
InSiTo Library Architecture

Documentation

Version 1.1

Falko Strenzke, FlexSecure GmbH
strenzke@flexsecure.de

September 2nd, 2008

Contents

1 Introduction 3

2 Source Code Structure 3

3 Global State 4
3.1 Related Header and Source Files 4

4 Type System, Smart Pointers 5
4.1 Related Header and Source Files 5
4.2 Important Objects, Functions and Concepts 5

4.2.1 Smart Pointers . 5
4.2.2 SharedPtrConverter . 5

5 Memory Allocation System 6
5.1 Related Header and Source Files 6
5.2 Important Objects, Functions and Concepts 7

6 Pipe Concept 7
6.1 Related Header and Source Files 8

7 Engine Concept 9
7.1 Related Header and Source Files 10

8 Public Key Algorithms 10
8.1 Related Header and Source Files 11

8.1.1 Key Objects . 11
8.1.2 Algorithm Implementations 12
8.1.3 Encoding . 12
8.1.4 Factory Functions . 12

1

8.2 Side Channel Attack Countermeasures 13

9 Symmetric Algorithms 13
9.1 Related Header and Source Files 13

9.1.1 Symmetric Algorithms in general 13
9.1.2 Hash Algorithms and Checksums 14
9.1.3 Block Ciphers . 14
9.1.4 Block Cipher Modes . 15
9.1.5 MACs . 15
9.1.6 Other Symmetric Algorithms 15

10 Random Number Generators and Entropy Sources 16
10.1 Related Header and Source Files 16

11 Arithmetic 17
11.1 Related Header and Source Files 17

12 ASN1 18
12.1 Related Header and Source Files 18

13 CVC 19
13.1 Related Header and Source Files 19

14 X509 20
14.1 Related Header and Source Files 20

15 Miscellaneous and Utility 21
15.1 Related Header and Source Files 21

2

1 Introduction

This document gives an overview of the design of the InSiTo version [3] of the
Botan cryptographic library [2]. The basic design of the InSiTo version of the
library is equal to the one of Botan, thus, to a certain extend, this document
can be used as an architectural reference for Botan as well.

The structure of this document is as follows. Each of the subsequent sections
covers a certain functionality domain. Each of these domains is assigned a group
of header and source files which implement the respective functionality. Where
appropriate, the functions of objects contained in those files are explained. The
order in which the files are listed is according to their logical dependencies in
most cases, but sometimes an alphabetic order is chosen. This is the case when
no true dependencies exist between the files. In some sections, extra subsections
provide the explanation of important objects, functions and concepts.

2 Source Code Structure

The libraries source code is divided among the following directories.

• include – the library headers. The include directory holds two subdi-
rectories: the api/ directory contains those headers that are supposed to
be used by clients, the int/ directory contains library internals.

• src – the library source files.

• modules – platform specific code is contained in this directory.

While there is not much to say about the general buildup of the first two di-
rectories, the modules directory deserves some more attention. The platform
specific code in this directory is used for the following functionalities:

• assembler support for certain symmetric algorithms (alg amd64 and
alg ia32).

• entropy sources based on OS specific APIs and command (es ...)

• enabling to use Unix file descriptors with the libraries pipe concept (see
Section 6) (fd unix).

• memory locking functionality, i.e. enabling to keep memory from being
swapped out to the swap file (ml ...).

• assembler support for low level integer operations (mp ...).

• pthread support for different OS’, only needed for the unit tests (mt ...).

• mutexes in order to enable thread-safety on all platforms (mux ...).

• timer functionality (tm ...).

3

• support for usage of either the platforms standard libraries tr1/memory
functionality or the one in a boost version (tr1 inclusion). Which one
will be used can be toggled in the CMake frontend (see the User Manual).

The only non platform specific code is found in the directories comp bzip2 and
comp zlib which are offered as alternatives here.

At compile time it is determined which modules will be included on
which platform. This is based on the evaluation of the CMakeLists.txt and
CMakeLists<...>.txt files in the modules directory.

There is basically one file not found in the modules directory which is
also influenced at compile time. This is the file modules.cpp, which defines
the member functions of the Builtin Modules. The related header file is
int/modules.h. modules.cpp contains preprocessor macros that ensure that
the member functions of the Builtin Modules class return exactly those classes
from the modules directory that are enabled by the build system. It is possible
to use the static interface defined in modules.h because all variable classes are
treated polymorphically.

3 Global State

This section describes the functionality related to the libraries global state. The
library’s global state features functionalities like the global RNG, the library
configuration, and the memory allocation system of the library.

3.1 Related Header and Source Files

• api/config.h, config.cpp, , inifile.cpp – offer functionality related
to the global library configuration. This includes functions for parsing
configuration files, setting up the default configuration, or accessing con-
figuration.

• api/init.h, init_def.cpp, init_opt.cpp – contain the classes
LibraryInitializer and InitializerOptions. The library initializer
is the object that sets up the global state in its constructor, and destroys
it in its destructor. For this reason, the library initializer object has to be
the last object of all library objects to be destructed.

• int/libstate.h, libstate.cpp – the global Library_State object itself.
It manages the following members:

– the global configuration (See [4] for details about the global library
configuration.)

– a mutex factory

– lists for mutex locks

– a timer object

4

– the memory allocators (Refer to Section 5 for information about the
libraries memory allocation system.)

