summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/webkit/JavaScriptCore/assembler/AbstractMacroAssembler.h
blob: cf946770972d126c5731908468488558d5f8e7f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
/*
 * Copyright (C) 2008 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#ifndef AbstractMacroAssembler_h
#define AbstractMacroAssembler_h

#include <wtf/Platform.h>

#include <MacroAssemblerCodeRef.h>
#include <CodeLocation.h>
#include <wtf/Noncopyable.h>
#include <wtf/UnusedParam.h>

#if ENABLE(ASSEMBLER)

// FIXME: keep transitioning this out into MacroAssemblerX86_64.
#if PLATFORM(X86_64)
#define REPTACH_OFFSET_CALL_R11 3
#endif

namespace JSC {

template <class AssemblerType>
class AbstractMacroAssembler {
public:
    typedef MacroAssemblerCodePtr CodePtr;
    typedef MacroAssemblerCodeRef CodeRef;

    class Jump;
    class LinkBuffer;
    class RepatchBuffer;

    typedef typename AssemblerType::RegisterID RegisterID;
    typedef typename AssemblerType::FPRegisterID FPRegisterID;
    typedef typename AssemblerType::JmpSrc JmpSrc;
    typedef typename AssemblerType::JmpDst JmpDst;


    // Section 1: MacroAssembler operand types
    //
    // The following types are used as operands to MacroAssembler operations,
    // describing immediate  and memory operands to the instructions to be planted.


    enum Scale {
        TimesOne,
        TimesTwo,
        TimesFour,
        TimesEight,
    };

    // Address:
    //
    // Describes a simple base-offset address.
    struct Address {
        explicit Address(RegisterID base, int32_t offset = 0)
            : base(base)
            , offset(offset)
        {
        }

        RegisterID base;
        int32_t offset;
    };

    // ImplicitAddress:
    //
    // This class is used for explicit 'load' and 'store' operations
    // (as opposed to situations in which a memory operand is provided
    // to a generic operation, such as an integer arithmetic instruction).
    //
    // In the case of a load (or store) operation we want to permit
    // addresses to be implicitly constructed, e.g. the two calls:
    //
    //     load32(Address(addrReg), destReg);
    //     load32(addrReg, destReg);
    //
    // Are equivalent, and the explicit wrapping of the Address in the former
    // is unnecessary.
    struct ImplicitAddress {
        ImplicitAddress(RegisterID base)
            : base(base)
            , offset(0)
        {
        }

        ImplicitAddress(Address address)
            : base(address.base)
            , offset(address.offset)
        {
        }

        RegisterID base;
        int32_t offset;
    };

    // BaseIndex:
    //
    // Describes a complex addressing mode.
    struct BaseIndex {
        BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0)
            : base(base)
            , index(index)
            , scale(scale)
            , offset(offset)
        {
        }

        RegisterID base;
        RegisterID index;
        Scale scale;
        int32_t offset;
    };

    // AbsoluteAddress:
    //
    // Describes an memory operand given by a pointer.  For regular load & store
    // operations an unwrapped void* will be used, rather than using this.
    struct AbsoluteAddress {
        explicit AbsoluteAddress(void* ptr)
            : m_ptr(ptr)
        {
        }

        void* m_ptr;
    };

    // ImmPtr:
    //
    // A pointer sized immediate operand to an instruction - this is wrapped
    // in a class requiring explicit construction in order to differentiate
    // from pointers used as absolute addresses to memory operations
    struct ImmPtr {
        explicit ImmPtr(void* value)
            : m_value(value)
        {
        }

        intptr_t asIntptr()
        {
            return reinterpret_cast<intptr_t>(m_value);
        }

        void* m_value;
    };

    // Imm32:
    //
    // A 32bit immediate operand to an instruction - this is wrapped in a
    // class requiring explicit construction in order to prevent RegisterIDs
    // (which are implemented as an enum) from accidentally being passed as
    // immediate values.
    struct Imm32 {
        explicit Imm32(int32_t value)
            : m_value(value)
#if PLATFORM_ARM_ARCH(7)
            , m_isPointer(false)
#endif
        {
        }

#if !PLATFORM(X86_64)
        explicit Imm32(ImmPtr ptr)
            : m_value(ptr.asIntptr())
#if PLATFORM_ARM_ARCH(7)
            , m_isPointer(true)
#endif
        {
        }
#endif

        int32_t m_value;
#if PLATFORM_ARM_ARCH(7)
        // We rely on being able to regenerate code to recover exception handling
        // information.  Since ARMv7 supports 16-bit immediates there is a danger
        // that if pointer values change the layout of the generated code will change.
        // To avoid this problem, always generate pointers (and thus Imm32s constructed
        // from ImmPtrs) with a code sequence that is able  to represent  any pointer
        // value - don't use a more compact form in these cases.
        bool m_isPointer;
#endif
    };


    // Section 2: MacroAssembler code buffer handles
    //
    // The following types are used to reference items in the code buffer
    // during JIT code generation.  For example, the type Jump is used to
    // track the location of a jump instruction so that it may later be
    // linked to a label marking its destination.


