//===--- TUScheduler.cpp -----------------------------------------*-C++-*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // For each file, managed by TUScheduler, we create a single ASTWorker that // manages an AST for that file. All operations that modify or read the AST are // run on a separate dedicated thread asynchronously in FIFO order. // // We start processing each update immediately after we receive it. If two or // more updates come subsequently without reads in-between, we attempt to drop // an older one to not waste time building the ASTs we don't need. // // The processing thread of the ASTWorker is also responsible for building the // preamble. However, unlike AST, the same preamble can be read concurrently, so // we run each of async preamble reads on its own thread. // // To limit the concurrent load that clangd produces we maintain a semaphore // that keeps more than a fixed number of threads from running concurrently. // // Rationale for cancelling updates. // LSP clients can send updates to clangd on each keystroke. Some files take // significant time to parse (e.g. a few seconds) and clangd can get starved by // the updates to those files. Therefore we try to process only the last update, // if possible. // Our current strategy to do that is the following: // - For each update we immediately schedule rebuild of the AST. // - Rebuild of the AST checks if it was cancelled before doing any actual work. // If it was, it does not do an actual rebuild, only reports llvm::None to the // callback // - When adding an update, we cancel the last update in the queue if it didn't // have any reads. // There is probably a optimal ways to do that. One approach we might take is // the following: // - For each update we remember the pending inputs, but delay rebuild of the // AST for some timeout. // - If subsequent updates come before rebuild was started, we replace the // pending inputs and reset the timer. // - If any reads of the AST are scheduled, we start building the AST // immediately. #include "TUScheduler.h" #include "Cancellation.h" #include "Logger.h" #include "Trace.h" #include "clang/Frontend/CompilerInvocation.h" #include "clang/Frontend/PCHContainerOperations.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Path.h" #include #include #include #include namespace clang { namespace clangd { using std::chrono::steady_clock; namespace { class ASTWorker; } static clang::clangd::Key kFileBeingProcessed; llvm::Optional TUScheduler::getFileBeingProcessedInContext() { if (auto *File = Context::current().get(kFileBeingProcessed)) return llvm::StringRef(*File); return None; } /// An LRU cache of idle ASTs. /// Because we want to limit the overall number of these we retain, the cache /// owns ASTs (and may evict them) while their workers are idle. /// Workers borrow ASTs when active, and return them when done. class TUScheduler::ASTCache { public: using Key = const ASTWorker *; ASTCache(unsigned MaxRetainedASTs) : MaxRetainedASTs(MaxRetainedASTs) {} /// Returns result of getUsedBytes() for the AST cached by \p K. /// If no AST is cached, 0 is returned. std::size_t getUsedBytes(Key K) { std::lock_guard Lock(Mut); auto It = findByKey(K); if (It == LRU.end() || !It->second) return 0; return It->second->getUsedBytes(); } /// Store the value in the pool, possibly removing the last used AST. /// The value should not be in the pool when this function is called. void put(Key K, std::unique_ptr V) { std::unique_lock Lock(Mut); assert(findByKey(K) == LRU.end()); LRU.insert(LRU.begin(), {K, std::move(V)}); if (LRU.size() <= MaxRetainedASTs) return; // We're past the limit, remove the last element. std::unique_ptr ForCleanup = std::move(LRU.back().second); LRU.pop_back(); // Run the expensive destructor outside the