(size) { } virtual ~PosixMemoryMappedFile(); virtual void* memory() { return memory_; } virtual int size() { return size_; } private: FILE* file_; void* memory_; int size_; }; OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { FILE* file = fopen(name, "r+"); if (file == NULL) return NULL; fseek(file, 0, SEEK_END); int size = ftell(file); void* memory = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, void* initial) { FILE* file = fopen(name, "w+"); if (file == NULL) return NULL; int result = fwrite(initial, size, 1, file); if (result < 1) { fclose(file); return NULL; } void* memory = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } PosixMemoryMappedFile::~PosixMemoryMappedFile() { if (memory_) munmap(memory_, size_); fclose(file_); } static unsigned StringToLong(char* buffer) { return static_cast(strtol(buffer, NULL, 16)); // NOLINT } void OS::LogSharedLibraryAddresses() { static const int MAP_LENGTH = 1024; int fd = open("/proc/self/maps", O_RDONLY); if (fd < 0) return; while (true) { char addr_buffer[11]; addr_buffer[0] = '0'; addr_buffer[1] = 'x'; addr_buffer[10] = 0; int result = read(fd, addr_buffer + 2, 8); if (result < 8) break; unsigned start = StringToLong(addr_buffer); result = read(fd, addr_buffer + 2, 1); if (result < 1) break; if (addr_buffer[2] != '-') break; result = read(fd, addr_buffer + 2, 8); if (result < 8) break; unsigned end = StringToLong(addr_buffer); char buffer[MAP_LENGTH]; int bytes_read = -1; do { bytes_read++; if (bytes_read >= MAP_LENGTH - 1) break; result = read(fd, buffer + bytes_read, 1); if (result < 1) break; } while (buffer[bytes_read] != '\n'); buffer[bytes_read] = 0; // Ignore mappings that are not executable. if (buffer[3] != 'x') continue; char* start_of_path = index(buffer, '/'); // There may be no filename in this line. Skip to next. if (start_of_path == NULL) continue; buffer[bytes_read] = 0; LOG(i::Isolate::Current(), SharedLibraryEvent(start_of_path, start, end)); } close(fd); } void OS::SignalCodeMovingGC() { } int OS::StackWalk(Vector frames) { int frames_size = frames.length(); ScopedVector addresses(frames_size); int frames_count = backtrace(addresses.start(), frames_size); char** symbols = backtrace_symbols(addresses.start(), frames_count); if (symbols == NULL) { return kStackWalkError; } for (int i = 0; i < frames_count; i++) { frames[i].address = addresses[i]; // Format a text representation of the frame based on the information // available. SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen), "%s", symbols[i]); // Make sure line termination is in place. frames[i].text[kStackWalkMaxTextLen - 1] = '\0'; } free(symbols); return frames_count; } // Constants used for mmap. static const int kMmapFd = -1; static const int kMmapFdOffset = 0; VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } VirtualMemory::VirtualMemory(size_t size) { address_ = ReserveRegion(size); size_ = size; } VirtualMemory::VirtualMemory(size_t size, size_t alignment) : address_(NULL), size_(0) { ASSERT(IsAligned(alignment, static_cast(OS::AllocateAlignment()))); size_t request_size = RoundUp(size + alignment, static_cast(OS::AllocateAlignment())); void* reservation = mmap(OS::GetRandomMmapAddr(), request_size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, kMmapFd, kMmapFdOffset); if (reservation == MAP_FAILED) return; Address base = static_cast
(reservation); Address aligned_base = RoundUp(base, alignment); ASSERT_LE(base, aligned_base); // Unmap extra memory reserved before and after the desired block. if (aligned_base != base) { size_t prefix_size = static_cast(aligned_base - base); OS::Free(base, prefix_size); request_size -= prefix_size; } size_t aligned_size = RoundUp(size, OS::AllocateAlignment()); ASSERT_LE(aligned_size, request_size); if (aligned_size != request_size) { size_t suffix_size = request_size - aligned_size; OS::Free(aligned_base + aligned_size, suffix_size); request_size -= suffix_size; } ASSERT(aligned_size == request_size); address_ = static_cast(aligned_base); size_ = aligned_size; } VirtualMemory::~VirtualMemory() { if (IsReserved()) { bool result = ReleaseRegion(address(), size()); ASSERT(result); USE(result); } } bool VirtualMemory::IsReserved() { return address_ != NULL; } void VirtualMemory::Reset() { address_ = NULL; size_ = 0; } bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { return CommitRegion(address, size, is_executable); } bool VirtualMemory::Uncommit(void* address, size_t size) { return UncommitRegion(address, size); } bool VirtualMemory::Guard(void* address) { OS::Guard(address, OS::CommitPageSize()); return true; } void* VirtualMemory::ReserveRegion(size_t size) { void* result = mmap(OS::GetRandomMmapAddr(), size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, kMmapFd, kMmapFdOffset); if (result == MAP_FAILED) return NULL; return result; } bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); if (MAP_FAILED == mmap(base, size, prot, MAP_PRIVATE | MAP_ANON | MAP_FIXED, kMmapFd, kMmapFdOffset)) { return false; } UpdateAllocatedSpaceLimits(base, size); return true; } bool VirtualMemory::UncommitRegion(void* base, size_t size) { return mmap(base, size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED, kMmapFd, kMmapFdOffset) != MAP_FAILED; } bool VirtualMemory::ReleaseRegion(void* base, size_t size) { return munmap(base, size) == 0; } bool VirtualMemory::HasLazyCommits() { // TODO(alph): implement for the platform. return false; } class Thread::PlatformData : public Malloced { public: pthread_t thread_; // Thread handle for pthread. }; Thread::Thread(const Options& options) : data_(new PlatformData), stack_size_(options.stack_size()) { set_name(options.name()); } Thread::~Thread() { delete data_; } static void* ThreadEntry(void* arg) { Thread* thread = reinterpret_cast(arg); // This is also initialized by the first argument to pthread_create() but we // don't know which thread will run first (the original thread or the new // one) so we initialize it here too. thread->data()->thread_ = pthread_self(); ASSERT(thread->data()->thread_ != kNoThread); thread->Run(); return NULL; } void Thread::set_name(const char* name) { strncpy(name_, name, sizeof(name_)); name_[sizeof(name_) - 1] = '\0'; } void Thread::Start() { pthread_attr_t* attr_ptr = NULL; pthread_attr_t attr; if (stack_size_ > 0) { pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, static_cast(stack_size_)); attr_ptr = &attr; } pthread_create(&data_->thread_, attr_ptr, ThreadEntry, this); ASSERT(data_->thread_ != kNoThread); } void Thread::Join() { pthread_join(data_->thread_, NULL); } Thread::LocalStorageKey Thread::CreateThreadLocalKey() { pthread_key_t key; int result = pthread_key_create(&key, NULL); USE(result); ASSERT(result == 0); return static_cast(key); } void Thread::DeleteThreadLocalKey(LocalStorageKey key) { pthread_key_t pthread_key = static_cast(key); int result = pthread_key_delete(pthread_key); USE(result); ASSERT(result == 0); } void* Thread::GetThreadLocal(LocalStorageKey key) { pthread_key_t pthread_key = static_cast(key); return pthread_getspecific(pthread_key); } void Thread::SetThreadLocal(LocalStorageKey key, void* value) { pthread_key_t pthread_key = static_cast(key); pthread_setspecific(pthread_key, value); } void Thread::YieldCPU() { sched_yield(); } class FreeBSDMutex : public Mutex { public: FreeBSDMutex() { pthread_mutexattr_t attrs; int result = pthread_mutexattr_init(&attrs); ASSERT(result == 0); result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE); ASSERT(result == 0); result = pthread_mutex_init(&mutex_, &attrs); ASSERT(result == 0); USE(result); } virtual ~FreeBSDMutex() { pthread_mutex_destroy(&mutex_); } virtual int Lock() { int result = pthread_mutex_lock(&mutex_); return result; } virtual int Unlock() { int result = pthread_mutex_unlock(&mutex_); return result; } virtual bool TryLock() { int result = pthread_mutex_trylock(&mutex_); // Return false if the lock is busy and locking failed. if (result == EBUSY) { return false; } ASSERT(result == 