Botan Tutorial

Jack Lloyd
lloyd@randombit.net
2009/07/08
Contents
1 Introduction
2 Initializing the Library
3 Hashing a File
4 Symmetric Cryptography
4.1 Encryption with a passphrase e
4.1.1 First try . . . o e e e
4.1.2 Problem 1: Buffering
4.1.3 Problem 2: Deriving the key and IV o .
4.1.4 Problem 3: Protecting against modification 0oL
4.1.5 Problem 4: Cleaning up the key generation
4.1.6 Final version e
4.1.7 Another buffering technique L oL
4.2 Authentication L
4.3 User Authentication L
5 Public Key Cryptography
5.1 Basic Operations e
5.1.1 Encryption
5.1.2 Decryption L e
5.1.3 Signature Generation Lo
5.1.4 Signature Verification L L
515 Key Agreement
5.2 Working with Keys o e
5.2.1 Reading Public Keys (X.509 format)
5.2.2 Reading Private Keys (PKCS #8 format)
5.2.3 Generating New Private Keys
6 X.509v3 Certificates
6.1 Importing and Exporting Certificates L o o
6.2 Verifying Certificates L
6.3 Settingup a CA e
7 Special Topics
T1 GUIS . . . o e
7.1.1 Imitialization L
7.1.2 Interacting With the Library L oo
7.1.3 Entropy e

N O UTUU R W W W N

o o ©

1 Introduction

This document essentially sets up various simple scenarios and then shows how to solve the problems using
Botan. It’s fairly simple, and doesn’t cover many of the available APIs and algorithms, especially the more
obscure or unusual ones. It is a supplement to the API documentation and the example applications, which
are included in the distribution.

To quote the Perl man page: "“There’s more than one way to do it.” Divining how many more is left as
an exercise to the reader.’

This is not a general introduction to cryptography, and most simple terms and ideas are not explained
in any great detail.

Finally, most of the code shown in this tutorial has not been tested, it was just written down from
memory. If you find errors, please let me know.

2 Initializing the Library

The first step to using Botan is to create a LibraryInitializer object, which handles creating various
internal structures, and also destroying them at shutdown. Essentially:

#include <botan/botan.h>
/* include other headers here */

int main()
{
LibraryInitializer init;
/* now do stuff */
return O;

}

3 Hashing a File

4 Symmetric Cryptography

4.1 Encryption with a passphrase

Probably the most common crypto problem is encrypting a file (or some data that is in-memory) using a
passphrase. There are a million ways to do this, most of them bad. In particular, you have to protect against
weak passphrases, people reusing a passphrase many times, accidental and deliberate modification, and a
dozen other potential problems.

We'll start with a simple method that is commonly used, and show the problems that can arise. Each
subsequent solution will modify the previous one to prevent one or more common problems, until we arrive
at a good version.

In these examples, we’ll always use Serpent in Cipher-Block Chaining (CBC) mode. Whenever we need a
hash function, we’ll use SHA-256, since that is a common and well-known hash that is thought to be secure.

In all examples, we choose to derive the Initialization Vector (IV) from the passphrase. Another (probably
more common) alternative is to generate the IV randomly and include it at the beginning of the message.
Either way is acceptable, and can be secure. The method used here was chosen to make for more interesting
examples (because it’s harder to get right), and may not be an appropriate choice for some environments.

First, some notation. The passphrase is stored as a std::string named passphrase. The input and
output files (infile and outfile) are of types std::ifstream and std::ofstream (respectively).

4.1.1 First try

We hash the passphrase with SHA-256, and use the resulting hash to key Serpent. To generate the IV, we
prepend a single ’0’ character to the passphrase, hash it, and truncate it to 16 bytes (which is Serpent’s
block size).