lock. Lock.unlock(); ForCleanup.reset(); } /// Returns the cached value for \p K, or llvm::None if the value is not in /// the cache anymore. If nullptr was cached for \p K, this function will /// return a null unique_ptr wrapped into an optional. llvm::Optional> take(Key K) { std::unique_lock Lock(Mut); auto Existing = findByKey(K); if (Existing == LRU.end()) return None; std::unique_ptr V = std::move(Existing->second); LRU.erase(Existing); // GCC 4.8 fails to compile `return V;`, as it tries to call the copy // constructor of unique_ptr, so we call the move ctor explicitly to avoid // this miscompile. return llvm::Optional>(std::move(V)); } private: using KVPair = std::pair>; std::vector::iterator findByKey(Key K) { return llvm::find_if(LRU, [K](const KVPair &P) { return P.first == K; }); } std::mutex Mut; unsigned MaxRetainedASTs; /// Items sorted in LRU order, i.e. first item is the most recently accessed /// one. std::vector LRU; /* GUARDED_BY(Mut) */ }; namespace { class ASTWorkerHandle; /// Owns one instance of the AST, schedules updates and reads of it. /// Also responsible for building and providing access to the preamble. /// Each ASTWorker processes the async requests sent to it on a separate /// dedicated thread. /// The ASTWorker that manages the AST is shared by both the processing thread /// and the TUScheduler. The TUScheduler should discard an ASTWorker when /// remove() is called, but its thread may be busy and we don't want to block. /// So the workers are accessed via an ASTWorkerHandle. Destroying the handle /// signals the worker to exit its run loop and gives up shared ownership of the /// worker. class ASTWorker { friend class ASTWorkerHandle; ASTWorker(PathRef FileName, TUScheduler::ASTCache &LRUCache, Semaphore &Barrier, bool RunSync, steady_clock::duration UpdateDebounce, std::shared_ptr PCHs, bool StorePreamblesInMemory, ParsingCallbacks &Callbacks); public: /// Create a new ASTWorker and return a handle to it. /// The processing thread is spawned using \p Tasks. However, when \p Tasks /// is null, all requests will be processed on the calling thread /// synchronously instead. \p Barrier is acquired when processing each /// request, it is used to limit the number of actively running threads. static ASTWorkerHandle create(PathRef FileName, TUScheduler::ASTCache &IdleASTs, AsyncTaskRunner *Tasks, Semaphore &Barrier, steady_clock::duration UpdateDebounce, std::shared_ptr PCHs, bool StorePreamblesInMemory, ParsingCallbacks &Callbacks); ~ASTWorker(); void update(ParseInputs Inputs, WantDiagnostics); void runWithAST(llvm::StringRef Name, llvm::unique_function)> Action); bool blockUntilIdle(Deadline Timeout) const; std::shared_ptr getPossiblyStalePreamble() const; /// Obtain a preamble reflecting all updates so far. Threadsafe. /// It may be delivered immediately, or later on the worker thread. void getCurrentPreamble( llvm::unique_function)>); /// Wait for the first build of preamble to finish. Preamble itself can be /// accessed via getPossiblyStalePreamble(). Note that this function will /// return after an unsuccessful build of the preamble too, i.e. result of /// getPossiblyStalePreamble() can be null even after this function returns. void waitForFirstPreamble() const; std::size_t getUsedBytes() const; bool isASTCached() const; private: // Must be called exactly once on processing thread. Will return after // stop() is called on a separate thread and all pending requests are // processed. void run(); /// Signal that run() should finish processing pending requests and exit. void stop(); /// Adds a new task to the end of the request queue. void startTask(llvm::StringRef Name, llvm::unique_function Task, llvm::Optional UpdateType); /// Updates the TUStatus and emits it. Only called in the worker