– a pointer to a user interface

– a character transcoder

– the global random number generator (RNG)

– a list of entropy sources (For information about the role of the global
RNG and the entropy sources refer to Section 10.)

– a list of the available cryptographic engines (See Section 7 for the
information about the engine concept.)

• policy.cpp – contains the default configuration, i.e. the one used when
no configuration file is specified.

4 Type System, Smart Pointers

This section deals with the Botan specific types as well as the smart pointers
that are widely used in the InSiTo version.

4.1 Related Header and Source Files

• api/freestore.h – enforces the use of smart pointers for all Filter ob-
jects. Refer to the API documentation for details.

• api/types.h – defines type aliases for integer types.

• api/enums.h – defines various enumerations used throughout the library.

4.2 Important Objects, Functions and Concepts

4.2.1 Smart Pointers

The types of smart pointers used in the library are std::auto_ptr and
std::tr1::shared ptr . If the latter is not provided by the platforms stan-
dard library, the boost shared pointers will be used. The concept of the usage
of either type of smart pointer is the following. Every time, when a library
function returns an independent object, i.e. a newly created object or a copy of
an existing object, auto_ptrs are used. In all cases where the library function
stores the object itself after it returned the pointer to the caller, a shared_ptr
is used.

4.2.2 SharedPtrConverter

SharedPtrConverters are used as parameter types in function declarations in
order to allow the client to conveniently pass either a plain pointer, auto_ptr
or shared_ptr.

5

5 Memory Allocation System

The memory allocation in the library is handled by the global state (see Section
3.1), which holds multiple allocator objects to this end.

5.1 Related Header and Source Files

• int/allocate.h – defines abstract Allocator objects.

• int/mem_pool.h, mem_pool.cpp – defines abstract Pooling_Allocator
objects, derived from Allocator.

• int/defalloc.h, defalloc.cpp – define the classes Malloc_Allocator
and Locking_Allocator, both being derived from Pooling_Allocator.
While the former is the normal allocator, the second one is responsible
for allocation of so called secure memory, which will never be swapped
out by the operating system, i.e. never be written to disk. Note that
restrictions with respect to this property of the secure memory concept
apply to certain platforms, see below.

• api/secmem.h – defines a number of buffer classes, that differ in the prop-
erties of having fixed or variable length, and making use of secure memory
or not. Refer to the API documentation for details.

• In the modules directory, the low level system calls for memory locking
are implemented.

– ml_fail/mlock.cpp
This is the default implementation which is used on all plat-
forms which do not support memory locking. It will cause
all attempts to create objects using secure memory to fail. A
SecureMemory_Failure will be thrown in these cases.

– ml_unix/mlock.cpp
Unix systems support memory locking in an explicit and clearly doc-
umented way. This allows a proper implementation on these plat-
forms. The system call mmap() is used to allocate memory for the
process and afterwards it will be locked by the help of the system
call mlock().

– ml_win32/mlock.cpp
With Windows, the situation is rather unclear. The system calls that
are used are VirtualAlloc() and VirtualLock(). While the former
is the Windows counterpart of mmap(), the latter does not really seem
to be a true equivalent to mlock(). While the MSDN documentation
states that it actually locks the specified address range into RAM1,

1http://msdn.microsoft.com/en-us/library/aa366895(VS.85).aspx (5th, Aug., 2008)

6

other sources state otherwise2. Thus using MS Windows the full
security as provided by Unix cannot be claimed.

• mem ops.h – wrappers for the C standard library memory related func-
tions.

5.2 Important Objects, Functions and Concepts

The allocation system basically works as follows. When the
LibraryInitializer is created, the passed InitializerOptions deter-
mine whether secure memory will be used at all. To set the initialization
options please refer to the API documentation of InitializerOptions. If
secure memory is used, those classes defined in secmem.h, that are labeled
“secure”, will make use of secure memory.

In any case, upon the creation of any secmem.h-object, this object will
initially retrieve an Allocator-object from the global Library_State ob-
ject. If secure memory is globally enabled (see the paragraph above), and
the object is of the “secure” kind, the Allocator-object will be of the
type Locking_Allocator, otherwise it will be a Malloc_Allocator. The
Allocator-object will be used to allocate the “secure” objects internal buffer
memory.

In case of the Malloc_Allocator allocation will take place via the malloc()
function. The steps performed by a Locking_Allocator are more complicated.
Initially, it has to be assured that the memory was allocated page-wise. This is
essential because both the Unix and Windows memory locking functions work
page-wise, i.e. they lock all pages in the specified address range. If a chunk A
of allocated memory would not occupy a full multiple of pages, another chunk
B of secure memory might be allocated on one of these pages too. The un-
locking of B, which alway precedes the deallocation, would unintentionally also
unlock A. To prevent this, the page size is determined via corresponding sys-
tem calls and multiples of pages aligned on page borders are allocated. This is
ensured centrally by the Locking_Allocator, which only leaves the platform
specific system calls to the functions in the afore mentioned files in the modules
directory.

Upon a deallocation request, the pages are initially overwritten with zero
bytes, then unlocked via the respective system call, and finally unmapped.

6 Pipe Concept

The pipe concept allows for the convenient handling of data streams and cryp-
tographic algorithms. The basic idea is that the client creates so called pipes,
which are quiet equivalent to the Unix pipes. Each pipe can then be filled with

2http://blogs.msdn.com/oldnewthing/archive/2007/11/06/5924058.aspx (5th, Aug.,
2008)

7

a sequence of filters. The usage of Pipes and filters is described in the API
Documentation and the user manual[4].