0); // Verify no other errors. return true; } private: pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms. }; Mutex* OS::CreateMutex() { return new FreeBSDMutex(); } class FreeBSDSemaphore : public Semaphore { public: explicit FreeBSDSemaphore(int count) { sem_init(&sem_, 0, count); } virtual ~FreeBSDSemaphore() { sem_destroy(&sem_); } virtual void Wait(); virtual bool Wait(int timeout); virtual void Signal() { sem_post(&sem_); } private: sem_t sem_; }; void FreeBSDSemaphore::Wait() { while (true) { int result = sem_wait(&sem_); if (result == 0) return; // Successfully got semaphore. CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. } } bool FreeBSDSemaphore::Wait(int timeout) { const long kOneSecondMicros = 1000000; // NOLINT // Split timeout into second and nanosecond parts. struct timeval delta; delta.tv_usec = timeout % kOneSecondMicros; delta.tv_sec = timeout / kOneSecondMicros; struct timeval current_time; // Get the current time. if (gettimeofday(¤t_time, NULL) == -1) { return false; } // Calculate time for end of timeout. struct timeval end_time; timeradd(¤t_time, &delta, &end_time); struct timespec ts; TIMEVAL_TO_TIMESPEC(&end_time, &ts); while (true) { int result = sem_timedwait(&sem_, &ts); if (result == 0) return true; // Successfully got semaphore. if (result == -1 && errno == ETIMEDOUT) return false; // Timeout. CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. } } Semaphore* OS::CreateSemaphore(int count) { return new FreeBSDSemaphore(count); } static pthread_t GetThreadID() { pthread_t thread_id = pthread_self(); return thread_id; } class Sampler::PlatformData : public Malloced { public: PlatformData() : vm_tid_(GetThreadID()) {} pthread_t vm_tid() const { return vm_tid_; } private: pthread_t vm_tid_; }; static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) { USE(info); if (signal != SIGPROF) return; Isolate* isolate = Isolate::UncheckedCurrent(); if (isolate == NULL || !isolate->IsInitialized() || !isolate->IsInUse()) { // We require a fully initialized and entered isolate. return; } if (v8::Locker::IsActive() && !isolate->thread_manager()->IsLockedByCurrentThread()) { return; } Sampler* sampler = isolate->logger()->sampler(); if (sampler == NULL || !sampler->IsActive()) return; TickSample sample_obj; TickSample* sample = CpuProfiler::TickSampleEvent(isolate); if (sample == NULL) sample = &sample_obj; // Extracting the sample from the context is extremely machine dependent. ucontext_t* ucontext = reinterpret_cast(context); mcontext_t& mcontext = ucontext->uc_mcontext; sample->state = isolate->current_vm_state(); #if V8_HOST_ARCH_IA32 sample->pc = reinterpret_cast
(mcontext.mc_eip); sample->sp = reinterpret_cast
(mcontext.mc_esp); sample->fp = reinterpret_cast
(mcontext.mc_ebp); #elif V8_HOST_ARCH_X64 sample->pc = reinterpret_cast
(mcontext.mc_rip); sample->sp = reinterpret_cast
(mcontext.mc_rsp); sample->fp = reinterpret_cast
(mcontext.mc_rbp); #elif V8_HOST_ARCH_ARM sample->pc = reinterpret_cast
(mcontext.mc_r15); sample->sp = reinterpret_cast
(mcontext.mc_r13); sample->fp = reinterpret_cast
(mcontext.mc_r11); #endif sampler->SampleStack(sample); sampler->Tick(sample); } class SignalSender : public Thread { public: enum SleepInterval { HALF_INTERVAL, FULL_INTERVAL }; static const int kSignalSenderStackSize = 64 * KB; explicit SignalSender(int interval) : Thread(Thread::Options("SignalSender", kSignalSenderStackSize)), interval_(interval) {} static void SetUp() { if (!mutex_) mutex_ = OS::CreateMutex(); } static void TearDown() { delete mutex_; } static void AddActiveSampler(Sampler* sampler) { ScopedLock lock(mutex_); SamplerRegistry::AddActiveSampler(sampler); if (instance_ == NULL) { // Install a signal handler. struct sigaction sa; sa.sa_sigaction = ProfilerSignalHandler; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_RESTART | SA_SIGINFO; signal_handler_installed_ = (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0); // Start a thread that sends SIGPROF signal to VM