HashFunction* hash = get_hash("SHA-256");

SymmetricKey key = hash->process(passphrase);
SecureVector<byte> raw_iv = hash->process(’0’ + passphrase);
InitializationVector iv(raw_iv, 16);

Pipe pipe(get_cipher("Serpent/CBC/PKCS7", key, iv, ENCRYPTION));

pipe.start_msg();
infile >> pipe;
pipe.end_msg();
outfile << pipe;

4.1.2 Problem 1: Buffering

There is a problem with the above code, if the input file is fairly large as compared to available memory.
Specifically, all the encrypted data is stored in memory, and then flushed to outfile in a single go at the very
end. If the input file is big (say, a gigabyte), this will be most problematic.

The solution is to use a DataSink to handle the output for us (writing to outfile will be implicit with
writing to the Pipe). We can do this by replacing the last few lines with:

Pipe pipe(get_cipher("Serpent/CBC/PKCS7", key, iv, ENCRYPTION),
new DataSink_Stream(outfile));

pipe.start_msg();
infile >> pipe;
pipe.end_msg();

4.1.3 Problem 2: Deriving the key and IV

Hash functions like SHA-256 are deterministic; if the same passphrase is supplied twice, then the key (and
in our case, the IV) will be the same. This is very dangerous, and could easily open the whole system up to
attack. What we need to do is introduce a salt (or nonce) into the generation of the key from the passphrase.
This will mean that the key will not be the same each time the same passphrase is typed in by a user.

There is another problem with using a bare hash function to derive keys. While it’s inconceivable (based
on our current understanding of thermodynamics and theories of computation) that an attacker could brute-
force a 256-bit key, it would be fairly simple for them to compute the SHA-256 hashes of various common
passwords (’password’, the name of the dog, the significant other’s middle name, favorite sports team) and
try those as keys. So we want to slow the attacker down if we can, and an easy way to do that is to iterate
the hash function a bunch of times (say, 1024 to 4096 times). This will involve only a small amount of effort
for a legitimate user (since they only have to compute the hashes once, when they type in their passphrase),
but an attacker, trying out a large list of potential passphrases, will be seriously annoyed (and slowed down)
by this.

In this iteration of the example, we’ll kill these two birds with one stone, and derive the key from
the passphrase using a S2K (string to key) algorithm (these are also often called PBKDF algorithms, for
Password-Based Key Derivation Function). In this example, we use PBKDF2 with Hash Message Authen-
tication Code (HMAC(SHA-256)), which is specified in PKCS #5. We replace the first four lines of code
from the first example with:

S2K* s2k = get_s2k("PBKDF2(SHA-256)");

// hard-coded iteration count for simplicity; should be sufficient
s2k->set_iterations(4096) ;

// 8 octets == 64-bit salt; again, good enough
s2k->new_random_salt(8) ;

SecureVector<byte> the_salt = s2k->current_salt();

// 48 octets == 32 for key + 16 for IV
SecureVector<byte> key_and_IV = s2k->derive_key(48, passphrase).bits_of();

SymmetricKey key(key_and_IV, 32);
InitializationVector iv(key_and_IV + 32, 16);

To complete the example, we have to remember to write out the salt (stored in the_salt) at the beginning
of the file. The receiving side needs to know this value in order to restore it (by calling the s2k object’s
change_salt function) so it can derive the same key and IV from the passphrase.

4.1.4 Problem 3: Protecting against modification

As it is, an attacker can undetectably alter the message while it is in transit. It is vital to remember that
encryption does not imply authentication (except when using special modes that are specifically designed
to provide authentication along with encryption, like OCB and EAX). For this purpose, we will append a
message authentication code to the encrypted message. Specifically, we will generate an extra 256 bits of
key data, and use it to key the “HMAC(SHA-256)” MAC function. We don’t want to have the MAC and
the cipher to share the same key; that is very much a no-no.