The data source concept is associated with the pipe concept, because Pipes
are implementations of DataSources. A DataSource can be used to create
CVC or X509 objects, for instance. Figure 1 shows the inheritance hierarchy
for DataSource.

Figure 1: Inheritance graph for Data Source

Figure 2 shows the various classes derived from Filter.

6.1 Related Header and Source Files

In the following, those header and source files related to the pipe concept are
listed. In most cases no description is given, because the details about the
classes contained in these files are well documented in the API Documentation.

• api/base64.h, base64.cpp

• api/basefilt.h, basefilt.cpp

• api/buf_filt.h, buf_filt.cpp

• api/data_snk.h, data_snk.cpp

• api/data_src.h, data_src.cpp

• api/filter.h, filter.cpp – among other things, this file defines the
Filter base class.

• api/filters.h, filters.cpp

• api/hex.h, hex.cpp

• api/pipe.h, pipe.cpp, pipe io.cpp, pipe rw.cpp – defines the Pipe
class.

• api/pk_filts.h, pk_filts.cpp – defines various public key related fil-
ters.

• api/data src.h, data src.cpp – define the abstract DataSource
base class, and the derived classes DataSource Memory and
DataSource Stream

8

Figure 2: Inheritance graph for Filter

• int/secqueue.h, secqueue.cpp – define the class SecureQueue which is
used internally by the library.

• int/out buf.h, out buf.cpp – define the Output Buffer class used in-
ternally by the library.

7 Engine Concept

This section covers the engine concept provided by the library. The basic idea
is that it is possible to include various cryptographic engines in the library, e.g.
it would be possible to use the OpenSSL engine, thus making it possible for the
library to use the OpenSSL algorithms. However, in order to fulfill the desired
security level, no additional engines are configured in the InSiTo version, only
the default Botan engine is available.

A Botan cryptographic engine has member functions that return crypto-
graphic operations. These operation objects are used in the implementation of
the public key algorithms. There, the collaboration hierarchy is as follows. A
public key object contains a core object, this object in turn holds an opera-

9

tion which features the actual implementation of the public key algorithms. An
example would be the function

std::tr1:: shared_ptr <ECDSA_Operation >
ecdsa_op(EC_Domain_Params const& dom_pars ,

Botan::math:: BigInt const& priv_key ,
Botan::math::ec:: PointGFp const& pub_key) const;

which can be found in the Botan default engine in the file int/eng_def.h. The
returned operation will be used inside an ECDSA_Core, which in turn is contained
in an ECDSA_PublicKey or ECDSA_PrivateKey. The basic difference between
public keys and private keys in this respect is that the public key’s operations
are lacking the private value, and thus cannot perform the private operation.

While all public key algorithms are implemented as described above, sym-
metric ciphers are not implemented in terms of cores and operations. The cor-
responding member functions of the engine return an instance of the symmetric
algorithm directly.

However, application code never has to deal with the engine directly. There
exist factory / lookup functions for all cryptographic algorithms. Refer to [4]
for examples.

7.1 Related Header and Source Files

We only assign the core engine files to this section. The files containing the
cores and operations for public key algorithms mentioned above are listed in
Section 8.

• int/engine.h – defines the abstract Engine base class.

• int/eng_base.cpp – implementation of the Engine class.

• engine.cpp – defines global functions for retrieving certain algorithms.

• int/eng_def.h – definition of the libraries Default_Engine which is used
if no other engine is configured by the client.

• int/def_alg.cpp, def mode.cpp – implementation of the
Default_Engine.

8 Public Key Algorithms

This section deals with the realization of the public key algorithms in Botan.
The basic concept for the realization of the public key schemes is that most
functionality is packed into the key objects. Each public key scheme features a
public key, and a private key which is derived from this key. The full inheritance
graph for public and private keys is depicted in Figure 3.

10

Figure 3: Inheritance graph for Public Key

8.1 Related Header and Source Files

8.1.1 Key Objects

• api/pk_keys.h, pk_keys.cpp – define the abstract public key base
classes. All public and private key classes are derived from Public_Key
and Private_Key defined in pk_keys.h.

• api/dl group.h, dl group.cpp – define the class DL Group.

• api/dl_algo.h, dl_algo.cpp – define the abstract discrete logarithm key
base classes.

• api/dh.h, dh.cpp – define the Diffie-Hellman keys, derived from the dis-
crete logarithm base class.

• api/ec.h, ec.cpp – define the ECDSA and ECKAEG key classes.

• api/ec_dompar.h, ec_dompar.cpp – define the elliptic curve domain pa-
rameters (EC_Domain_Params).

• int/ecdsa.h, ecdsa.cpp – defines the ECDSA Signature class used inside
the library.

• int/if_algo.h, if_algo.cpp – contain the base classes for the integer
factorization (IF) based public key scheme keys.

• api/rsa.h, rsa.cpp – define RSA public and private keys. These are
derived from the IF key base classes defined in if algo.h.

11

• api/pubkey.h, pubkey.cpp – define various encryptor, decryptor, signer,
and verifier classes. Refer to the API Documentation for details on these
classes.

• int/pk_util.h, pk_util.cpp – contain base classes for EME, EMSA,
KDF, and MGF classes.

• int/pk_algs.h, pk_algs.cpp – factory functions to create public and
private keys.