thread. void emitTUStatus(TUAction FAction, const TUStatus::BuildDetails *Detail = nullptr); /// Determines the next action to perform. /// All actions that should never run are discarded. /// Returns a deadline for the next action. If it's expired, run now. /// scheduleLocked() is called again at the deadline, or if requests arrive. Deadline scheduleLocked(); /// Should the first task in the queue be skipped instead of run? bool shouldSkipHeadLocked() const; struct Request { llvm::unique_function Action; std::string Name; steady_clock::time_point AddTime; Context Ctx; llvm::Optional UpdateType; }; /// Handles retention of ASTs. TUScheduler::ASTCache &IdleASTs; const bool RunSync; /// Time to wait after an update to see whether another update obsoletes it. const steady_clock::duration UpdateDebounce; /// File that ASTWorker is responsible for. const Path FileName; /// Whether to keep the built preambles in memory or on disk. const bool StorePreambleInMemory; /// Callback invoked when preamble or main file AST is built. ParsingCallbacks &Callbacks; /// Helper class required to build the ASTs. const std::shared_ptr PCHs; /// Only accessed by the worker thread. TUStatus Status; Semaphore &Barrier; /// Inputs, corresponding to the current state of AST. ParseInputs FileInputs; /// Whether the diagnostics for the current FileInputs were reported to the /// users before. bool DiagsWereReported = false; /// Size of the last AST /// Guards members used by both TUScheduler and the worker thread. mutable std::mutex Mutex; std::shared_ptr LastBuiltPreamble; /* GUARDED_BY(Mutex) */ /// Becomes ready when the first preamble build finishes. Notification PreambleWasBuilt; /// Set to true to signal run() to finish processing. bool Done; /* GUARDED_BY(Mutex) */ std::deque Requests; /* GUARDED_BY(Mutex) */ mutable std::condition_variable RequestsCV; // FIXME: rename it to better fix the current usage, we also use it to guard // emitting TUStatus. /// Guards a critical section for running the diagnostics callbacks. std::mutex DiagsMu; // Used to prevent remove document + leading to out-of-order diagnostics: // The lifetime of the old/new ASTWorkers will overlap, but their handles // don't. When the old handle is destroyed, the old worker will stop reporting // diagnostics. bool ReportDiagnostics = true; /* GUARDED_BY(DiagMu) */ }; /// A smart-pointer-like class that points to an active ASTWorker. /// In destructor, signals to the underlying ASTWorker that no new requests will /// be sent and the processing loop may exit (after running all pending /// requests). class ASTWorkerHandle { friend class ASTWorker; ASTWorkerHandle(std::shared_ptr Worker) : Worker(std::move(Worker)) { assert(this->Worker); } public: ASTWorkerHandle(const ASTWorkerHandle &) = delete; ASTWorkerHandle &operator=(const ASTWorkerHandle &) = delete; ASTWorkerHandle(ASTWorkerHandle &&) = default; ASTWorkerHandle &operator=(ASTWorkerHandle &&) = default; ~ASTWorkerHandle() { if (Worker) Worker->stop(); } ASTWorker &operator*() { assert(Worker && "Handle was moved from"); return *Worker; } ASTWorker *operator->() { assert(Worker && "Handle was moved from"); return Worker.get(); } /// Returns an owning reference to the underlying ASTWorker that can outlive /// the ASTWorkerHandle. However, no new requests to an active ASTWorker can /// be schedule via the returned reference, i.e. only reads of the preamble /// are possible. std::shared_ptr lock() { return Worker; } private: std::shared_ptr Worker; }; ASTWorkerHandle ASTWorker::create(PathRef FileName, TUScheduler::ASTCache &IdleASTs, AsyncTaskRunner *Tasks, Semaphore &Barrier, steady_clock::duration UpdateDebounce, std::shared_ptr PCHs, bool StorePreamblesInMemory, ParsingCallbacks &Callbacks) { std::shared_ptr Worker(new