/* * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved. * Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca) * Copyright (C) 2009 Google Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include "config.h" #include "UString.h" #include "JSGlobalObjectFunctions.h" #include "Collector.h" #include "dtoa.h" #include "Identifier.h" #include "Operations.h" #include #include #include #include #include #include #include #include #include #include #include #if HAVE(STRING_H) #include #endif #if HAVE(STRINGS_H) #include #endif using namespace WTF; using namespace WTF::Unicode; using namespace std; // This can be tuned differently per platform by putting platform #ifs right here. // If you don't define this macro at all, then copyChars will just call directly // to memcpy. #define USTRING_COPY_CHARS_INLINE_CUTOFF 20 namespace JSC { extern const double NaN; extern const double Inf; // This number must be at least 2 to avoid sharing empty, null as well as 1 character strings from SmallStrings. static const int minLengthToShare = 10; static inline size_t overflowIndicator() { return std::numeric_limits::max(); } static inline size_t maxUChars() { return std::numeric_limits::max() / sizeof(UChar); } static inline UChar* allocChars(size_t length) { ASSERT(length); if (length > maxUChars()) return 0; return static_cast(tryFastMalloc(sizeof(UChar) * length)); } static inline UChar* reallocChars(UChar* buffer, size_t length) { ASSERT(length); if (length > maxUChars()) return 0; return static_cast(tryFastRealloc(buffer, sizeof(UChar) * length)); } static inline void copyChars(UChar* destination, const UChar* source, unsigned numCharacters) { #ifdef USTRING_COPY_CHARS_INLINE_CUTOFF if (numCharacters <= USTRING_COPY_CHARS_INLINE_CUTOFF) { for (unsigned i = 0; i < numCharacters; ++i) destination[i] = source[i]; return; } #endif memcpy(destination, source, numCharacters * sizeof(UChar)); } COMPILE_ASSERT(sizeof(UChar) == 2, uchar_is_2_bytes); CString::CString(const char* c) : m_length(strlen(c)) , m_data(new char[m_length + 1]) { memcpy(m_data, c, m_length + 1); } CString::CString(const char* c, size_t length) : m_length(length) , m_data(new char[length + 1]) { memcpy(m_data, c, m_length); m_data[m_length] = 0; } CString::CString(const CString& b) { m_length = b.m_length; if (b.m_data) { m_data = new char[m_length + 1]; memcpy(m_data, b.m_data, m_length + 1); } else m_data = 0; } CString::~CString() { delete [] m_data; } CString CString::adopt(char* c, size_t length) { CString s; s.m_data = c; s.m_length = length; return s; } CString& CString::append(const CString& t) { char* n; n = new char[m_length + t.m_length + 1]; if (m_length) memcpy(n, m_data, m_length); if (t.m_length) memcpy(n + m_length, t.m_data, t.m_length); m_length += t.m_length; n[m_length] = 0; delete [] m_data; m_data = n; return *this; } CString& CString::operator=(const char* c) { if (m_data) delete [] m_data; m_length = strlen(c); m_data = new char[m_length + 1]; memcpy(m_data, c, m_length + 1); return *this; } CString& CString::operator=(const CString& str) { if (this == &str) return *this; if (m_data) delete [] m_data; m_length = str.m_length; if (str.m_data) { m_data = new char[m_length + 1]; memcpy(m_data, str.m_data, m_length + 1); } else m_data = 0; return *this; } bool operator==(const CString& c1, const CString& c2) { size_t len = c1.size(); return len == c2.size() && (len == 0 || memcmp(c1.c_str(), c2.c_str(), len) == 0); } // These static strings are immutable, except for rc, whose initial value is chosen to // reduce the possibility of it becoming zero due to ref/deref not being thread-safe. static UChar sharedEmptyChar; UString::BaseString* UString::Rep::nullBaseString; UString::BaseString* UString::Rep::emptyBaseString; UString* UString::nullUString; static void initializeStaticBaseString(UString::BaseString& base) { base.rc = INT_MAX / 2; base.m_identifierTableAndFlags.setFlag(UString::Rep::StaticFlag); base.checkConsistency(); } void initializeUString() { UString::Rep::nullBaseString = new UString::BaseString(0, 0); initializeStaticBaseString(*UString::Rep::nullBaseString); UString::Rep::emptyBaseString = new UString::BaseString(&sharedEmptyChar, 0); initializeStaticBaseString(*UString::Rep::emptyBaseString); UString::nullUString = new UString; } static char* statBuffer = 0; // Only used for debugging via UString::ascii(). PassRefPtr UString::Rep::createCopying(const UChar* d, int l) { UChar* copyD = static_cast(fastMalloc(l * sizeof(UChar))); copyChars(copyD, d, l); return create(copyD, l); } PassRefPtr UString::Rep::createFromUTF8(const char* string) { if (!string) return &UString::Rep::null(); size_t length = strlen(string); Vector buffer(length); UChar* p = buffer.data(); if (conversionOK != convertUTF8ToUTF16(&string, string + length, &p, p + length)) return &UString::Rep::null(); return UString::Rep::createCopying(buffer.data(), p - buffer.data()); } PassRefPtr UString::Rep::create(UChar* string, int length, PassRefPtr