• api/keypair.h, keypair.cpp – functions for checking public key scheme
key pairs.

• int/alg id.h, alg id.cpp – define the AlgorithmIdentifier class.

• api/pkcs8.h, pkcs8.cpp – define the abstract base class for abstract
PKCS#8 encoders and decoders. Each type of private key defines an
encoder and decoder derived from these base classes (as inner classes).

8.1.2 Algorithm Implementations

• int/pk_ops.h – defines abstract public key operations (for the meaning
of a public key operation, refer to Section 7).

• int/def_ops.cpp – definition and implementation of the default public
key operations. These are the operations that are returned by the libraries
default engine (see Section 7).

• int/pk_core.h, pk_core.cpp – define the public key cores (for the mean-
ing of a public key core, refer to Section 7).

• int/blinding.h, blinding.cpp – realizes a blinding countermeasure
against side channel attacks on integer factorization based public key al-
gorithms.

8.1.3 Encoding

• int/emsa.h, emsa1.cpp, emsa1_bsi.cpp, emsa2.cpp, emsa3.cpp,
emsa4.cpp, emsa_raw.cpp – the message-encoding methods for signature
schemes with appendix.

• int/eme.h, eme1.cpp, eme_pkcs.cpp – the message-encoding methods for
encryption schemes.

8.1.4 Factory Functions

• api/look pk.h, look pk.cpp – factory functions for various public key
filter objects.

12

8.2 Side Channel Attack Countermeasures

The following side channel attack countermeasures are implemented in the li-
brary:

• Base Blinding for RSA and DH Algorithms. This is a valid countermeasure
against timing attacks. The blinding is implemented in terms of the class
Blinder, defined in int/blinding.h. The blinding is realized in the file
pk core.cpp for the RSA and DH algorithms.

• Add-and-double-always and Exponent Blinding for ECDSA and ECK-
AEG. Refer to [5] for details about the EC countermeasures.

All these countermeasures are valid to defeat timing attacks. Although the im-
plementation will be definitely more resistant against power analysis attacks,
to get a qualified statement one has to perform an evaluation of the coun-
termeasures on the respective platform. The countermeasures will not defeat
microarchitectural attacks such as cache attacks and branch prediction attacks.

9 Symmetric Algorithms

The library distinguishes between the following types of symmetric algorithms
which are represented by the following abstract base classes:

• BlockCipher

• HashFunction

• MessageAuthenticationCode

• StreamCipher3

All of these classes are defined in int/base.h and base.cpp. The modes of the
block ciphers are implemented as Keyed_Filters. In this way, the client code
can use the convenient pipe/filter API for these algorithms. See Figure 2 for
details about the inheritance hierarchy of Filter and the symmetric algorithms.

9.1 Related Header and Source Files

9.1.1 Symmetric Algorithms in general

• api/lookup.h, get algo.cpp, get enc.cpp – factory functions for vari-
ous symmetric algorithms.

3In the InSiTo version, no stream cipher algorithm is implemented.

13

9.1.2 Hash Algorithms and Checksums

Note that all checksum algorithms are realized as hash functions in the library.
Figure 4 gives an overview over the inheritance hierarchy of the hash function
classes.

• int/mdx hash.h, mdx hash.cpp – abstract base class for message digest
hash algorithms.

• int/adler32.h, adler32.cpp – the Adler32 checksum algorithm. Is de-
rived from HashFunction.

• int/crc24.h, crc24.cpp – cyclic redundancy check (CRC) checksum.

• int/crc32.h, crc32.cpp – cyclic redundancy check (CRC) checksum.

• int/sha160.h, sha160.cpp – the SHA-1 hash algorithm.

• int/sha256.h, sha256.cpp – the SHA-224 and -256 algorithms.

• int/sha 64.h, sha 64.cpp – the SHA-385 and -512 algorithms.

• int/rmd160.h, rmd160.cpp – the RIPEMD-160 hash algorithm.

• int/par hash, par hash.cpp – a wrapper for hash function to enable the
processing of data by different hash functions in parallel.

Figure 4: Inheritance graph for HashFunction

9.1.3 Block Ciphers

• int/aes.h, aes.cpp, aes tab.cpp – the AES encryption algorithm.

• int/des.h, des.cpp, des tab.cpp – the DES, TripleDES and DESX en-
cryption algorithms.

14

9.1.4 Block Cipher Modes

Note that unless stated otherwise, for each block cipher mode an encryption
and a decryption BlockCipherMode is implemented.

• api/modebase.h, modebase.cpp – define the class BlockCipherMode.

• int/cbc.h, cbc.cpp – CBC encryption and decryption.

• int/cfb.h, cfb.h – CFB encryption and decryption.

• int/ctr.h, ctr.cpp – CTR block cipher mode. Here, no distinct
BlockCipherModes exist for encryption and decryption.

• int/cts.h, cts.cpp – CTS encryption and decryption.

• int/eax.h, eax.cpp – EAX authenticated encryption mode.

• int/ecb.h, ecb.cpp – ECB encryption and decryption.

• int/ofb.h, ofb.cpp – OFB block cipher mode. Here, no distinct
BlockCipherMode exist for encryption and decryption.

• int/mode pad.h, mode pad.cpp – define various block cipher padding
modes.

9.1.5 MACs

Like block ciphers, MACs are implemented as Keyed Filters. Figure 5 shows
the inheritance graph for MessageAuthenticationCodes.