// 80 octets == 32 for cipher key + 16 for IV + 32 for hmac key
SecureVector<byte> keys_and_IV = s2k->derive_key(80, passphrase);

SymmetricKey key(keys_and_IV, 32);
InitializationVector iv(keys_and_IV + 32, 16);
SymmetricKey mac_key(keys_and_IV + 32 + 16, 32);

Pipe pipe(new Fork(

new Chain(
get_cipher ("Serpent/CBC/PKCS7", key, iv, ENCRYPTION),
new DataSink_Stream(outfile)
),

new MAC_Filter ("HMAC(SHA-256)", mac_key)

)

);

pipe.start_msg(Q);
infile >> pipe;

pipe.end_msg();

// now read the MAC from message #2. Message numbers start from O

SecureVector<byte> hmac = pipe.read_all(l);
outfile.write((const char*)hmac.ptr(), hmac.size());

The receiver can check the size of the file (in bytes), and since it knows how long the MAC is, can
figure out how many bytes of ciphertext there are. Then it reads in that many bytes, sending them to
a Serpent/CBC decryption object (which could be obtained by calling get_cipher with an argument of
DECRYPTION instead of ENCRYPTION), and storing the final bytes to authenticate the message with.

4.1.5 Problem 4: Cleaning up the key generation

The method used to derive the keys and IV is rather inelegant, and it would be nice to clean that up a bit,
algorithmically speaking. A nice solution for this is to generate a master key from the passphrase and salt,
and then generate the two keys and the IV (the cryptovariables) from that.

Starting from the master key, we derive the cryptovariables using a KDF algorithm, which is designed,
among other things, to “separate” keys so that we can derive several different keys from the single master
key. For this purpose, we will use KDF2, which is a generally useful KDF function (defined in IEEE 1363a,
among other standards). The use of different labels (“cipher key”, etc) makes sure that each of the three
derived variables will have different values.

S2K* s2k = get_s2k("PBKDF2(SHA-256)");

// hard-coded iteration count for simplicity; should be sufficient
s2k->set_iterations (4096) ;

// 8 octet == 64-bit salt; again, good enough
s2k->new_random_salt(8);

// store the salt so we can write it to a file later
SecureVector<byte> the_salt = s2k->current_salt();

SymmetricKey master_key = s2k->derive_key(48, passphrase);
KDF* kdf = get_kdf ("KDF2(SHA-256)");
SymmetricKey key = kdf->derive_key(32, master_key, "cipher key");

SymmetricKey mac_key = kdf->derive_key(32, master_key, "hmac key");
InitializationVector iv = kdf->derive_key(16, master_key, "cipher iv");

4.1.6 Final version

Here is the final version of the encryption code, with all the changes we’ve made:

S2K* s2k = get_s2k("PBKDF2(SHA-256)");
s2k->set_iterations(4096) ;
s2k->new_random_salt(8);

SecureVector<byte> the_salt = s2k->current_salt();

SymmetricKey master_key = s2k->derive_key(48, passphrase);
KDF* kdf = get_kdf ("KDF2(SHA-256)");
SymmetricKey key = kdf->derive_key(32, master_key, "cipher key");

SymmetricKey mac_key = kdf->derive_key(32, masterkey, "hmac key");
InitializationVector iv = kdf->derive_key(16, masterkey, "cipher iv");

Pipe pipe(new Fork(
new Chain(

get_cipher("Serpent/CBC/PKCS7", key, iv, ENCRYPTION),

new DataSink_Stream(outfile)

),
new MAC_Filter ("HMAC(SHA-256)", mac_key)

)
)

outfile.write((const char*)the_salt.ptr(), the_salt.size());
pipe.start_msg();
infile >> pipe;

pipe.end_msg();

SecureVector<byte> hmac = pipe.read_all(1l);
outfile.write((const char*)hmac.ptr(), hmac.size());

4.1.7 Another buffering technique

Sometimes the use of DataSink Stream is not practical for whatever reason.