    // Label:
    //
    // A Label records a point in the generated instruction stream, typically such that
    // it may be used as a destination for a jump.
    class Label {
        template<class TemplateAssemblerType>
        friend class AbstractMacroAssembler;
        friend class Jump;
        friend class MacroAssemblerCodeRef;
        friend class LinkBuffer;

    public:
        Label()
        {
        }

        Label(AbstractMacroAssembler<AssemblerType>* masm)
            : m_label(masm->m_assembler.label())
        {
        }
        
        bool isUsed() const { return m_label.isUsed(); }
        void used() { m_label.used(); }
    private:
        JmpDst m_label;
    };

    // DataLabelPtr:
    //
    // A DataLabelPtr is used to refer to a location in the code containing a pointer to be
    // patched after the code has been generated.
    class DataLabelPtr {
        template<class TemplateAssemblerType>
        friend class AbstractMacroAssembler;
        friend class LinkBuffer;
    public:
        DataLabelPtr()
        {
        }

        DataLabelPtr(AbstractMacroAssembler<AssemblerType>* masm)
            : m_label(masm->m_assembler.label())
        {
        }
        
    private:
        JmpDst m_label;
    };

    // DataLabel32:
    //
    // A DataLabelPtr is used to refer to a location in the code containing a pointer to be
    // patched after the code has been generated.
    class DataLabel32 {
        template<class TemplateAssemblerType>
        friend class AbstractMacroAssembler;
        friend class LinkBuffer;
    public:
        DataLabel32()
        {
        }

        DataLabel32(AbstractMacroAssembler<AssemblerType>* masm)
            : m_label(masm->m_assembler.label())
        {
        }

    private:
        JmpDst m_label;
    };

    // Call:
    //
    // A Call object is a reference to a call instruction that has been planted
    // into the code buffer - it is typically used to link the call, setting the
    // relative offset such that when executed it will call to the desired
    // destination.
    class Call {
        template<class TemplateAssemblerType>
        friend class AbstractMacroAssembler;
        friend class LinkBuffer;
    public:
        enum Flags {
            None = 0x0,
            Linkable = 0x1,
            Near = 0x2,
            LinkableNear = 0x3,
        };

        Call()
            : m_flags(None)
        {
        }
        
        Call(JmpSrc jmp, Flags flags)
            : m_jmp(jmp)
            , m_flags(flags)
        {
        }

        bool isFlagSet(Flags flag)
        {
            return m_flags & flag;
        }

        static Call fromTailJump(Jump jump)
        {
            return Call(jump.m_jmp, Linkable);
        }

    private:
        JmpSrc m_jmp;
        Flags m_flags;
    };

    // Jump:
    //
    // A jump object is a reference to a jump instruction that has been planted
    // into the code buffer - it is typically used to link the jump, setting the
    // relative offset such that when executed it will jump to the desired
    // destination.
    class Jump {
        template<class TemplateAssemblerType>
        friend class AbstractMacroAssembler;
        friend class Call;
        friend class LinkBuffer;
    public:
        Jump()
        {
        }
        
        Jump(JmpSrc jmp)    
            : m_jmp(jmp)
        {
        }
        
        void link(AbstractMacroAssembler<AssemblerType>* masm)
        {
            masm->m_assembler.linkJump(m_jmp, masm->m_assembler.label());
        }
        
        void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm)
        {
            masm->m_assembler.linkJump(m_jmp, label.m_label);
        }

    private:
        JmpSrc m_jmp;
    };

    // JumpList:
    //
    // A JumpList is a set of Jump objects.
    // All jumps in the set will be linked to the same destination.
    class JumpList {
        friend class LinkBuffer;

    public:
        void link(AbstractMacroAssembler<AssemblerType>* masm)
        {
            size_t size = m_jumps.size();
            for (size_t i = 0; i < size; ++i)
                m_jumps[i].link(masm);
            m_jumps.clear();
        }
        
        void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm)
        {
            size_t size = m_jumps.size();
            for (size_t i = 0; i < size; ++i)
                m_jumps[i].linkTo(label, masm);
            m_jumps.clear();
        }
        
        void append(Jump jump)
        {
            m_jumps.append(jump);
        }
        
        void append(JumpList& other)
        {
            m_jumps.append(other.m_jumps.begin(), other.m_jumps.size());
        }

        bool empty()
        {
            return !m_jumps.size();
        }

    private:
        Vector<Jump, 16> m_jumps;
    };