ASTWorker( FileName, IdleASTs, Barrier, /*RunSync=*/!Tasks, UpdateDebounce, std::move(PCHs), StorePreamblesInMemory, Callbacks)); if (Tasks) Tasks->runAsync("worker:" + llvm::sys::path::filename(FileName), [Worker]() { Worker->run(); }); return ASTWorkerHandle(std::move(Worker)); } ASTWorker::ASTWorker(PathRef FileName, TUScheduler::ASTCache &LRUCache, Semaphore &Barrier, bool RunSync, steady_clock::duration UpdateDebounce, std::shared_ptr PCHs, bool StorePreamblesInMemory, ParsingCallbacks &Callbacks) : IdleASTs(LRUCache), RunSync(RunSync), UpdateDebounce(UpdateDebounce), FileName(FileName), StorePreambleInMemory(StorePreamblesInMemory), Callbacks(Callbacks), PCHs(std::move(PCHs)), Status{TUAction(TUAction::Idle, ""), TUStatus::BuildDetails()}, Barrier(Barrier), Done(false) {} ASTWorker::~ASTWorker() { // Make sure we remove the cached AST, if any. IdleASTs.take(this); #ifndef NDEBUG std::lock_guard Lock(Mutex); assert(Done && "handle was not destroyed"); assert(Requests.empty() && "unprocessed requests when destroying ASTWorker"); #endif } void ASTWorker::update(ParseInputs Inputs, WantDiagnostics WantDiags) { llvm::StringRef TaskName = "Update"; auto Task = [=]() mutable { // Will be used to check if we can avoid rebuilding the AST. bool InputsAreTheSame = std::tie(FileInputs.CompileCommand, FileInputs.Contents) == std::tie(Inputs.CompileCommand, Inputs.Contents); tooling::CompileCommand OldCommand = std::move(FileInputs.CompileCommand); bool PrevDiagsWereReported = DiagsWereReported; FileInputs = Inputs; DiagsWereReported = false; emitTUStatus({TUAction::BuildingPreamble, TaskName}); log("Updating file {0} with command [{1}] {2}", FileName, Inputs.CompileCommand.Directory, llvm::join(Inputs.CompileCommand.CommandLine, " ")); // Rebuild the preamble and the AST. std::unique_ptr Invocation = buildCompilerInvocation(Inputs); if (!Invocation) { elog("Could not build CompilerInvocation for file {0}", FileName); // Remove the old AST if it's still in cache. IdleASTs.take(this); TUStatus::BuildDetails Details; Details.BuildFailed = true; emitTUStatus({TUAction::BuildingPreamble, TaskName}, &Details); // Make sure anyone waiting for the preamble gets notified it could not // be built. PreambleWasBuilt.notify(); return; } std::shared_ptr OldPreamble = getPossiblyStalePreamble(); std::shared_ptr NewPreamble = buildPreamble( FileName, *Invocation, OldPreamble, OldCommand, Inputs, PCHs, StorePreambleInMemory, [this](ASTContext &Ctx, std::shared_ptr PP) { Callbacks.onPreambleAST(FileName, Ctx, std::move(PP)); }); bool CanReuseAST = InputsAreTheSame && (OldPreamble == NewPreamble); { std::lock_guard Lock(Mutex); LastBuiltPreamble = NewPreamble; } // Before doing the expensive AST reparse, we want to release our reference // to the old preamble, so it can be freed if there are no other references // to it. OldPreamble.reset(); PreambleWasBuilt.notify(); emitTUStatus({TUAction::BuildingFile, TaskName}); if (!CanReuseAST) { IdleASTs.take(this); // Remove the old AST if it's still in cache. } else { // Since we don't need to rebuild the AST, we might've already reported // the diagnostics for it. if (PrevDiagsWereReported) { DiagsWereReported = true; // Take a shortcut and don't report the diagnostics, since they should // not changed. All the clients should handle the lack of OnUpdated() // call anyway to handle empty result from buildAST. // FIXME(ibiryukov): the AST could actually change if non-preamble // includes changed, but we choose to ignore it. // FIXME(ibiryukov): should we refresh the cache in IdleASTs for the // current file at this point? log("Skipping rebuild of the AST for {0}, inputs are the same.", FileName); TUStatus::BuildDetails Details; Details.ReuseAST = true; emitTUStatus({TUAction::BuildingFile, TaskName}, &Details); return; } } // We only need to build the AST if diagnostics were requested. if (WantDiags == WantDiagnostics::No) return; { std::lock_guard Lock(DiagsMu); // No need to rebuild the AST if we won't send the diagnotics. However, // note that we don't prevent preamble rebuilds. if (!ReportDiagnostics) return; } // Get the AST for diagnostics. llvm::Optional> AST = IdleASTs.take(this); if (!AST) { llvm::Optional NewAST = buildAST(FileName, std::move(Invocation), Inputs, NewPreamble, PCHs); AST = NewAST ? llvm::make_unique(std::move(*NewAST)) : nullptr; if (!