sharedBuffer) { PassRefPtr rep = create(string, length); rep->baseString()->setSharedBuffer(sharedBuffer); rep->checkConsistency(); return rep; } UString::SharedUChar* UString::Rep::sharedBuffer() { UString::BaseString* base = baseString(); if (len < minLengthToShare) return 0; return base->sharedBuffer(); } void UString::Rep::destroy() { checkConsistency(); // Static null and empty strings can never be destroyed, but we cannot rely on // reference counting, because ref/deref are not thread-safe. if (!isStatic()) { if (identifierTable()) Identifier::remove(this); UString::BaseString* base = baseString(); if (base == this) { if (m_sharedBuffer) m_sharedBuffer->deref(); else fastFree(base->buf); } else base->deref(); delete this; } } // Golden ratio - arbitrary start value to avoid mapping all 0's to all 0's // or anything like that. const unsigned PHI = 0x9e3779b9U; // Paul Hsieh's SuperFastHash // http://www.azillionmonkeys.com/qed/hash.html unsigned UString::Rep::computeHash(const UChar* s, int len) { unsigned l = len; uint32_t hash = PHI; uint32_t tmp; int rem = l & 1; l >>= 1; // Main loop for (; l > 0; l--) { hash += s[0]; tmp = (s[1] << 11) ^ hash; hash = (hash << 16) ^ tmp; s += 2; hash += hash >> 11; } // Handle end case if (rem) { hash += s[0]; hash ^= hash << 11; hash += hash >> 17; } // Force "avalanching" of final 127 bits hash ^= hash << 3; hash += hash >> 5; hash ^= hash << 2; hash += hash >> 15; hash ^= hash << 10; // this avoids ever returning a hash code of 0, since that is used to // signal "hash not computed yet", using a value that is likely to be // effectively the same as 0 when the low bits are masked if (hash == 0) hash = 0x80000000; return hash; } // Paul Hsieh's SuperFastHash // http://www.azillionmonkeys.com/qed/hash.html unsigned UString::Rep::computeHash(const char* s, int l) { // This hash is designed to work on 16-bit chunks at a time. But since the normal case // (above) is to hash UTF-16 characters, we just treat the 8-bit chars as if they // were 16-bit chunks, which should give matching results uint32_t hash = PHI; uint32_t tmp; size_t rem = l & 1; l >>= 1; // Main loop for (; l > 0; l--) { hash += static_cast(s[0]); tmp = (static_cast(s[1]) << 11) ^ hash; hash = (hash << 16) ^ tmp; s += 2; hash += hash >> 11; } // Handle end case if (rem) { hash += static_cast(s[0]); hash ^= hash << 11; hash += hash >> 17; } // Force "avalanching" of final 127 bits hash ^= hash << 3; hash += hash >> 5; hash ^= hash << 2; hash += hash >> 15; hash ^= hash << 10; // this avoids ever returning a hash code of 0, since that is used to // signal "hash not computed yet", using a value that is likely to be // effectively the same as 0 when the low bits are masked if (hash == 0) hash = 0x80000000; return hash; } #ifndef NDEBUG void UString::Rep::checkConsistency() const { const UString::BaseString* base = baseString(); // There is no recursion for base strings. ASSERT(base == base->baseString()); if (isStatic()) { // There are only two static strings: null and empty. ASSERT(!len); // Static strings cannot get in identifier tables, because they are globally shared. ASSERT(!identifierTable()); } // The string fits in buffer. ASSERT(base->usedPreCapacity <= base->preCapacity); ASSERT(base->usedCapacity <= base->capacity); ASSERT(-offset <= base->usedPreCapacity); ASSERT(offset + len <= base->usedCapacity); } #endif UString::SharedUChar* UString::BaseString::sharedBuffer() { if (!m_sharedBuffer) setSharedBuffer(SharedUChar::create(new OwnFastMallocPtr(buf))); return m_sharedBuffer; } void UString::BaseString::setSharedBuffer(PassRefPtr sharedBuffer) { // The manual steps below are because m_sharedBuffer can't be a RefPtr. m_sharedBuffer // is in a union with another variable to avoid making BaseString any larger. if (m_sharedBuffer) m_sharedBuffer->deref(); m_sharedBuffer = sharedBuffer.releaseRef(); } bool UString::BaseString::slowIsBufferReadOnly() { // The buffer may not be modified as soon as the underlying data has been shared with another class. if (m_sharedBuffer->isShared()) return true; // At this point, we know it that the underlying buffer isn't shared outside of this base class, // so get rid of m_sharedBuffer. OwnPtr > mallocPtr(m_sharedBuffer->release()); UChar* unsharedBuf = const_cast(mallocPtr->release()); setSharedBuffer(0); preCapacity += (buf - unsharedBuf); buf = unsharedBuf; return false; } // Put these early so they can be inlined. static inline size_t expandedSize(size_t capacitySize, size_t precapacitySize) { // Combine capacitySize & precapacitySize to produce a single size to allocate, // check that doing so does not result in overflow. size_t size = capacitySize + precapacitySize; if (size < capacitySize) return overflowIndicator(); // Small Strings (up to 4 pages): // Expand the allocation size to 112.5% of the amount requested. This is largely sicking // to our previous policy, however 112.5% is cheaper to calculate. if (size < 0x4000) { size_t expandedSize = ((size + (size >> 3)) | 15) + 1; // Given the limited range within which we calculate the expansion in this // fashion the above calculation should never overflow. ASSERT(expandedSize >= size); ASSERT(expandedSize < maxUChars()); return expandedSize; } // Medium Strings (up to 128 pages): // For pages covering multiple pages over-allocation is less of a concern - any unused // space will not be paged in if it is not used, so this is purely a VM overhead. For // these strings allocate 2x the requested size. if (size < 0x80000) { size_t expandedSize = ((size + size) | 0xfff) + 1; // Given the limited range within which we calculate the expansion in this // fashion the above calculation should never overflow. ASSERT(expandedSize >= size); ASSERT(expandedSize < maxUChars()); return expandedSize; } // Large Strings (to infinity and beyond!): // Revert to our 112.5% policy - probably best to limit the amount of unused VM we allow // any individual string be responsible for. size_t expandedSize = ((size + (size >> 3)) | 0xfff) + 1; // Check for overflow - any result that is at least as large as requested (but // still below the limit) is okay. if ((expandedSize >= size) && (expandedSize < maxUChars())) return expandedSize; return overflowIndicator(); } static inline bool expandCapacity(UString::Rep* rep, int requiredLength) { rep->checkConsistency(); ASSERT(!rep->baseString()->isBufferReadOnly()); UString::BaseString* base = rep->baseString(); if (requiredLength > base->capacity) { size_t newCapacity = expandedSize(requiredLength, base->preCapacity); UChar* oldBuf = base->buf; base->buf = reallocChars(base->buf, newCapacity); if (!base->buf) { base->buf = oldBuf; return false; } base->capacity = newCapacity - base->preCapacity; } if (requiredLength > base->usedCapacity) base->usedCapacity = requiredLength; rep->checkConsistency(); return true; } bool UString::Rep::reserveCapacity(int capacity) { // If this is an empty string there is no point 'growing' it - just allocate a new one. // If the BaseString is shared with another string that is using more capacity than this // string is, then growing the buffer won't help. // If the BaseString's buffer is readonly, then it isn't allowed to grow. UString::BaseString* base = baseString(); if (!base->buf || !base->capacity || (offset + len) != base->usedCapacity || base->isBufferReadOnly()) return false; // If there is already sufficient capacity, no need to grow! if (capacity <= base->capacity) return true; checkConsistency(); size_t newCapacity = expandedSize(capacity, base->preCapacity); UChar* oldBuf = base->buf; base->buf = reallocChars(base->buf, newCapacity); if (!base->buf) { base->buf = oldBuf; return false; } base->capacity = newCapacity - base->preCapacity; checkConsistency(); return true; } void UString::expandCapacity(int requiredLength) { if (!JSC::expandCapacity(m_rep.get(), requiredLength)) makeNull(); } void UString::expandPreCapacity(int requiredPreCap) { m_rep->checkConsistency(); ASSERT(!m_rep->baseString()->isBufferReadOnly()); BaseString* base = m_rep->baseString(); if (requiredPreCap > base->preCapacity) { size_t newCapacity = expandedSize(requiredPreCap, base->capacity); int delta = newCapacity - base->capacity - base->preCapacity; UChar* newBuf = allocChars(newCapacity); if (!newBuf) { makeNull(); return; } copyChars(newBuf + delta, base->buf, base->capacity + base->preCapacity); fastFree(base->buf); base->buf = newBuf; base->preCapacity = newCapacity - base->capacity; } if (requiredPreCap > base->usedPreCapacity) base->usedPreCapacity = requiredPreCap; m_rep->checkConsistency(); } static PassRefPtr createRep(const char* c) { if (!c) return &UString::Rep::null(); if (!c[0]) return &UString::Rep::empty(); size_t length = strlen(c); UChar* d = allocChars(length); if (!d) return &UString::Rep::null(); else { for (size_t i = 0; i < length; i++) d[i] = static_cast(c[i]); // use unsigned char to zero-extend instead of sign-extend return UString::Rep::create(d, static_cast(length)); } } UString::UString(const char* c) : m_rep(createRep(c)) { } UString::UString(const UChar* c, int length) { if (length == 0) m_rep = &Rep::empty(); else m_rep = Rep::createCopying(c, length); } UString::UString(UChar* c, int length, bool copy) { if (length == 0) m_rep = &Rep::empty(); else if (copy) m_rep = Rep::createCopying(c, length); else m_rep = Rep::create(c, length); } UString::UString(const Vector& buffer) { if (!buffer.size()) m_rep = &Rep::empty(); else m_rep = Rep::createCopying(buffer.data(), buffer.size()); } static ALWAYS_INLINE int newCapacityWithOverflowCheck(const int currentCapacity, const int extendLength, const bool plusOne = false) { ASSERT_WITH_MESSAGE(extendLength >= 0, "extendedLength = %d", extendLength); const int plusLength = plusOne ? 