threads. instance_ = new SignalSender(sampler->interval()); instance_->Start(); } else { ASSERT(instance_->interval_ == sampler->interval()); } } static void RemoveActiveSampler(Sampler* sampler) { ScopedLock lock(mutex_); SamplerRegistry::RemoveActiveSampler(sampler); if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) { RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_); delete instance_; instance_ = NULL; // Restore the old signal handler. if (signal_handler_installed_) { sigaction(SIGPROF, &old_signal_handler_, 0); signal_handler_installed_ = false; } } } // Implement Thread::Run(). virtual void Run() { SamplerRegistry::State state; while ((state = SamplerRegistry::GetState()) != SamplerRegistry::HAS_NO_SAMPLERS) { bool cpu_profiling_enabled = (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS); bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled(); // When CPU profiling is enabled both JavaScript and C++ code is // profiled. We must not suspend. if (!cpu_profiling_enabled) { if (rate_limiter_.SuspendIfNecessary()) continue; } if (cpu_profiling_enabled && runtime_profiler_enabled) { if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) { return; } Sleep(HALF_INTERVAL); if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) { return; } Sleep(HALF_INTERVAL); } else { if (cpu_profiling_enabled) { if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) { return; } } if (runtime_profiler_enabled) { if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) { return; } } Sleep(FULL_INTERVAL); } } } static void DoCpuProfile(Sampler* sampler, void* raw_sender) { if (!sampler->IsProfiling()) return; SignalSender* sender = reinterpret_cast(raw_sender); sender->SendProfilingSignal(sampler->platform_data()->vm_tid()); } static void DoRuntimeProfile(Sampler* sampler, void* ignored) { if (!sampler->isolate()->IsInitialized()) return; sampler->isolate()->runtime_profiler()->NotifyTick(); } void SendProfilingSignal(pthread_t tid) { if (!signal_handler_installed_) return; pthread_kill(tid, SIGPROF); } void Sleep(SleepInterval full_or_half) { // Convert ms to us and subtract 100 us to compensate delays // occuring during signal delivery. useconds_t interval = interval_ * 1000 - 100; if (full_or_half == HALF_INTERVAL) interval /= 2; int result = usleep(interval); #ifdef DEBUG if (result != 0 && errno != EINTR) { fprintf(stderr, "SignalSender usleep error; interval = %u, errno = %d\n", interval, errno); ASSERT(result == 0 || errno == EINTR); } #endif USE(result); } const int interval_; RuntimeProfilerRateLimiter rate_limiter_; // Protects the process wide state below. static Mutex* mutex_; static SignalSender* instance_; static bool signal_handler_installed_; static struct sigaction old_signal_handler_; private: DISALLOW_COPY_AND_ASSIGN(SignalSender); }; Mutex* SignalSender::mutex_ = NULL; SignalSender* SignalSender::instance_ = NULL; struct sigaction SignalSender::old_signal_handler_; bool SignalSender::signal_handler_installed_ = false; void OS::SetUp() { // Seed the random number generator. // Convert the current time to a 64-bit integer first, before converting it // to an unsigned. Going directly can cause an overflow and the seed to be // set to all ones. The seed will be identical for different instances that // call this setup code within the same millisecond. uint64_t seed = static_cast(TimeCurrentMillis()); srandom(static_cast(seed)); limit_mutex = CreateMutex(); SignalSender::SetUp(); } void OS::TearDown() { SignalSender::TearDown(); delete limit_mutex; } Sampler::Sampler(Isolate* isolate, int interval) : isolate_(isolate), interval_(interval), profiling_(false), active_(false), samples_taken_(0) { data_ = new PlatformData; } Sampler::~Sampler() { ASSERT(!IsActive()); delete data_; } void Sampler::Start() { ASSERT(!IsActive()); SetActive(true); SignalSender::AddActiveSampler(this); } void Sampler::Stop() { ASSERT(IsActive()); SignalSender::RemoveActiveSampler(this); SetActive(false); } } } // namespace v8::internal