In this case, an alternate

buffering mechanism might be useful. Here is some code which will write all the processed data as quickly

as possible, so that memory pressure is reduced in the case of large inputs.

pipe.start_msg();
SecureBuffer<byte, 1024> buffer;
while(infile.good())
{
infile.read((char*)buffer.ptr(), buffer.size());
u32bit got_from_infile = infile.gcount();
pipe.write(buffer, got_from_infile);

if(infile.eof())
pipe.end_msg();

while(pipe.remaining() > 0)
{
u32bit buffered = pipe.read(buffer, buffer.size());
outfile.write((const char*)buffer.ptr(), buffered);
}

}
if(infile.bad() || (infile.fail() && !infile.eof()))

throw Some_Exception();

4.2 Authentication

After doing the encryption routines, doing message authentication keyed off a passphrase is not very difficult.
In fact it’s much easier than the encryption case, for the following reasons: a) we only need one key, and
b) we don’t have to store anything, so all the input can be done in a single step without worrying about it
taking up a lot of memory if the input file is large.

In this case, we’ll hex-encode the salt and the MAC, and output them both to standard output (the salt
followed by the MAC).

S2K* s2k = get_s2k("PBKDF2(SHA-256)");
s2k->set_iterations (4096) ;
s2k->new_random_salt(8);

OctetString the_salt = s2k->current_salt();

SymmetricKey hmac_key = s2k->derive_key(32, passphrase);

Pipe pipe(new MAC_Filter ("HMAC(SHA-256)", mac_key),
new Hex_Encoder

)
std::cout << the_salt.to_string(); // hex encoded

pipe.start_msg();

infile >> pipe;

pipe.end_msg();

std::cout << pipe.read_all_as_string() << std::endl;

4.3 User Authentication

Doing user authentication off a shared passphrase is fairly easy. Essentially, a challenge-response protocol
is used - the server sends a random challenge, and the client responds with an appropriate response to the
challenge. The idea is that only someone who knows the passphrase can generate or check to see if a response
is valid.

Let’s say we use 160-bit (20 byte) challenges, which seems fairly reasonable. We can create this challenge
using the global random number generator (RNG):

byte challenge[20];
Global_RNG: :randomize(challenge, sizeof (challenge), Nonce);
// send challenge to client

After reading the challenge, the client generates a response based on the challenge and the passphrase. In
this case, we will do it by repeatedly hashing the challenge, the passphrase, and (if applicable) the previous
digest. We iterate this construction 4096 times, to make brute force attacks on the passphrase hard to do.
Since we are already using 160-bit challenges, a 160-bit response seems warranted, so we’ll use SHA-1.

HashFunction* hash = get_hash("SHA-1");
SecureVector<byte> digest;
for(u32bit j = 0; j != 4096; j++)
{
hash->update(digest, digest.size());
hash->update (passphrase) ;
hash->update(challenge, challenge.size());

digest = hash->final();
3
delete hash;
// send value of digest to the server

Upon receiving the response from the client, the server computes what the response should have been
based on the challenge it sent out, and the passphrase. If the two responses match, the client is authenticated.
Otherwise, it is not.

An alternate method is to use PBKDF2 again, using the challenge as the salt. In this case, the response
could (for example) be the hash of the key produced by PBKDF2. There is no reason to have an explicit
iteration loop, as PBKDF2 is designed to prevent dictionary attacks (assuming PBKDF?2 is set up for a large
iteration count internally).

5 Public Key Cryptography

5.1 Basic Operations

In this section, we’ll assume we have a X5609_PublicKey* named pubkey, and, if necessary, a private key type
(a PKCS8_PrivateKey*) named privkey. A description of these types, how to create them, and related details
appears later in this tutorial. In this section, we will use various functions that are defined in look_pk.h —
you will have to include this header explicitly.

5.1.1 Encryption

Basically, pick an encoding method, create a PK_Encryptor (with get_pk_encryptor()), and use it. But
first we have to make sure the public key can actually be used for public key encryption. For encryption
(and decryption), the key could be RSA, ElGamal, or (in future versions) some other public key encryption
scheme, like Rabin or an elliptic curve scheme.