1 : 0; if (currentCapacity > std::numeric_limits::max() - extendLength - plusLength) CRASH(); return currentCapacity + extendLength + plusLength; } static ALWAYS_INLINE PassRefPtr concatenate(PassRefPtr r, const UChar* tData, int tSize) { RefPtr rep = r; rep->checkConsistency(); int thisSize = rep->size(); int thisOffset = rep->offset; int length = thisSize + tSize; UString::BaseString* base = rep->baseString(); // possible cases: if (tSize == 0) { // t is empty } else if (thisSize == 0) { // this is empty rep = UString::Rep::createCopying(tData, tSize); } else if (rep == base && !base->isShared()) { // this is direct and has refcount of 1 (so we can just alter it directly) if (!expandCapacity(rep.get(), newCapacityWithOverflowCheck(thisOffset, length))) rep = &UString::Rep::null(); if (rep->data()) { copyChars(rep->data() + thisSize, tData, tSize); rep->len = length; rep->_hash = 0; } } else if (thisOffset + thisSize == base->usedCapacity && thisSize >= minShareSize && !base->isBufferReadOnly()) { // this reaches the end of the buffer - extend it if it's long enough to append to if (!expandCapacity(rep.get(), newCapacityWithOverflowCheck(thisOffset, length))) rep = &UString::Rep::null(); if (rep->data()) { copyChars(rep->data() + thisSize, tData, tSize); rep = UString::Rep::create(rep, 0, length); } } else { // This is shared in some way that prevents us from modifying base, so we must make a whole new string. size_t newCapacity = expandedSize(length, 0); UChar* d = allocChars(newCapacity); if (!d) rep = &UString::Rep::null(); else { copyChars(d, rep->data(), thisSize); copyChars(d + thisSize, tData, tSize); rep = UString::Rep::create(d, length); rep->baseString()->capacity = newCapacity; } } rep->checkConsistency(); return rep.release(); } static ALWAYS_INLINE PassRefPtr concatenate(PassRefPtr r, const char* t) { RefPtr rep = r; rep->checkConsistency(); int thisSize = rep->size(); int thisOffset = rep->offset; int tSize = static_cast(strlen(t)); int length = thisSize + tSize; UString::BaseString* base = rep->baseString(); // possible cases: if (thisSize == 0) { // this is empty rep = createRep(t); } else if (tSize == 0) { // t is empty, we'll just return *this below. } else if (rep == base && !base->isShared()) { // this is direct and has refcount of 1 (so we can just alter it directly) expandCapacity(rep.get(), newCapacityWithOverflowCheck(thisOffset, length)); UChar* d = rep->data(); if (d) { for (int i = 0; i < tSize; ++i) d[thisSize + i] = static_cast(t[i]); // use unsigned char to zero-extend instead of sign-extend rep->len = length; rep->_hash = 0; } } else if (thisOffset + thisSize == base->usedCapacity && thisSize >= minShareSize && !base->isBufferReadOnly()) { // this string reaches the end of the buffer - extend it expandCapacity(rep.get(), newCapacityWithOverflowCheck(thisOffset, length)); UChar* d = rep->data(); if (d) { for (int i = 0; i < tSize; ++i) d[thisSize + i] = static_cast(t[i]); // use unsigned char to zero-extend instead of sign-extend rep = UString::Rep::create(rep, 0, length); } } else { // This is shared in some way that prevents us from modifying base, so we must make a whole new string. size_t newCapacity = expandedSize(length, 0); UChar* d = allocChars(newCapacity); if (!d) rep = &UString::Rep::null(); else { copyChars(d, rep->data(), thisSize); for (int i = 0; i < tSize; ++i) d[thisSize + i] = static_cast(t[i]); // use unsigned char to zero-extend instead of sign-extend rep = UString::Rep::create(d, length); rep->baseString()->capacity = newCapacity; } } rep->checkConsistency(); return rep.release(); } PassRefPtr concatenate(UString::Rep* a, UString::Rep* b) { a->checkConsistency(); b->checkConsistency(); int aSize = a->size(); int bSize = b->size(); int aOffset = a->offset; // possible cases: UString::BaseString* aBase = a->baseString(); if (bSize == 1 && aOffset + aSize == aBase->usedCapacity && aOffset + aSize < aBase->capacity && !aBase->isBufferReadOnly()) { // b is a single character (common fast case) ++aBase->usedCapacity; a->data()[aSize] = b->data()[0]; return UString::Rep::create(a, 0, aSize + 1); } // a is empty if (aSize == 0) return b; // b is empty if (bSize == 0) return a; int bOffset = b->offset; int length = aSize + bSize; UString::BaseString* bBase = b->baseString(); if (aOffset + aSize == aBase->usedCapacity && aSize >= minShareSize && 4 * aSize >= bSize && (-bOffset != bBase->usedPreCapacity || aSize >= bSize) && !aBase->isBufferReadOnly()) { // - a reaches the end of its buffer so it qualifies for shared append // - also, it's at least a quarter the length of b - appending to a much shorter // string does more harm than good // - however, if b qualifies for prepend and is longer than a, we'd rather prepend UString x(a); x.expandCapacity(newCapacityWithOverflowCheck(aOffset, length)); if (!a->data() || !x.data()) return 0; copyChars(a->data() + aSize, b->data(), bSize); PassRefPtr result = UString::Rep::create(a, 0, length); a->checkConsistency(); b->checkConsistency(); result->checkConsistency(); return result; } if (-bOffset == bBase->usedPreCapacity && bSize >= minShareSize && 4 * bSize >= aSize && !bBase->isBufferReadOnly()) { // - b reaches the