• int/cbc mac.h, cbc mac.cpp – CBC-MAC algorithm.

• int/cmac.h, cmac.cpp – CMAC algorithm.

• int/hmac.h, hmac.cpp – HMAC algorithm.

• int/x919 mac.h, x919 mac.cpp – the ANSI X919 MAC.

• int/hash id, hash id.cpp – functions related to hash IDs.

9.1.6 Other Symmetric Algorithms

• int/mgf1.h, mgf1.cpp – mask generation function.

• int/kdf.h, kdf.cpp – key derivation functions.

• api/pbe.h, get pbe.cpp – Password based encryption (PBE) functional-
ity abstract base class and lookup functions.

• api/pkcs5.h, pkcs5.cpp – PKCS#5 implementation.

• api/pbe pkcs5.h, pbes1.cpp, pbes2.cpp – PKCS#5 PBE implementa-
tion.

• api/s2k.h, s2k.cpp – string to key functionality abstract base class.

15

Figure 5: Inheritance graph for MessageAuthenticationCodes

10 Random Number Generators and Entropy
Sources

The library realizes random number generators (RNGs) as RNG objects. They
are implemented as pseudo random number generators which are initially seeded
from the libraries entropy sources, so that they actually function as RNGS.

The global RNG is held by the library state (see Section 3.1). It will be used
by all cryptographic algorithms when they need random numbers, e.g. the key
generation algorithms for public key schemes. By default, the global RNG will
be of type ANSI X931 RNG, this is specified in the file init def.cpp, inside the
function

void LibraryInitializer :: initialize(
const InitializerOptions& args ,
Modules& modules)

Note that the global RNG is seeded intially during the library initialization, i.e.
in the constructor of the library initializer. This also happens inside the function
initialize() mentioned above. Here, the boolean parameter slowpoll in the
call toLibraryState::seed prng() is specified as true. This means that the
entropy sources that are used will perform a rather slow operation which yields
a larger amount of entropy than a so called fast poll, which is also offered by all
EntropySource implementations.

10.1 Related Header and Source Files

• api/base.h, base.cpp – define the abstract base class
RandomNumberGenerator and EntropySource.

• int/bbs.hm bbs.cpp – the implementation of the Blum-Blum-Shub
PRNG.

• int/sha1prng.h, sha1prng.cpp – the implementation of the SHA1PRNG,
according to FIPS PUB 186-2, Appendix 3.1.

• int/x931 rng.h, x931 rng.cpp – ANSI X931 RNG, the PRNG defined in
ANSI X9.31, Appendix A.

16

• api/rng.h, rng.cpp – access functions for the global RNG.

• int/buf es.h, buf es.cpp – define the BufferedEntropySource class.

• int/es file.h, es file.cpp – define an entropy source that retrieves
entropy from a file.

• int/randpool.h, randpool.cpp – define the Randpool RNG.

• in the modules directory, the following OS specific entropy sources are
defined.

– es beos/: es beos.h, es beos.cpp – a BeOS specific entropy source
which is derived from BufferedEntropySource.

– es capi: es capi.h, es capi.cpp – a Windows 32-bit specific en-
tropy source, derived directly from EntropySource.

– es egd: es egd.h, es egd.cpp – an entropy source internally using
the Entropy Gathering Daemon (EGD) on Unix systems.

– es unix: es unix.h, es unix.cpp, unix src.cpp – a Unix specific
entropy source that draws entropy from the results of various Unix
commands, which depend on the current system state. It is derived
from Buffered EntropySource.

– es win32: es win32.h, es win32.cpp – a Windows 32-bit specific
entropy source derived from Buffered EntropySource. It uses vari-
ous system state information sources like the cursor position, current
memory status and the OS’ performance counter.

11 Arithmetic

The library internally uses and makes available three types of arithmetics to
client code:

• arbitrary precision integer arithmetic (APIA),

• modular arithmetic (MA), and

• elliptic curve arithmetic (ECA).

There exists a clear collaboration hierarchy: the ECA builds upon the MA,
which in turn is founded on the APIA. All three arithmetics are well documented
in the API Documentation.

11.1 Related Header and Source Files

In the following, the header and source files, which define and implement the
low level functionality of the APIA will not be listed.

17

• api/mathbigint.h, bigint.cpp, bigint code.cpp. bigint io.cpp,
bigint ops3.cpp, bigint rand.cpp – definition and implementation of
the BigInt class, which realizes APIA.

• int/math/bigint/mp types.h – defines the word size used in the low level
APIA routines. The word size is chosen platform dependent, this happens
at compile time.

• int/math/bigintfuncs.h, bigintfuncs.cpp – a number of utility and
number theoretic functions related to the APIA and MA.

• api/math/gf/gfp element.h, gfp element.cpp – defines and imple-
ments GF(p) (GFpElement) elements, i.e. the MA.

• api/math/ec/gfp modulus.h, gfp modulus.h – define the class
GFpModulus, which encapsulates the modulus and modulus related
values for the use in GFpElement.

• api/math/ec/point gfp.h, point gfp.cpp – the elliptic curve point class
PointGFp. This class realizes the ECA.

• api/math/ec/curve gfp.h, curve gfp.cpp – define the class CurveGFp.

12 ASN1

The library features ASN1 DER and PEM encoding and decoding functionality.
This functionality is used for the supported CVC and X509 objects (see Sections
13 and 14).