PK_Encrypting Key* key = dynamic_cast<PK_Encrypting_Key*>(pubkey) ;
if (tkey)

error();
PK_Encryptor* enc = get_pk_encryptor(xkey, "EME1(SHA-256)");

byte msgl]l = { /* ... %/ };

// will also accept a SecureVector<byte> as input
SecureVector<byte> ciphertext = enc->encrypt(msg, sizeof (msg));

5.1.2 Decryption

This is essentially the same as the encryption operation, but using a private key instead. One major difference
is that the decryption operation can fail due to the fact that the ciphertext was invalid (most common
padding schemes, such as “EME1(SHA-256)”, include various pieces of redundancy, which are checked after
decryption).

PK_Decrypting Key* key = dynamic_cast<PK_Decrypting Key*>(privkey) ;
if (tkey)

error();
PK_Decryptor* dec = get_pk_decryptor (xkey, "EME1(SHA-256)");

byte msgll = { /*x ... */ };
SecureVector<byte> plaintext;

try {
// will also accept a SecureVector<byte> as input
plaintext = dec->decrypt(msg, sizeof (msg));

}

catch(Decoding_Error)

{

/* the ciphertext was invalid */

}

5.1.3 Signature Generation

There is one difficulty with signature generation that does not occur with encryption or decryption. Specif-
ically, there are various padding methods which can be useful for different signature algorithms, and not all
are appropriate for all signature schemes. The following table breaks down what algorithms support which
encodings:

Signature Algorithm Usable Encoding Methods Preferred Encoding(s)
DSA / NR EMSA1 EMSA1
RSA EMSA1, EMSA2, EMSA3, EMSA4 EMSA3, EMSA4
Rabin-Williams EMSA2, EMSA4 EMSA2, EMSA4

For new applications, use EMSA4 with both RSA and Rabin-Williams, as it is significantly more se-
cure than the alternatives. However, most current applications/libraries only support EMSA2 with Rabin-
Williams and EMSA3 with RSA. Given this, you may be forced to use less secure encoding methods for the
near future. In these examples, we punt on the problem, and hard-code using EMSA1 with SHA-256.

PK_Signing_Key* key = dynamic_cast<PK_Signing_Key*>(privkey);
if ('key)

error();
PK_Signer* signer = get_pk_signer (*key, "EMSA1(SHA-256)");

byte msgl]l = { /* ... x/ };

/*

You can also repeatedly call update(const byte[], u32bit), followed
by a call to signature(), which will return the final signature of
all the data that was passed through update(). sign_message() is
just a stub that calls update() once, and returns the value of
signature().

*/

SecureVector<byte> signature = signer->sign_message(msg, sizeof (msg));

10

5.1.4 Signature Verification

In addition to all the problems with choosing the correct padding method, there is yet another complication
with verifying a signature. Namely, there are two varieties of signature algorithms - those providing message
recovery (that is, the value that was signed can be directly recovered by someone verifying the signature),
and those without message recovery (the verify operation simply returns if the signature was valid, without
telling you exactly what was signed). This leads to two slightly different implementations of the verification
operation, which user code has to work with. As you can see however, the implementation is still not at all
difficult.

PK_Verifierx verifier = 0;

PK_Verifying with_MR_Key* keyl =
dynamic_cast<PK_Verifying_with_MR_Key*>(pubkey) ;

PK_Verifying_wo_MR_Key* key2 =
dynamic_cast<PK_Verifying wo_MR_Key*>(pubkey) ;

if (keyl)

verifier = get_pk_verifier(xkeyl, "EMSA1(SHA-256)");
else if (key2)

verifier = get_pk_verifier(xkey2, "EMSA1(SHA-256)");
else

error();

byte msgl]l = { /* ... %/ };
byte sigl[] ;

]
-
N~

*

*
~
()

/*
Like PK_Signer, you can also do repeated calls to
void update(const byte some_datal]l, u32bit length)
followed by a call to
bool check_signature(const byte the_sig[], u32bit length)
which will return true (valid signature) or false (bad signature).
The function verify_message() is a simple wrapper around update() and
check_signature().