(*AST)) { // buildAST fails. TUStatus::BuildDetails Details; Details.BuildFailed = true; emitTUStatus({TUAction::BuildingFile, TaskName}, &Details); } } else { // We are reusing the AST. TUStatus::BuildDetails Details; Details.ReuseAST = true; emitTUStatus({TUAction::BuildingFile, TaskName}, &Details); } // We want to report the diagnostics even if this update was cancelled. // It seems more useful than making the clients wait indefinitely if they // spam us with updates. // Note *AST can still be null if buildAST fails. if (*AST) { { std::lock_guard Lock(DiagsMu); if (ReportDiagnostics) Callbacks.onDiagnostics(FileName, (*AST)->getDiagnostics()); } trace::Span Span("Running main AST callback"); Callbacks.onMainAST(FileName, **AST); DiagsWereReported = true; } // Stash the AST in the cache for further use. IdleASTs.put(this, std::move(*AST)); }; startTask(TaskName, std::move(Task), WantDiags); } void ASTWorker::runWithAST( llvm::StringRef Name, llvm::unique_function)> Action) { auto Task = [=](decltype(Action) Action) { if (isCancelled()) return Action(llvm::make_error()); llvm::Optional> AST = IdleASTs.take(this); if (!AST) { std::unique_ptr Invocation = buildCompilerInvocation(FileInputs); // Try rebuilding the AST. llvm::Optional NewAST = Invocation ? buildAST(FileName, llvm::make_unique(*Invocation), FileInputs, getPossiblyStalePreamble(), PCHs) : None; AST = NewAST ? llvm::make_unique(std::move(*NewAST)) : nullptr; } // Make sure we put the AST back into the LRU cache. auto _ = llvm::make_scope_exit( [&AST, this]() { IdleASTs.put(this, std::move(*AST)); }); // Run the user-provided action. if (!*AST) return Action(llvm::make_error( "invalid AST", llvm::errc::invalid_argument)); Action(InputsAndAST{FileInputs, **AST}); }; startTask(Name, Bind(Task, std::move(Action)), /*UpdateType=*/None); } std::shared_ptr ASTWorker::getPossiblyStalePreamble() const { std::lock_guard Lock(Mutex); return LastBuiltPreamble; } void ASTWorker::getCurrentPreamble( llvm::unique_function)> Callback) { // We could just call startTask() to throw the read on the queue, knowing // it will run after any updates. But we know this task is cheap, so to // improve latency we cheat: insert it on the queue after the last update. std::unique_lock Lock(Mutex); auto LastUpdate = std::find_if(Requests.rbegin(), Requests.rend(), [](const Request &R) { return R.UpdateType.hasValue(); }); // If there were no writes in the queue, the preamble is ready now. if (LastUpdate == Requests.rend()) { Lock.unlock(); return Callback(getPossiblyStalePreamble()); } assert(!RunSync && "Running synchronously, but queue is non-empty!"); Requests.insert(LastUpdate.base(), Request{Bind( [this](decltype(Callback) Callback) { Callback(getPossiblyStalePreamble()); }, std::move(Callback)), "GetPreamble", steady_clock::now(), Context::current().clone(), /*UpdateType=*/None}); Lock.unlock(); RequestsCV.notify_all(); } void ASTWorker::waitForFirstPreamble() const { PreambleWasBuilt.wait(); } std::size_t ASTWorker::getUsedBytes() const { // Note that we don't report the size of ASTs currently used for processing // the in-flight requests. We used this information for debugging purposes // only, so this should be fine. std::size_t Result = IdleASTs.getUsedBytes(this); if (auto Preamble = getPossiblyStalePreamble()) Result += Preamble->Preamble.getSize(); return Result; } bool ASTWorker::isASTCached() const { return IdleASTs.getUsedBytes(this) != 0; } void ASTWorker::stop() { { std::lock_guard Lock(DiagsMu); ReportDiagnostics = false; } { std::lock_guard Lock(Mutex); assert(!Done && "stop() called twice"); Done = true; } RequestsCV.notify_all(); } void ASTWorker::startTask(llvm::StringRef Name, llvm::unique_function Task, llvm::Optional UpdateType) { if (RunSync) { assert(!Done && "running a task after stop()"); trace::Span Tracer(Name + ":" + llvm::sys::path::filename(FileName)); Task(); return; } { std::lock_guard Lock(Mutex); assert(!Done && "running a task after stop()"); Requests.push_back( {std::move(Task), Name, steady_clock::now(), Context::current().derive(kFileBeingProcessed, FileName), UpdateType}); } RequestsCV.notify_all(); } void ASTWorker::emitTUStatus(TUAction Action, const TUStatus::BuildDetails *Details) { Status.Action = std::move(Action); if (Details) Status.Details = *Details; std::lock_guard Lock(DiagsMu); // Do not emit TU statuses when the ASTWorker is shutting down. if (ReportDiagnostics) { Callbacks.onFileUpdated(FileName, Status); } } void ASTWorker::run() { while (true) { Request Req; { std::unique_lock Lock(Mutex); for (auto Wait = scheduleLocked(); !Wait.expired(); Wait = scheduleLocked()) { if (Done) { if (Requests.empty()) return; else // Even though Done is set, finish pending requests. break; // However, skip delays to shutdown fast. } // Tracing: we have a next request, attribute this sleep to it. llvm::Optional Ctx; llvm::Optional Tracer; if (!Requests.empty()) { Ctx.emplace(Requests.front().Ctx.clone()); Tracer.emplace("Debounce"); SPAN_ATTACH(*Tracer, "next_request", Requests.front().Name); if (!(Wait == Deadline::infinity())) { emitTUStatus({TUAction::Queued, Req.Name}); SPAN_ATTACH(*Tracer, "sleep_ms", std::chrono::duration_cast( Wait.time() - steady_clock::now()) .count()); } } wait(Lock, RequestsCV, Wait); } Req = std::move(Requests.front()); // Leave it on the queue for now, so waiters don't see an empty queue. } // unlock Mutex { std::unique_lock Lock(Barrier, std::try_to_lock); if (!Lock.owns_lock()) { emitTUStatus({TUAction::Queued, Req.Name}); Lock.lock(); } WithContext Guard(std::move(Req.Ctx)); trace::Span Tracer(Req.Name); emitTUStatus({TUAction::RunningAction, Req.Name}); Req.Action(); } bool IsEmpty = false; { std::lock_guard Lock(Mutex); Requests.pop_front(); IsEmpty = Requests.empty(); } if (IsEmpty) emitTUStatus({TUAction::Idle, /*Name*/ ""}); RequestsCV.notify_all(); } } Deadline ASTWorker::scheduleLocked() { if (Requests.empty()) return Deadline::infinity(); // Wait for new requests. // Handle cancelled requests first so the rest of the scheduler doesn't. for (auto I = Requests.begin(), E = Requests.end(); I != E; ++I) { if (!isCancelled(I->Ctx)) { // Cancellations after the first read don't affect current scheduling. if (I->UpdateType == None) break; continue; } // Cancelled reads are moved to the front of the queue and run immediately. if (I->UpdateType == None) { Request R = std::move(*I); Requests.erase(I); Requests.push_front(std::move(R)); return Deadline::zero(); } // Cancelled updates are downgraded to auto-diagnostics, and may be elided. if (I->UpdateType == WantDiagnostics::Yes) I->UpdateType = WantDiagnostics::Auto; } while (shouldSkipHeadLocked()) Requests.pop_front(); assert(!Requests.empty() && "skipped the whole queue"); // Some updates aren't dead yet, but never end up being used. // e.g. the first keystroke is live until obsoleted by the second. // We debounce "maybe-unused" writes, sleeping 500ms in case they become dead. // But don't delay reads (including updates where diagnostics