The ability of an object to be encoded in DER format is achieved by inher-
iting from ASN1 Object, defined in asn1 int.h. The inheritance hierarchy of
ASN1 Object is depicted in Figure 6. This includes classes that belong to the
CVC and X509 functionality.

12.1 Related Header and Source Files

• int/ber dec.h, ber dec.cpp – a BER decoder.

• int/der enc.h, der enc.cpp – a DER encoder.

• int/asn1 int.h, asn1 int.cpp – define the abstract ASN1 Object base
class along with some other ASN1 related classes.

• int/asn1 obj.h, api/asn1 oid.h, asn1 alt.cpp, asn1 att.cpp,
asn1 dn.cpp, asn1 eac str.cpp, asn1 eac tm.cpp, asn1 int.cpp,
asn1 ku.cpp, asn1 oid.cpp, asn1 str.cpp, asn1 tm.cpp – define
various ASN1 objects, i.e. classes derived from ASN1 Object.

• int/pem.h, pem.cpp – core functions for PEM encoding.

18

Figure 6: Inheritance graph for ASN1 Object

13 CVC

Card verifiable certificates according to EAC 1.1 are realized by the inheritance
hierarchy depicted in Figure 7.

Figure 7: Inheritance graph for EAC1 1 obj

13.1 Related Header and Source Files

• api/eac obj.h – defines the abstract base class for all EAC1 1 objects.
It is derived from Signed Object which is also the base class for all X509
signed objects.

• api/cvc ado.h, cvc ado.cpp – define the class EAC1 1 ADO.

• api/cvc gen cert – define the abstract base class for both CVC requests
and certificates (see below). This class holds the functionality that is
shared among both derived classes.

19

• api/cvc cert.h, cvc cert.cpp – define the class EAC1 1 CVC, i.e. the
actual certificates.

• api/cvc req.h, cvc req.cpp – define the class EAC1 1 Req which repre-
sents CVC requests.

• api/cvc ca.h, cvc ca.cpp – define a CA class that has one static function
which enables the creation of CVCs.

• api/cvc self.h, cvc self.cpp – contain a number of convenience func-
tions to produce certificates from certificate requests.

• api/cvc key.h – define the abstract public key encoder and decoder for
CVCs. Both must be implemented for each public key class that is sup-
posed to work with CVCs.

14 X509

The library supports X509 Certificates, PKCS#10-Requests and CRLs. The
inheritance hierarchy is shown in Figure 8. All classes belonging to this scope
are well documented in the API Documentation.

Figure 8: Inheritance graph for X509 Object

14.1 Related Header and Source Files

• api/x509 obj.h, x509 obj.cpp – abstract base class X509 Object for all
X509 objects.

• api/x509 ca.h, x509 ca.cpp – define the X509 CA class.

• api/x509 crl.h, x509 crl.cpp – define the X509 CRL class.

• int/crl ent.h, crl ent.cpp – define the CRL Entry class.

• api/x509 key.h, x509 key.cpp – abstract base classes for X509 public
key encoders and decoders. As in the case of CVC, each public key class
has to define derived classes of those base classes in order to support X509
certificates.

20

• api/x509cert.h, x509cert.cpp – X509 Certificate class.

• api/x509self.h, x509self.cpp, x509opt.cpp – define the class
X509 Cert Options and functions for the creation of X509 objects.

• int/x509 ext.h, x509 ext.cpp – contains various classes that represent
X509 certificate extensions.

• int/x509stat.h, x509stat.cpp – define the X509 GlobalState class
which manages the default set of X509 certificate extensions.

• api/pkcs10.h, pkcs10.cpp – define the class PKCS10 Request.

• int/certstor.h, certstor.cpp – define an abstract certificate store
class.

• int/x509stor.h, x509stor.cpp – define a X509 certificate store used in
X509 self test.

• int/x509find.h, x509.cpp – define search algorithms for the above X509
certificate store.

15 Miscellaneous and Utility

In this section, all files are covered that do not fit into any of the other sections.

15.1 Related Header and Source Files

• api/botan.h – this file simply includes other generally needed header files
of the library.

• int/charset.h, charset.cpp – contain a character set transcoder ab-
stract base class used by the library.

• int/def char.h, def char.cpp – the libraries default character set
transcoder.

• int/datastor.h, datastor.h – define a DataStore class used inside the
library, for instance by the X509 certificate functionality.

• int/dsa gen.cpp – provides functions used by certain public key classes.

• api/exceptn.h, exceptn.cpp – define the libraries exception classes.

• int/fips140.h, fips140.cpp – define functions for performing a self
test, which can be triggered at the library initialization when the
LibraryInitializer is configured accordingly.

• int/loadstor.h – defines byte manipulation functions.

21

• int/mutex.h, mutex.cpp – define mutex objects for thread safety. Plat-
form specific implementation are found in the modules directory.

• api/oids.h, oids.cpp – define lookup functions for OIDs.

• int/parsing.h, parsing.cpp – define utility functions for string parsing
used internally by the library.

• api/signed obj.h, signed obj.cpp – define Signed Object, the base
class for all CVC and X509 objects.

• int/stl util.h – the Standard Template Library related utility functions
used in the library.

• int/symkey.h, symkey.cpp – define an OctetString class.

• int/ta.h, ta.cpp – maintain global counters that are used for side chan-
nel resistance tests of EC algorithms. Counters are only affected if corre-
sponding compiler flags are enabled. Refer to [5].