*/

bool is_valid = verifier->verify_message(msg, sizeof (msg), sig, sizeof(sig));

5.1.5 Key Agreement

WRITEME

11

5.2 Working with Keys
5.2.1 Reading Public Keys (X.509 format)

There are two separate ways to read X.509 public keys. Remember that the X.509 public keys are simply
that: public keys. There is no associated information (such as the owner of that key) included with the
public key itself. If you need that kind of information, you’ll need to use X.509 certificates.

However, there are surely times when a simple public key is sufficient. The most obvious is when the
key is implicitly trusted, for example if access and/or modification of it is controlled by something else (like
filesystem ACLs). In other cases, it is a perfectly reasonable proposition to use them over the network as
an anonymous key exchange mechanism. This is, admittedly, vulnerable to man-in-the-middle attacks, but
it’s simple enough that it’s hard to mess up (see, for example, Peter Guttman’s paper “Lessons Learned in
Implementing and Deploying Crypto Software” in Usenix ’02).

The way to load a key is basically to set up a DataSource and then call X509::load_key, which will
return a X509_PublicKey*. For example:

DataSource_Stream somefile("somefile.pem"); // has 3 public keys
X509_PublicKey* keyl = X509::load_key(somefile);

X509_PublicKey* key2 = X509::load_key(somefile);

X509_PublicKey* key3 = X509::load_key(somefile);

// Now we have them all loaded. Huzah!

At this point you can use dynamic_cast to find the operations the key supports (by seeing if a cast to
PK_Encrypting Key, PK_Verifying with MR Key, or PK_Verifying wo_MR_Key succeeds).

There is a variant of X509::1load_key (and of PKCS8::load_key, described in the next section) which
take a filename (as a std::string). These are just convenience functions which create the appropriate
DataSource for you and call the main X509::load_key.

5.2.2 Reading Private Keys (PKCS #8 format)

This is very similar to reading raw public keys, with the difference that the key may be encrypted with a
user passphrase:

// rng is a RandomNumberGenerator, like AutoSeeded_RNG

DataSource_Stream somefile("somefile");
std::string a_passphrase = /* get from the user */
PKCS8_PrivateKey* key = PKCS8::load_key(somefile, rng, a_passphrase);

You can, by the way, convert a PKCS8_PrivateKey to a X509_PublicKey simply by casting it (with
dynamic_cast), as the private key type is derived from X509 PublicKey. As with X509 PublicKey, you
can use dynamic_cast to figure out what operations the private key is capable of; in particular, you can
attempt to cast it to PK_Decrypting Key, PK_Signing Key, or PK_Key_Agreement_Key.

Sometimes you can get away with having a static passphrase passed to load_key. Typically, however,
you’ll have to do some user interaction to get the appropriate passphrase. In that case you’ll want to use
the UI related interface, which is fully described in the API documentation.

5.2.3 Generating New Private Keys

Generate a new private key is the one operation which requires you to explicitly name the type of key you
are working with. There are (currently) two kinds of public key algorithms in Botan: ones based on the

12

integer factorization (IF) problem (RSA and Rabin-Williams), and ones based on the discrete logarithm
(DL) problem (DSA, Diffie-Hellman, Nyberg-Rueppel, and ElGamal). Since discrete logarithm parameters
(primes and generators) can be shared among many keys, there is the notion of these being a combined type
(called DL_Group).

To create a new DL-based private key, simply pass a desired DL_Group to the constructor of the private
key - a new public/private key pair will be generated. Since in IF-based algorithms, the modulus used isn’t
shared by other keys, we don’t use this notion. You can create a new key by passing in a u32bit telling how
long (in bits) the key should be.