    // Section 3: LinkBuffer - utility to finalize code generation.

    static CodePtr trampolineAt(CodeRef ref, Label label)
    {
        return CodePtr(AssemblerType::getRelocatedAddress(ref.m_code.dataLocation(), label.m_label));
    }

    // LinkBuffer:
    //
    // This class assists in linking code generated by the macro assembler, once code generation
    // has been completed, and the code has been copied to is final location in memory.  At this
    // time pointers to labels within the code may be resolved, and relative offsets to external
    // addresses may be fixed.
    //
    // Specifically:
    //   * Jump objects may be linked to external targets,
    //   * The address of Jump objects may taken, such that it can later be relinked.
    //   * The return address of a Jump object representing a call may be acquired.
    //   * The address of a Label pointing into the code may be resolved.
    //   * The value referenced by a DataLabel may be fixed.
    //
    // FIXME: distinguish between Calls & Jumps (make a specific call to obtain the return
    // address of calls, as opposed to a point that can be used to later relink a Jump -
    // possibly wrap the later up in an object that can do just that).
    class LinkBuffer : public Noncopyable {
    public:
        // Note: Initialization sequence is significant, since executablePool is a PassRefPtr.
        //       First, executablePool is copied into m_executablePool, then the initialization of
        //       m_code uses m_executablePool, *not* executablePool, since this is no longer valid.
        LinkBuffer(AbstractMacroAssembler<AssemblerType>* masm, PassRefPtr<ExecutablePool> executablePool)
            : m_executablePool(executablePool)
            , m_code(masm->m_assembler.executableCopy(m_executablePool.get()))
            , m_size(masm->m_assembler.size())
#ifndef NDEBUG
            , m_completed(false)
#endif
        {
        }

        ~LinkBuffer()
        {
            ASSERT(m_completed);
        }

        // These methods are used to link or set values at code generation time.

        void link(Call call, FunctionPtr function)
        {
            ASSERT(call.isFlagSet(Call::Linkable));
#if PLATFORM(X86_64)
            if (!call.isFlagSet(Call::Near)) {
                char* callLocation = reinterpret_cast<char*>(AssemblerType::getRelocatedAddress(code(), call.m_jmp)) - REPTACH_OFFSET_CALL_R11;
                AssemblerType::patchPointerForCall(callLocation, function.value());
            } else
#endif
            AssemblerType::linkCall(code(), call.m_jmp, function.value());
        }
        
        void link(Jump jump, CodeLocationLabel label)
        {
            AssemblerType::linkJump(code(), jump.m_jmp, label.dataLocation());
        }

        void link(JumpList list, CodeLocationLabel label)
        {
            for (unsigned i = 0; i < list.m_jumps.size(); ++i)
                AssemblerType::linkJump(code(), list.m_jumps[i].m_jmp, label.dataLocation());
        }

        void patch(DataLabelPtr label, void* value)
        {
            AssemblerType::patchPointer(code(), label.m_label, value);
        }

        void patch(DataLabelPtr label, CodeLocationLabel value)
        {
            AssemblerType::patchPointer(code(), label.m_label, value.executableAddress());
        }

        // These methods are used to obtain handles to allow the code to be relinked / repatched later.

        CodeLocationCall locationOf(Call call)
        {
            ASSERT(call.isFlagSet(Call::Linkable));
            ASSERT(!call.isFlagSet(Call::Near));
            return CodeLocationCall(AssemblerType::getRelocatedAddress(code(), call.m_jmp));
        }

        CodeLocationNearCall locationOfNearCall(Call call)
        {
            ASSERT(call.isFlagSet(Call::Linkable));
            ASSERT(call.isFlagSet(Call::Near));
            return CodeLocationNearCall(AssemblerType::getRelocatedAddress(code(), call.m_jmp));
        }

        CodeLocationLabel locationOf(Label label)
        {
            return CodeLocationLabel(AssemblerType::getRelocatedAddress(code(), label.m_label));
        }

        CodeLocationDataLabelPtr locationOf(DataLabelPtr label)
        {
            return CodeLocationDataLabelPtr(AssemblerType::getRelocatedAddress(code(), label.m_label));
        }

        CodeLocationDataLabel32 locationOf(DataLabel32 label)
        {
            return CodeLocationDataLabel32(AssemblerType::getRelocatedAddress(code(), label.m_label));
        }

        // This method obtains the return address of the call, given as an offset from
        // the start of the code.
        unsigned returnAddressOffset(Call call)
        {
            return AssemblerType::getCallReturnOffset(call.m_jmp);
        }