• int/timers.h, timers.cpp – define time related utility functions.

• int/ui.h, ui.cpp – define a default user interface for password dialogues.

• int/util.h, util.cpp – define utility functions used internally by the
library.

• api/version.h, version.cpp – define functions for retrieving the library
version.

22

References

[1] Technical Guideline TR-03111 “Elliptic Curce Cryptography Based on ISO
15946”, Version 1.00, 14.02.2007, Bundesamt fr Sicherheit in der Informa-
tionstechnik

[2] http://botan.randombit.net/

[3] http://www.flexsecure.eu/insito/index.html

[4] InSiTo Library User Manual

[5] Falko Strenzke und Patrick Sona: “AP5 - QS/Tests - Dokumentation
InSiTo-Bibliothek, Version 1.4”, 2008

23

Index

adler32.cpp, 14
adler32.h, 14
aes.cpp, 14
aes.h, 14
aes tab.cpp, 14
alg amd64, 3
alg ia32, 3
alg id.cpp, 12
alg id.h, 12
AlgorithmIdentifier, 12
allocate.h, 6
ANSI X931 RNG, 16
asn1 alt.cpp, 18
asn1 att.cpp, 18
asn1 dn.cpp, 18
asn1 eac str.cpp, 18
asn1 eac tm.cpp, 18
asn1 int.cpp, 18
asn1 int.h, 18
asn1 ku.cpp, 18
asn1 obj.h, 18
ASN1 Object, 18
asn1 oid.cpp, 18
asn1 oid.h, 18
asn1 str.cpp, 18
asn1 tm.cpp, 18
auto ptr, 5

base.cpp, 13, 16
base.h, 13, 16
base64.cpp, 8
base64.h, 8
basefilt.cpp, 8
basefilt.h, 8
bbs.cpp, 16
bbs.h, 16
ber dec.cpp, 18
ber dec.h, 18
BigInt, 18
bigint.cpp, 18
bigint.h, 18
bigint code.cpp, 18
bigint io.cpp, 18

bigint ops3.cpp, 18
bigint rand.cpp, 18
bigintfuncs.cpp, 18
bigintfuncs.h, 18
Blinder, 13
blinding.cpp, 12
blinding.h, 12, 13
BlockCipher, 13
BlockCipherMode, 15
botan.h, 21
buf es.cpp, 17
buf es.h, 17
buf filt.cpp, 8
buf filt.h, 8
BufferedEntropySource, 17
Builtin Modules, 4

cbc.cpp, 15
cbc.h, 15
cbc mac.cpp, 15
cbc mac.h, 15
certificate extension, 21
certstor.cpp, 21
certstor.h, 21
cfb.h, 15
charset.cpp, 21
charset.h, 21
cmac.cpp, 15
cmac.h, 15
comp bzip2, 4
comp zlib, 4
config.cpp, 4
config.h, 4
configuration, 4
crc24.cpp, 14
crc24.h, 14
crc32.cpp, 14
crc32.h, 14
crl ent.cpp, 20
crl ent.h, 20
CRL Entry, 20
ctr.cpp, 15
ctr.h, 15

24

cts.cpp, 15
cts.h, 15
curve gfp.cpp, 18
curve gfp.h, 18
CurveGFp, 18
cvc ado.cpp, 19
cvc ado.h, 19
cvc ca.cpp, 20
cvc ca.h, 20
cvc cert.cpp, 20
cvc cert.h, 20
cvc gen cert, 19
cvc key.h, 20
cvc req.cpp, 20
cvc req.h, 20
cvc self.cpp, 20
cvc self.h, 20

data snk.cpp, 8
data snk.h, 8
data src.cpp, 8
data src.h, 8
DataSource, 8
DataSource Memory, 8
DataSource Stream, 8
datastor.h, 21
DataStore, 21
def char.cpp, 21
def char.h, 21
def mode.cpp, 10
def ops.cpp, 10, 12
def ops.h, 12
defalloc.cpp, 6
defalloc.h, 6
Default Engine, 10
der enc.cpp, 18
der enc.h, 18
DES, 14
des.cpp, 14
des.h, 14
des tab.cpp, 14
DESX, 14
dh.h, 11
dl algo.h, 11
DL Group, 11
dl group.cpp, 11

dl group.h, 11
dsa gen.cpp, 21

EAC1 1 ADO, 19
EAC1 1 CVC, 20
EAC1 1 Req, 20
eac obj.h, 19
eax.cpp, 15
eax.h, 15
ec.h, 11
EC Domain Params, 11
ec dompar.cpp, 11
ec dompar.h, 11
ecb.cpp, 15
ecb.h, 15
ECDSA, 11
ecdsa.cpp, 11
ecdsa.h, 11
ECDSA Core, 10
ECDSA PrivateKey, 10
ECDSA PublicKey, 10
ECDSA Signature, 11
ECKAEG, 11
EME, 12
eme.h, 12
eme1.h, 12
eme pkcs.cpp, 12
EMSA, 12
emsa.h, 12
emsa1.cpp, 12
emsa1 bsi.cpp, 12
emsa2.cpp, 12
emsa3.cpp, 12
emsa4.cpp, 12
emsa raw.cpp, 12
eng base.cpp, 10
eng def.h, 10
Engine, 10
engine.cpp, 10
engine.h, 10
EntropySource, 16
enums.h, 5
es beos.cpp, 17
es beos.h, 17
es capi.cpp, 17
es capi.h, 17