There are quite a few ways to get a DL_Group object. The best is to use the function get_dl_group,
which takes a string naming a group; it will either return that group, if it knows about it, or throw an
exception. Names it knows about include “IETF-n” where n is 768, 1024, 1536, 2048, 3072, or 4096, and
“DSA-n”, where n is 512, 768, or 1024. The IETF groups are the ones specified for use with IPSec, and the
DSA ones are the default DSA parameters specified by Java’s JCE. For DSA and Nyberg-Rueppel, use the
“DSA-n” groups, and for Diffie-Hellman and ElGamal, use the “IETF-n” groups.

You can also generate a new random group. This is not recommend, because it is very slow, particularly
for “safe” primes, which are needed for Diffie-Hellman and ElGamal.

Some examples:

RSA_PrivateKey rsal(512); // 512-bit RSA key
RSA_PrivateKey rsa2(2048); // 2048-bit RSA key

RW_PrivateKey rw1(1024); // 1024-bit Rabin-Williams key
RW_PrivateKey rw2(1536); // 1536-bit Rabin-Williams key

DSA_PrivateKey dsa(get_dl_group("DSA-512")); // 512-bit DSA key
DH_PrivateKey dh(get_dl_group("IETF-4096")); // 4096-bit DH key
NR_PrivateKey nr(get_dl_group("DSA-1024")); // 1024-bit NR key
ElGamal_PrivateKey elg(get_dl_group("IETF-1536")); // 1536-bit ElGamal key

To export your newly created private key, use the PKCS #8 routines in pkcs8.h:

std::string a_passphrase = /* get from the user */
std: :string the_key = PKCS8::PEM_encode(rsa2, a_passphrase);

You can read the key back in using PKCS8::load _key, described in the section “Reading Private Keys
(PKCS #8 format)”, above. Unfortunately, this only works with keys that have an assigned algorithm
identifier and standardized format. Currently this is only the RSA, DSA, DH, and ElGamal algorithms,
though RW and NR keys can also be imported and exported by assigning them an OID (this can be done
either through a configuration file, or by calling the function OIDS::add_oid in oids.h). Be aware that
the OID and format for ElGamal keys is not exactly standard, but there does exist at least one other crypto
library which will accept the format.

The raw public can be exported using:

std::string the_public_key = X509::PEM_encode(rsa2);

13

6 X.509v3 Certificates

Using certificates is rather complicated, so only the very basic mechanisms are going to be covered here.
The section “Setting up a CA” goes into reasonable detail about CRLs and certificate requests, but there is
a lot that isn’t covered (else this section would get quite long and complicated).

6.1 Importing and Exporting Certificates

Importing and exporting X.509 certificates is easy. Simply call the constructor with either a DataSourceg,
or the name of a file:

X509_Certificate certl("certl.pem");

/* This file contains two certificates, concatenated */
DataSource_Stream in("certs2_and_3.pem");

X509_Certificate cert2(in); // read the first cert
X509_Certificate cert3(in); // read the second cert

Exporting the certificate is a simple matter of calling the member function PEM _encode(), which
returns a std: :string containing the certificate in PEM encoding.

std::cout << cert3.PEM_encode();
some_ostream_object << certl.PEM_encode();
std::string cert2_str = cert2.PEM_encode();

6.2 Verifying Certificates

Verifying a certificate requires that we build up a chain of trust, starting from the root (usually a commercial
CA), down through some number of intermediate CAs, and finally reaching the actual certificate in question.
Thus, to verify, we actually have to have all those certificates on hand (or at the very least, know where we
can get the ones we need).

The class which handles both storing certificates, and verifying them, is called X509_Store. We'll start by
assuming that we have all the certificates we need, and just want to verify a cert. This is done by calling the
member function validate_cert, which takes the X509 _Certificate in question, and an optional argument
of type Cert_Usage (which is ignored here; read the section in the API doc titled “Verifying Certificates for
information). It returns an enum; X509_Code, which, for most purposes, is either VERIFIED, or something
else (which specifies what circumstance caused the certificate to be considered invalid). Really, that’s it.