beginning of its buffer so it qualifies for shared prepend // - also, it's at least a quarter the length of a - prepending to a much shorter // string does more harm than good UString y(b); y.expandPreCapacity(-bOffset + aSize); if (!b->data() || !y.data()) return 0; copyChars(b->data() - aSize, a->data(), aSize); PassRefPtr result = UString::Rep::create(b, -aSize, length); a->checkConsistency(); b->checkConsistency(); result->checkConsistency(); return result; } // a does not qualify for append, and b does not qualify for prepend, gotta make a whole new string size_t newCapacity = expandedSize(length, 0); UChar* d = allocChars(newCapacity); if (!d) return 0; copyChars(d, a->data(), aSize); copyChars(d + aSize, b->data(), bSize); PassRefPtr result = UString::Rep::create(d, length); result->baseString()->capacity = newCapacity; a->checkConsistency(); b->checkConsistency(); result->checkConsistency(); return result; } PassRefPtr concatenate(UString::Rep* rep, int i) { UChar buf[1 + sizeof(i) * 3]; UChar* end = buf + sizeof(buf) / sizeof(UChar); UChar* p = end; if (i == 0) *--p = '0'; else if (i == INT_MIN) { char minBuf[1 + sizeof(i) * 3]; sprintf(minBuf, "%d", INT_MIN); return concatenate(rep, minBuf); } else { bool negative = false; if (i < 0) { negative = true; i = -i; } while (i) { *--p = static_cast((i % 10) + '0'); i /= 10; } if (negative) *--p = '-'; } return concatenate(rep, p, static_cast(end - p)); } PassRefPtr concatenate(UString::Rep* rep, double d) { // avoid ever printing -NaN, in JS conceptually there is only one NaN value if (isnan(d)) return concatenate(rep, "NaN"); if (d == 0.0) // stringify -0 as 0 d = 0.0; char buf[80]; int decimalPoint; int sign; char result[80]; WTF::dtoa(result, d, 0, &decimalPoint, &sign, NULL); int length = static_cast(strlen(result)); int i = 0; if (sign) buf[i++] = '-'; if (decimalPoint <= 0 && decimalPoint > -6) { buf[i++] = '0'; buf[i++] = '.'; for (int j = decimalPoint; j < 0; j++) buf[i++] = '0'; strcpy(buf + i, result); } else if (decimalPoint <= 21 && decimalPoint > 0) { if (length <= decimalPoint) { strcpy(buf + i, result); i += length; for (int j = 0; j < decimalPoint - length; j++) buf[i++] = '0'; buf[i] = '\0'; } else { strncpy(buf + i, result, decimalPoint); i += decimalPoint; buf[i++] = '.'; strcpy(buf + i, result + decimalPoint); } } else if (result[0] < '0' || result[0] > '9') strcpy(buf + i, result); else { buf[i++] = result[0]; if (length > 1) { buf[i++] = '.'; strcpy(buf + i, result + 1); i += length - 1; } buf[i++] = 'e'; buf[i++] = (decimalPoint >= 0) ? '+' : '-'; // decimalPoint can't be more than 3 digits decimal given the // nature of float representation int exponential = decimalPoint - 1; if (exponential < 0) exponential = -exponential; if (exponential >= 100) buf[i++] = static_cast('0' + exponential / 100); if (exponential >= 10) buf[i++] = static_cast('0' + (exponential % 100) / 10); buf[i++] = static_cast('0' + exponential % 10); buf[i++] = '\0'; } return concatenate(rep, buf); } UString UString::from(int i) { UChar buf[1 + sizeof(i) * 3]; UChar* end = buf + sizeof(buf) / sizeof(UChar); UChar* p = end; if (i == 0) *--p = '0'; else if (i == INT_MIN) { char minBuf[1 + sizeof(i) * 3]; sprintf(minBuf, "%d", INT_MIN); return UString(minBuf); } else { bool negative = false; if (i < 0) { negative = true; i = -i; } while (i) { *--p = static_cast((i % 10) + '0'); i /= 10; } if (negative) *--p = '-'; } return UString(p, static_cast(end - p)); } UString UString::from(unsigned int u) { UChar buf[sizeof(u) * 3]; UChar* end = buf + sizeof(buf) / sizeof(UChar); UChar* p = end; if (u == 0) *--p = '0'; else { while (u) { *--p = static_cast((u % 10) + '0'); u /= 10; } } return UString(p, static_cast(end - p)); } UString UString::from(long l) { UChar buf[1 + sizeof(l) * 3]; UChar* end = buf + sizeof(buf) / sizeof(UChar); UChar* p = end; if (l == 0) *--p = '0'; else if (l == LONG_MIN) { char minBuf[1 + sizeof(l) * 3]; sprintf(minBuf, "%ld", LONG_MIN); return UString(minBuf); } else { bool negative = false; if (l < 0) { negative = true; l = -l; } while (l) { *--p = static_cast((l % 10) + '0'); l /= 10; } if (negative) *--p = '-'; } return UString(p, static_cast(end - p)); } UString UString::from(double d) { // avoid ever printing -NaN, in JS conceptually there is only one NaN value if (isnan(d)) return "NaN"; char buf[80]; int decimalPoint; int sign; char result[80]; WTF::dtoa(result, d, 0, &decimalPoint, &sign, NULL); int length = static_cast(strlen(result)); int i = 0; if (sign) buf[i++] = '-'; if (decimalPoint <= 0 && decimalPoint > -6) { buf[i++] = '0'; buf[i++] = '.'; for (int j = decimalPoint; j < 0; j++) buf[i++] = '0'; strcpy(buf + i, result); } else if (decimalPoint <= 21 && decimalPoint > 0) { if (length <= decimalPoint) { strcpy(buf + i, result); i += length; for (int j = 0; j < decimalPoint - length; j++) buf[i++] = '0'; buf[i] = '\0'; } else { strncpy(buf + i, result, decimalPoint); i += decimalPoint; buf[i++] = '.'; strcpy(buf + i, result + decimalPoint); } } else if (result[0] < '0' || result[0] > '9') strcpy(buf + i, result); else { buf[i++] = result[0]; if (length > 1) { buf[i++] = '.'; strcpy(buf + i, result + 1); i += length - 1; } buf[i++] = 'e'; buf[i++] = (decimalPoint >= 0) ? '+' : '-'; // decimalPoint can't be more than 3 digits decimal given the // nature of float representation int exponential = decimalPoint - 1; if (exponential < 0) exponential = -exponential; if (exponential >= 100) buf[i++] = static_cast('0' + exponential / 100); if (exponential >= 10) buf[i++] = static_cast('0' + (exponential % 100) / 10); buf[i++] = static_cast('0' + exponential % 10); buf[i++] = '\0'; } return UString(buf); } UString UString::spliceSubstringsWithSeparators(const Range* substringRanges, int rangeCount, const UString* separators, int separatorCount) const { m_rep->checkConsistency(); if (rangeCount == 1 && separatorCount == 0) { int thisSize = size(); int position = substringRanges[0].position; int length = substringRanges[0].length; if (position <= 0 && length >= thisSize) return *this; return UString::Rep::create(m_rep, max(0, position), min(thisSize, length)); } int totalLength = 0; for (int i = 0; i < rangeCount; i++) totalLength += substringRanges[i].length; for (int i = 0; i < separatorCount; i++) totalLength += separators[i].size(); if (totalLength == 0) return ""; UChar* buffer = allocChars(totalLength); if (!buffer) return null(); int maxCount = max(rangeCount, separatorCount); int bufferPos = 0; for (int i = 0; i < maxCount; i++) { if (i < rangeCount) { copyChars(buffer + bufferPos, data() + substringRanges[i].position, substringRanges[i].length); bufferPos += substringRanges[i].length; } if (i < separatorCount) { copyChars(buffer + bufferPos, separators[i].data(), separators[i].size()); bufferPos += separators[i].size(); } } return UString::Rep::create(buffer, totalLength); } UString UString::replaceRange(int rangeStart, int rangeLength, const UString& replacement) const { m_rep->checkConsistency(); int replacementLength = replacement.size(); int totalLength = size() - rangeLength + replacementLength; if (totalLength == 0) return ""; UChar* buffer = allocChars(totalLength); if (!buffer) return null(); copyChars(buffer, data(), rangeStart); copyChars(buffer + rangeStart, replacement.data(), replacementLength); int rangeEnd = rangeStart + rangeLength; copyChars(buffer + rangeStart + replacementLength, data() + rangeEnd, size() - rangeEnd); return UString::Rep::create(buffer, totalLength); } UString& UString::append(const UString &t) { m_rep->checkConsistency(); t.rep()->checkConsistency(); int thisSize = size(); int thisOffset = m_rep->offset; int tSize = t.size(); int length = thisSize + tSize; BaseString* base = m_rep->baseString(); // possible cases: if (thisSize == 0) { // this is empty *this = t; } else if (tSize == 0) { // t is empty } else if (m_rep == base && !base->isShared()) { // this is direct and has refcount of 1 (so we can just alter it directly) expandCapacity(newCapacityWithOverflowCheck(thisOffset, length)); if (data()) { copyChars(m_rep->data() + thisSize, t.data(), tSize); m_rep->len = length; m_rep->_hash = 0; } } else if (thisOffset + thisSize == base->usedCapacity && thisSize >= minShareSize && !base->isBufferReadOnly()) { // this reaches the end of the buffer - extend it if it's long enough to append to expandCapacity(newCapacityWithOverflowCheck(thisOffset, length)); if (data()) { copyChars(m_rep->data() + thisSize, t.data(), tSize); m_rep = Rep::create(m_rep, 0, length); } } else { // This is shared in some way that prevents us from modifying base, so we must make a whole new string. size_t newCapacity = expandedSize(length, 0); UChar* d = allocChars(newCapacity); if (!d) makeNull(); else { copyChars(d, data(), thisSize); copyChars(d + thisSize, t.data(), tSize); m_rep = Rep::create(d, length); m_rep->baseString()->capacity = newCapacity; } } m_rep->checkConsistency(); t.rep()->checkConsistency(); return *this; } UString& UString::append(const UChar* tData, int tSize) { m_rep = concatenate(m_rep.release(), tData, tSize); return *this; } UString& UString::appendNumeric(int i) { m_rep = concatenate(rep(), i); return *this; } UString& UString::appendNumeric(double d) { m_rep = concatenate(rep(), d); return *this; } UString& UString::append(const char* t) { m_rep = concatenate(m_rep.release(), t); return *this; } UString& UString::append(UChar c) { m_rep->checkConsistency(); int thisOffset = m_rep->offset; int length = size(); BaseString* base = m_rep->baseString(); // possible cases: if (length == 0) { // this is empty - must make a new m_rep because we don't want to pollute the shared empty one size_t newCapacity = expandedSize(1, 0); UChar* d = allocChars(newCapacity); if (!d) makeNull(); else { d[0] = c; m_rep = Rep::create(d, 1); m_rep->baseString()->capacity = newCapacity; } } else if (m_rep == base && !base->isShared()) { // this is direct and has refcount of 1 (so we can just alter it