are needed). for (const auto &R : Requests) if (R.UpdateType == None || R.UpdateType == WantDiagnostics::Yes) return Deadline::zero(); // Front request needs to be debounced, so determine when we're ready. Deadline D(Requests.front().AddTime + UpdateDebounce); return D; } // Returns true if Requests.front() is a dead update that can be skipped. bool ASTWorker::shouldSkipHeadLocked() const { assert(!Requests.empty()); auto Next = Requests.begin(); auto UpdateType = Next->UpdateType; if (!UpdateType) // Only skip updates. return false; ++Next; // An update is live if its AST might still be read. // That is, if it's not immediately followed by another update. if (Next == Requests.end() || !Next->UpdateType) return false; // The other way an update can be live is if its diagnostics might be used. switch (*UpdateType) { case WantDiagnostics::Yes: return false; // Always used. case WantDiagnostics::No: return true; // Always dead. case WantDiagnostics::Auto: // Used unless followed by an update that generates diagnostics. for (; Next != Requests.end(); ++Next) if (Next->UpdateType == WantDiagnostics::Yes || Next->UpdateType == WantDiagnostics::Auto) return true; // Prefer later diagnostics. return false; } llvm_unreachable("Unknown WantDiagnostics"); } bool ASTWorker::blockUntilIdle(Deadline Timeout) const { std::unique_lock Lock(Mutex); return wait(Lock, RequestsCV, Timeout, [&] { return Requests.empty(); }); } // Render a TUAction to a user-facing string representation. // TUAction represents clangd-internal states, we don't intend to expose them // to users (say C++ programmers) directly to avoid confusion, we use terms that // are familiar by C++ programmers. std::string renderTUAction(const TUAction &Action) { std::string Result; llvm::raw_string_ostream OS(Result); switch (Action.S) { case TUAction::Queued: OS << "file is queued"; break; case TUAction::RunningAction: OS << "running " << Action.Name; break; case TUAction::BuildingPreamble: OS << "parsing includes"; break; case TUAction::BuildingFile: OS << "parsing main file"; break; case TUAction::Idle: OS << "idle"; break; } return OS.str(); } } // namespace unsigned getDefaultAsyncThreadsCount() { unsigned HardwareConcurrency = std::thread::hardware_concurrency(); // C++ standard says that hardware_concurrency() // may return 0, fallback to 1 worker thread in // that case. if (HardwareConcurrency == 0) return 1; return HardwareConcurrency; } FileStatus TUStatus::render(PathRef File) const { FileStatus FStatus; FStatus.uri = URIForFile::canonicalize(File, /*TUPath=*/File); FStatus.state = renderTUAction(Action); return FStatus; } struct TUScheduler::FileData { /// Latest inputs, passed to TUScheduler::update(). std::string Contents; tooling::CompileCommand Command; ASTWorkerHandle Worker; }; TUScheduler::TUScheduler(unsigned AsyncThreadsCount, bool StorePreamblesInMemory, std::unique_ptr Callbacks, std::chrono::steady_clock::duration UpdateDebounce, ASTRetentionPolicy RetentionPolicy) : StorePreamblesInMemory(StorePreamblesInMemory), PCHOps(std::make_shared()), Callbacks(Callbacks ? move(Callbacks) : llvm::make_unique()), Barrier(AsyncThreadsCount), IdleASTs(llvm::make_unique(RetentionPolicy.MaxRetainedASTs)), UpdateDebounce(UpdateDebounce) { if (0 < AsyncThreadsCount) { PreambleTasks.emplace(); WorkerThreads.emplace(); } } TUScheduler::~TUScheduler() { // Notify all workers that they need to stop. Files.clear(); // Wait for all in-flight tasks to finish. if (PreambleTasks) PreambleTasks->wait(); if (WorkerThreads) WorkerThreads->wait(); } bool TUScheduler::blockUntilIdle(Deadline D) const { for (auto &File : Files) if (!File.getValue()->Worker->blockUntilIdle(D)) return false; if (PreambleTasks) if (!PreambleTasks->wait(D)) return false; return true; } void