25

es egd.cpp, 17
es egd.h, 17
es file.cpp, 17
es file.h, 17
es unix.cpp, 17
es unix.h, 17
es win32.cpp, 17
es win32.h, 17
exceptn.cpp, 21
exceptn.h, 21

fd unix, 3
Filter, 5, 8
filter.cpp, 8
filter.h, 8
filters.cpp, 8
filters.h, 8
fips140.cpp, 21
fips140.h, 21
freestore.h, 5

get algo.cpp, 13
get enc.cpp, 13
get pbe.cpp, 15
gfp element.cpp, 18
gfp element.h, 18
gfp modulus.h, 18
GFpElement, 18
GFpModulus, 18

hash id, 15
hash id.cpp, 15
HashFunction, 13
hex.cpp, 8
hex.h, 8
hmac.cpp, 15
hmac.h, 15

if algo.cpp, 11
if algo.h, 11
inifile.cpp, 4
init.h, 4
init def.cpp, 4, 16
init opt.cpp, 4
InitializerOptions, 7

KDF, 12

kdf.cpp, 15
kdf.h, 15
Keyed Filter, 13
keypair.cpp, 12
keypair.h, 12

LibraryInitializer, 7
libstate.cpp, 4
libstate.h, 4
loadstor.h, 21
Locking Allocator, 6
look pk.cpp, 12
look pk.h, 12
lookup.h, 13

MAC, 15
Malloc Allocator, 6
mdx hash.cpp, 14
mdx hash.h, 14
mem ops.h, 7
mem pool.cpp, 6
mem pool.h, 6
memory allocation, 6
memory locking, 6
MessageAuthenticationCode, 13
MGF, 12
mgf1.cpp, 15
mgf1.h, 15
mlock.cpp, 6
mode pad.cpp, 15
mode pad.h, 15
modebase.h, 15
modules, 17
modules.cpp, 4
modules.h, 4
mp types.h, 18
mutex.cpp, 22
mutex.h, 22

OctetString, 22
ofb.cpp, 15
ofb.h, 15
oids.cpp, 22
oids.h, 22
out buf.cpp, 9
out buf.h, 9

26

Output Buffer, 9

par hash, 14
par hash.cpp, 14
parsing.cpp, 22
parsing.h, 22
pbe.h, 15
pbe pkcs5.h, 15
pbes1.cpp, 15
pbes2.cpp, 15
pem.cpp, 18
pem.h, 18
Pipe, 8
pipe.cpp, 8
pipe.h, 8
pipe io.cpp, 8
pipe rw.cpp, 8
pk algs.cpp, 12
pk algs.h, 12
pk core.cpp, 12, 13
pk core.h, 12
pk filts.cpp, 8
pk filts.h, 8
pk keys.cpp, 11
pk keys.h, 11
pk util.cpp, 12
pk util.h, 12
pkcs10.cpp, 21
pkcs10.h, 21
PKCS10 Request, 21
pkcs5.cpp, 15
pkcs5.h, 15
pkcs8.cpp, 12
pkcs8.h, 12
point gfp.cpp, 18
point gfp.h, 18
PointGFp, 18
policy.cpp, 5
Pooling Allocator, 6
Private Key, 11
pubkey.cpp, 12
pubkey.h, 12
Public Key, 11

RandomNumberGenerator, 16
Randpool, 17

randpool.cpp, 17
randpool.h, 17
rmd160.cpp, 14
rmd160.h, 14
RNG, 16
rng.cpp, 17
rng.h, 17
rsa.cpp, 11
rsa.h, 11

s2k.cpp, 15
s2k.h, 15
secmem.h, 6
secqueue.cpp, 9
secqueue.h, 9
secure memory, 6
SecureQueue, 9
sha160.cpp, 14
sha160.h, 14
SHA1PRNG, 16
sha1prng.cpp, 16
sha1prng.h, 16
sha256.cpp, 14
sha256.h, 14
sha 64.cpp, 14
sha 64.h, 14
shared ptr, 5
SharedPtrConverter, 5
signed obj.cpp, 22
signed obj.h, 22
Signed Object, 19, 22
slowpoll, 16
stl util.h, 22
StreamCipher, 13
symkey.cpp, 22
symkey.h, 22

ta.cpp, 22
ta.h, 22
timers.cpp, 22
timers.h, 22
tr1 inclusion, 4
TripleDES, 14
types.h, 5

ui.cpp, 22

27

ui.h, 22
unix src.cpp, 17
util.cpp, 22
util.h, 22

version.cpp, 22
version.h, 22

x509.cpp, 21
X509 CA, 20
x509 ca.cpp, 20
x509 ca.h, 20
X509 Cert Options, 21
X509 Certificate, 21
X509 CRL, 20
x509 crl.cpp, 20
x509 crl.h, 20
x509 ext.cpp, 21
x509 ext.h, 21
X509 GlobalState, 21
x509 key.cpp, 20
x509 key.h, 20
x509 obj.cpp, 20
x509 obj.h, 20
x509cert.cpp, 21
x509cert.h, 21
x509find.h, 21
x509opt.cpp, 21
x509self.cpp, 21
x509self.h, 21
x509stat.cpp, 21
x509stat.h, 21
x509stor.cpp, 21
x509stor.h, 21
x919 mac.cpp, 15
x919 mac.h, 15
x931 rng.cpp, 16
x931 rng.h, 16

28