Now, how to let X509_Store know about all those certificates and CRLs we have lying around? The
simplest method is to add them directly, using the functions add_cert, add_certs, add_trusted_certs,
and add_crl; for details, consult the API doc or read the x509stor.h header. There is also a much more
elegant and powerful method: Certificate_Stores. A certificate store refers to an object that knows how to
retrieve certificates from some external source (a file, an LDAP directory, a HTTP server, a SQL database,
or anything else). By calling the function add_new_certstore, you can register a new certificate store,
which X509_Store will use to find certificates it needs. Thus, you can get away with only adding whichever
root CA cert(s) you want to use, letting some online source handle the storage of all intermediate X.509
certificates. The API documentation has a more complete discussion of Certificate_Store.

6.3 Setting up a CA

WRITEME

14

7 Special Topics

This chapter is for subjects that don’t really fit into the API documentation or into other chapters of the
tutorial.

7.1 GUIs

There is nothing particularly special about using Botan in a GUI-based application. However there are a
few tricky spots, as well as a few ways to take advantage of an event-based application.

7.1.1 Initialization

Generally you will create the LibraryInitializer somewhere in main, before entering the event loop. One
problem is that some GUI libraries take over main and drop you right into the event loop; the question
then is how to initialize the library? The simplest way is probably to have a static flag that marks if you
have already initialized the library or not. When you enter the event loop, check to see if this flag has not
been set, and if so, initialize the library using the function-based initializers. Using LibraryInitializer
obviously won’t work in this case, since it would be destroyed as soon as the current event handler finished.
You then deinitialize the library whenever your application is signaled to quit.

7.1.2 Interacting With the Library

In the simple case, the user will do stuff asynchronously, and then in response your code will do things like
encrypt a file or whatever, which can all be done synchronously, since the data is right there for you. An
application doing something like this is basically going to look exactly like a command line application that
uses Botan, the only major difference being that the calls to the library are inside event handlers.

Much harder is something like an SSH client, where you're acting as a layer between two asynchronous
things (the user and the network). This actually isn’t restricted to GUIs at all (text-mode SSH clients have
to deal with most of the same problems), but it is probably more common with a GUI app. The following
discussion is fairly vague, but hopefully somewhat useful.

There are a few facilities in Botan that are primarily designed to be used by applications based on an
event loop. See the section “User Interfaces” in the main API doc for details.

7.1.3 Entropy

One nice advantage of using a GUI is opening a new method of gathering entropy for the library. This
is especially handy on Windows, where the available sources of entropy are pretty questionable. In many
versions, CryptGenRandom is really rather poor, and the Toolhelp functions may not provide much data on
a small system (such as a handheld). For example, in GTK+, you can use the following callback to get
information about mouse movements:

static gint add_entropy(GtkWidget* widget, GdkEventMotion* event)
{
if (event)
Global_RNG: :add_entropy(event, sizeof (GdkEventMotion));
return FALSE;
¥

And then register it with your main GTK window (presumably named window) as follows:

15

gtk_signal_connect (GTK_OBJECT (window), "motion_notify_event",
GTK_SIGNAL_FUNC(add_entropy), NULL);

gtk_widget_set_events(window, GDK_POINTER_MOTION_MASK) ;

Even though we’re catching all mouse movements, and hashing the results into the entropy pool, this
doesn’t use up more than a few percent of even a relatively slow desktop CPU. Note that in the case of using
X over a network, catching all mouse events would cause large amounts of X traffic over the network, which
might make your application slow, or even unusable (I haven’t tried it, though).

This could be made nicer if the collection function did something like calculating deltas between each
run, storing them into a buffer, and then when enough of them have been added, hashing them and send
them all to the PRNG in one shot. This would not only reduce load, but also prevent the PRNG from
overestimating the amount of entropy it’s getting, since its estimates don’t (can’t) take history into account.
For example, you could move the mouse back and forth one pixel, and the PRNG would think it was getting
a full load of entropy each time, when actually it was getting (at best) a bit or two.

16