TUScheduler::update(PathRef File, ParseInputs Inputs, WantDiagnostics WantDiags) { std::unique_ptr &FD = Files[File]; if (!FD) { // Create a new worker to process the AST-related tasks. ASTWorkerHandle Worker = ASTWorker::create( File, *IdleASTs, WorkerThreads ? WorkerThreads.getPointer() : nullptr, Barrier, UpdateDebounce, PCHOps, StorePreamblesInMemory, *Callbacks); FD = std::unique_ptr(new FileData{ Inputs.Contents, Inputs.CompileCommand, std::move(Worker)}); } else { FD->Contents = Inputs.Contents; FD->Command = Inputs.CompileCommand; } FD->Worker->update(std::move(Inputs), WantDiags); } void TUScheduler::remove(PathRef File) { bool Removed = Files.erase(File); if (!Removed) elog("Trying to remove file from TUScheduler that is not tracked: {0}", File); } void TUScheduler::run(llvm::StringRef Name, llvm::unique_function Action) { if (!PreambleTasks) return Action(); PreambleTasks->runAsync(Name, std::move(Action)); } void TUScheduler::runWithAST( llvm::StringRef Name, PathRef File, llvm::unique_function)> Action) { auto It = Files.find(File); if (It == Files.end()) { Action(llvm::make_error( "trying to get AST for non-added document", ErrorCode::InvalidParams)); return; } It->second->Worker->runWithAST(Name, std::move(Action)); } void TUScheduler::runWithPreamble( llvm::StringRef Name, PathRef File, PreambleConsistency Consistency, llvm::unique_function)> Action) { auto It = Files.find(File); if (It == Files.end()) { Action(llvm::make_error( "trying to get preamble for non-added document", ErrorCode::InvalidParams)); return; } if (!PreambleTasks) { trace::Span Tracer(Name); SPAN_ATTACH(Tracer, "file", File); std::shared_ptr Preamble = It->second->Worker->getPossiblyStalePreamble(); Action(InputsAndPreamble{It->second->Contents, It->second->Command, Preamble.get()}); return; } // Future is populated if the task needs a specific preamble. std::future> ConsistentPreamble; if (Consistency == Consistent) { std::promise> Promise; ConsistentPreamble = Promise.get_future(); It->second->Worker->getCurrentPreamble(Bind( [](decltype(Promise) Promise, std::shared_ptr Preamble) { Promise.set_value(std::move(Preamble)); }, std::move(Promise))); } std::shared_ptr Worker = It->second->Worker.lock(); auto Task = [Worker, this](std::string Name, std::string File, std::string Contents, tooling::CompileCommand Command, Context Ctx, decltype(ConsistentPreamble) ConsistentPreamble, decltype(Action) Action) mutable { std::shared_ptr Preamble; if (ConsistentPreamble.valid()) { Preamble = ConsistentPreamble.get(); } else { // We don't want to be running preamble actions before the preamble was // built for the first time. This avoids extra work of processing the // preamble headers in parallel multiple times. Worker->waitForFirstPreamble(); Preamble = Worker->getPossiblyStalePreamble(); } std::lock_guard BarrierLock(Barrier); WithContext Guard(std::move(Ctx)); trace::Span Tracer(Name); SPAN_ATTACH(Tracer, "file", File); Action(InputsAndPreamble{Contents, Command, Preamble.get()}); }; PreambleTasks->runAsync( "task:" + llvm::sys::path::filename(File), Bind(Task, std::string(Name), std::string(File), It->second->Contents, It->second->Command, Context::current().derive(kFileBeingProcessed, File), std::move(ConsistentPreamble), std::move(Action))); } std::vector> TUScheduler::getUsedBytesPerFile() const { std::vector> Result; Result.reserve(Files.size()); for (auto &&PathAndFile : Files) Result.push_back( {PathAndFile.first(), PathAndFile.second->Worker->getUsedBytes()}); return Result; } std::vector TUScheduler::getFilesWithCachedAST() const { std::vector Result; for (auto &&PathAndFile : Files) { if (!PathAndFile.second->Worker->isASTCached()) continue; Result.push_back(PathAndFile.first()); } return Result; } } // namespace clangd } // namespace clang