        // Upon completion of all patching either 'finalizeCode()' or 'finalizeCodeAddendum()' should be called
        // once to complete generation of the code.  'finalizeCode()' is suited to situations
        // where the executable pool must also be retained, the lighter-weight 'finalizeCodeAddendum()' is
        // suited to adding to an existing allocation.
        CodeRef finalizeCode()
        {
            performFinalization();

            return CodeRef(m_code, m_executablePool, m_size);
        }
        CodeLocationLabel finalizeCodeAddendum()
        {
            performFinalization();

            return CodeLocationLabel(code());
        }

    private:
        // Keep this private! - the underlying code should only be obtained externally via 
        // finalizeCode() or finalizeCodeAddendum().
        void* code()
        {
            return m_code;
        }

        void performFinalization()
        {
#ifndef NDEBUG
            ASSERT(!m_completed);
            m_completed = true;
#endif

            ExecutableAllocator::makeExecutable(code(), m_size);
        }

        RefPtr<ExecutablePool> m_executablePool;
        void* m_code;
        size_t m_size;
#ifndef NDEBUG
        bool m_completed;
#endif
    };

    class RepatchBuffer {
    public:
        RepatchBuffer()
        {
        }

        void relink(CodeLocationJump jump, CodeLocationLabel destination)
        {
            AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation());
        }

        void relink(CodeLocationCall call, CodeLocationLabel destination)
        {
#if PLATFORM(X86_64)
            repatch(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11), destination.executableAddress());
#else
            AssemblerType::relinkCall(call.dataLocation(), destination.executableAddress());
#endif
        }

        void relink(CodeLocationCall call, FunctionPtr destination)
        {
#if PLATFORM(X86_64)
            repatch(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11), destination.executableAddress());
#else
            AssemblerType::relinkCall(call.dataLocation(), destination.executableAddress());
#endif
        }

        void relink(CodeLocationNearCall nearCall, CodePtr destination)
        {
            AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress());
        }

        void relink(CodeLocationNearCall nearCall, CodeLocationLabel destination)
        {
            AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress());
        }

        void relink(CodeLocationNearCall nearCall, FunctionPtr destination)
        {
            AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress());
        }

        void repatch(CodeLocationDataLabel32 dataLabel32, int32_t value)
        {
            AssemblerType::repatchInt32(dataLabel32.dataLocation(), value);
        }

        void repatch(CodeLocationDataLabelPtr dataLabelPtr, void* value)
        {
            AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value);
        }

        void relinkCallerToTrampoline(ReturnAddressPtr returnAddress, CodeLocationLabel label)
        {
            relink(CodeLocationCall(CodePtr(returnAddress)), label);
        }
        
        void relinkCallerToTrampoline(ReturnAddressPtr returnAddress, CodePtr newCalleeFunction)
        {
            relinkCallerToTrampoline(returnAddress, CodeLocationLabel(newCalleeFunction));
        }

        void relinkCallerToFunction(ReturnAddressPtr returnAddress, FunctionPtr function)
        {
            relink(CodeLocationCall(CodePtr(returnAddress)), function);
        }
        
        void relinkNearCallerToTrampoline(ReturnAddressPtr returnAddress, CodeLocationLabel label)
        {
            relink(CodeLocationNearCall(CodePtr(returnAddress)), label);
        }
        
        void relinkNearCallerToTrampoline(ReturnAddressPtr returnAddress, CodePtr newCalleeFunction)
        {
            relinkNearCallerToTrampoline(returnAddress, CodeLocationLabel(newCalleeFunction));
        }

        void repatchLoadPtrToLEA(CodeLocationInstruction instruction)
        {
            AssemblerType::repatchLoadPtrToLEA(instruction.dataLocation());
        }
    };


    // Section 4: Misc admin methods

    size_t size()
    {
        return m_assembler.size();
    }

    Label label()
    {
        return Label(this);
    }
    
    Label align()
    {
        m_assembler.align(16);
        return Label(this);
    }

    ptrdiff_t differenceBetween(Label from, Jump to)
    {
        return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp);
    }

    ptrdiff_t differenceBetween(Label from, Call to)
    {
        return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp);
    }

    ptrdiff_t differenceBetween(Label from, Label to)
    {
        return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label);
    }

    ptrdiff_t differenceBetween(Label from, DataLabelPtr to)
    {
        return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label);
    }

    ptrdiff_t differenceBetween(Label from, DataLabel32 to)
    {
        return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label);
    }

    ptrdiff_t differenceBetween(DataLabelPtr from, Jump to)
    {
        return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp);
    }

    ptrdiff_t differenceBetween(DataLabelPtr from, DataLabelPtr to)
    {
        return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label);
    }

    ptrdiff_t differenceBetween(DataLabelPtr from, Call to)
    {
        return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp);
    }

protected:
    AssemblerType m_assembler;
};

} // namespace JSC

#endif // ENABLE(ASSEMBLER)

#endif // AbstractMacroAssembler_h