directly) expandCapacity(newCapacityWithOverflowCheck(thisOffset, length, true)); UChar* d = m_rep->data(); if (d) { d[length] = c; m_rep->len = length + 1; m_rep->_hash = 0; } } else if (thisOffset + length == base->usedCapacity && length >= minShareSize && !base->isBufferReadOnly()) { // this reaches the end of the string - extend it and share expandCapacity(newCapacityWithOverflowCheck(thisOffset, length, true)); UChar* d = m_rep->data(); if (d) { d[length] = c; m_rep = Rep::create(m_rep, 0, length + 1); } } else { // This is shared in some way that prevents us from modifying base, so we must make a whole new string. size_t newCapacity = expandedSize(length + 1, 0); UChar* d = allocChars(newCapacity); if (!d) makeNull(); else { copyChars(d, data(), length); d[length] = c; m_rep = Rep::create(d, length + 1); m_rep->baseString()->capacity = newCapacity; } } m_rep->checkConsistency(); return *this; } bool UString::getCString(CStringBuffer& buffer) const { int length = size(); int neededSize = length + 1; buffer.resize(neededSize); char* buf = buffer.data(); UChar ored = 0; const UChar* p = data(); char* q = buf; const UChar* limit = p + length; while (p != limit) { UChar c = p[0]; ored |= c; *q = static_cast(c); ++p; ++q; } *q = '\0'; return !(ored & 0xFF00); } char* UString::ascii() const { int length = size(); int neededSize = length + 1; delete[] statBuffer; statBuffer = new char[neededSize]; const UChar* p = data(); char* q = statBuffer; const UChar* limit = p + length; while (p != limit) { *q = static_cast(p[0]); ++p; ++q; } *q = '\0'; return statBuffer; } UString& UString::operator=(const char* c) { if (!c) { m_rep = &Rep::null(); return *this; } if (!c[0]) { m_rep = &Rep::empty(); return *this; } int l = static_cast(strlen(c)); UChar* d; BaseString* base = m_rep->baseString(); if (!base->isShared() && l <= base->capacity && m_rep == base && m_rep->offset == 0 && base->preCapacity == 0) { d = base->buf; m_rep->_hash = 0; m_rep->len = l; } else { d = allocChars(l); if (!d) { makeNull(); return *this; } m_rep = Rep::create(d, l); } for (int i = 0; i < l; i++) d[i] = static_cast(c[i]); // use unsigned char to zero-extend instead of sign-extend return *this; } bool UString::is8Bit() const { const UChar* u = data(); const UChar* limit = u + size(); while (u < limit) { if (u[0] > 0xFF) return false; ++u; } return true; } UChar UString::operator[](int pos) const { if (pos >= size()) return '\0'; return data()[pos]; } double UString::toDouble(bool tolerateTrailingJunk, bool tolerateEmptyString) const { if (size() == 1) { UChar c = data()[0]; if (isASCIIDigit(c)) return c - '0'; if (isASCIISpace(c) && tolerateEmptyString) return 0; return NaN; } // FIXME: If tolerateTrailingJunk is true, then we want to tolerate non-8-bit junk // after the number, so this is too strict a check. CStringBuffer s; if (!getCString(s)) return NaN; const char* c = s.data(); // skip leading white space while (isASCIISpace(*c)) c++; // empty string ? if (*c == '\0') return tolerateEmptyString ? 0.0 : NaN; double d; // hex number ? if (*c == '0' && (*(c + 1) == 'x' || *(c + 1) == 'X')) { const char* firstDigitPosition = c + 2; c++; d = 0.0; while (*(++c)) { if (*c >= '0' && *c <= '9') d = d * 16.0 + *c - '0'; else if ((*c >= 'A' && *c <= 'F') || (*c >= 'a' && *c <= 'f')) d = d * 16.0 + (*c & 0xdf) - 'A' + 10.0; else break; } if (d >= mantissaOverflowLowerBound) d = parseIntOverflow(firstDigitPosition, c - firstDigitPosition, 16); } else { // regular number ? char* end; d = WTF::strtod(c, &end); if ((d != 0.0 || end != c) && d != Inf && d != -Inf) { c = end; } else { double sign = 1.0; if (*c == '+') c++; else if (*c == '-') { sign = -1.0; c++; } // We used strtod() to do the conversion. However, strtod() handles // infinite values slightly differently than JavaScript in that it // converts the string "inf" with any capitalization to infinity, // whereas the ECMA spec requires that it be converted to NaN. if (c[0] == 'I' && c[1] == 'n' && c[2] == 'f' && c[3] == 'i' && c[4] == 'n' && c[5] == 'i' && c[6] == 't' && c[7] == 'y') { d = sign * Inf; c += 8; } else if ((d == Inf || d == -Inf) && *c != 'I' && *c != 'i') c = end; else return NaN; } } // allow trailing white space while (isASCIISpace(*c)) c++; // don't allow anything after - unless tolerant=true if (!tolerateTrailingJunk && *c != '\0') d = NaN; return d; } double UString::toDouble(bool tolerateTrailingJunk) const { return toDouble(tolerateTrailingJunk, true); } double UString::toDouble() const { return toDouble(false, true); } uint32_t UString::toUInt32(bool* ok) const { double d = toDouble(); bool b = true; if (d != static_cast(d)) { b = false; d = 0; } if (ok) *ok = b; return static_cast(d); } uint32_t UString::toUInt32(bool* ok, bool tolerateEmptyString) const { double d = toDouble(false, tolerateEmptyString); bool b = true; if (d != static_cast(d)) { b = false; d = 0; } if (ok) *ok = b; return static_cast(d); } uint32_t UString::toStrictUInt32(bool* ok) const { if (ok) *ok = false; // Empty string is not OK. int len = m_rep->len; if (len == 0) return 0; const UChar* p = m_rep->data(); unsigned short c = p[0]; // If the first digit is 0, only 0 itself is OK. if (c == '0') { if (len == 1 && ok) *ok = true; return 0; } // Convert to UInt32, checking for overflow. uint32_t i = 0; while (1) { // Process character, turning it into a digit. if (c < '0' || c > '9') return 0; const unsigned d = c - '0'; // Multiply by 10, checking for overflow out of 32 bits. if (i > 0xFFFFFFFFU / 10) return 0; i *= 10; // Add in the digit, checking for overflow out of 32 bits. const unsigned max = 0xFFFFFFFFU - d; if (i > max) return 0; i += d; // Handle end of string. if (--len == 0) { if (ok) *ok = true; return i; } // Get next character. c = *(++p); } } int UString::find(const UString& f, int pos) const { int fsz = f.size(); if (pos < 0) pos = 0; if (fsz == 1) { UChar ch = f[0]; const UChar* end = data() + size(); for (const UChar* c = data() + pos; c < end; c++) { if (*c == ch) return static_cast(c - data()); } return -1; } int sz = size(); if (sz < fsz) return -1; if (fsz == 0) return pos; const UChar* end = data() + sz - fsz; int fsizeminusone = (fsz - 1) * sizeof(UChar); const UChar* fdata = f.data(); unsigned short fchar = fdata[0]; ++fdata; for (const UChar* c = data() + pos; c <= end; c++) { if (c[0] == fchar && !memcmp(c + 1, fdata, fsizeminusone)) return static_cast(c - data()); } return -1; } int UString::find(UChar ch, int pos) const { if (pos < 0) pos = 0; const UChar* end = data() + size(); for (const UChar* c = data() + pos; c < end; c++) { if (*c == ch) return static_cast(c - data()); } return -1; } int UString::rfind(const UString& f, int pos) const { int sz = size(); int fsz = f.size(); if (sz < fsz) return -1; if (pos < 0) pos = 0; if (pos > sz - fsz) pos = sz - fsz; if (fsz == 0) return pos; int fsizeminusone = (fsz - 1) * sizeof(UChar); const UChar* fdata = f.data(); for (const UChar* c = data() + pos; c >= data(); c--) { if (*c == *fdata && !memcmp(c + 1, fdata + 1, fsizeminusone)) return static_cast(c - data()); } return -1; } int UString::rfind(UChar ch, int pos) const { if (isEmpty()) return -1; if (pos + 1 >= size()) pos = size() - 1; for (const UChar* c = data() + pos; c >= data(); c--) { if (*c == ch) return static_cast(c - data()); } return -1; } UString UString::substr(int pos, int len) const { int s = size(); if (pos < 0) pos = 0; else if (pos >= s) pos = s; if (len < 0) len = s; if (pos + len >= s) len = s - pos; if (pos == 0 && len == s) return *this; return UString(Rep::create(m_rep, pos, len)); } bool operator==(const UString& s1, const char *s2) { if (s2 == 0) return s1.isEmpty(); const UChar* u = s1.data(); const UChar* uend = u + s1.size(); while (u != uend && *s2) { if (u[0] != (unsigned char)*s2) return false; s2++; u++; } return u == uend && *s2 == 0; } bool operator<(const UString& s1, const UString& s2) { const int l1 = s1.size(); const int l2 = s2.size(); const int lmin = l1 < l2 ? l1 : l2; const UChar* c1 = s1.data(); const UChar* c2 = s2.data(); int l = 0; while (l < lmin && *c1 == *c2) { c1++; c2++; l++; } if (l < lmin) return (c1[0] < c2[0]); return (l1 < l2); } bool operator>(const UString& s1, const UString& s2) { const int l1 = s1.size(); const int l2 = s2.size(); const int lmin = l1 < l2 ? l1 : l2; const UChar* c1 = s1.data(); const UChar* c2 = s2.data(); int l = 0; while (l < lmin && *c1 == *c2) { c1++; c2++; l++; } if (l < lmin) return (c1[0] > c2[0]); return (l1 > l2); } int compare(const UString& s1, const UString& s2) { const int l1 = s1.size(); const int l2 = s2.size(); const int lmin = l1 < l2 ? l1 : l2; const UChar* c1 = s1.data(); const UChar* c2 = s2.data(); int l = 0; while (l < lmin && *c1 == *c2) { c1++; c2++; l++; } if (l < lmin) return (c1[0] > c2[0]) ? 1 : -1; if (l1 == l2) return 0; return (l1 > l2) ? 1 : -1; } bool equal(const UString::Rep* r, const UString::Rep* b) { int length = r->len; if (length != b->len) return false; const UChar* d = r->data(); const UChar* s = b->data(); for (int i = 0; i != length; ++i) { if (d[i] != s[i]) return false; } return true; } CString UString::UTF8String(bool strict) const { // Allocate a buffer big enough to hold all the characters. const int length = size(); Vector buffer(length * 3); // Convert to runs of 8-bit characters. char* p = buffer.data(); const UChar* d = reinterpret_cast(&data()[0]); ConversionResult result = convertUTF16ToUTF8(&d, d + length, &p, p + buffer.size(), strict); if (result != conversionOK) return CString(); return CString(buffer.data(), p - buffer.data()); } // For use in error handling code paths -- having this not be inlined helps avoid PIC branches to fetch the global on Mac OS X. NEVER_INLINE void UString::makeNull() { m_rep = &Rep::null(); } // For use in error handling code paths -- having this not be inlined helps avoid PIC branches to fetch the global on Mac OS X. NEVER_INLINE UString::Rep* UString::nullRep() { return &Rep::null(); } } // namespace JSC