summaryrefslogtreecommitdiffstats
path: root/clang-tidy/utils/ExprSequence.cpp
blob: c3602ff8ad7a1ec86df2ee5561d885d632a84a15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//===---------- ExprSequence.cpp - clang-tidy -----------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "ExprSequence.h"

namespace clang {
namespace tidy {
namespace utils {

// Returns the Stmt nodes that are parents of 'S', skipping any potential
// intermediate non-Stmt nodes.
//
// In almost all cases, this function returns a single parent or no parents at
// all.
//
// The case that a Stmt has multiple parents is rare but does actually occur in
// the parts of the AST that we're interested in. Specifically, InitListExpr
// nodes cause ASTContext::getParent() to return multiple parents for certain
// nodes in their subtree because RecursiveASTVisitor visits both the syntactic
// and semantic forms of InitListExpr, and the parent-child relationships are
// different between the two forms.
static SmallVector<const Stmt *, 1> getParentStmts(const Stmt *S,
                                                   ASTContext *Context) {
  SmallVector<const Stmt *, 1> Result;

  ASTContext::DynTypedNodeList Parents = Context->getParents(*S);

  SmallVector<ast_type_traits::DynTypedNode, 1> NodesToProcess(Parents.begin(),
                                                               Parents.end());

  while (!NodesToProcess.empty()) {
    ast_type_traits::DynTypedNode Node = NodesToProcess.back();
    NodesToProcess.pop_back();

    if (const auto *S = Node.get<Stmt>()) {
      Result.push_back(S);
    } else {
      Parents = Context->getParents(Node);
      NodesToProcess.append(Parents.begin(), Parents.end());
    }
  }

  return Result;
}

namespace {
bool isDescendantOrEqual(const Stmt *Descendant, const Stmt *Ancestor,
                         ASTContext *Context) {
  if (Descendant == Ancestor)
    return true;
  for (const Stmt *Parent : getParentStmts(Descendant, Context)) {
    if (isDescendantOrEqual(Parent, Ancestor, Context))
      return true;
  }

  return false;
}
}

ExprSequence::ExprSequence(const CFG *TheCFG, const Stmt *Root,
                           ASTContext *TheContext)
    : Context(TheContext), Root(Root) {
  for (const auto &SyntheticStmt : TheCFG->synthetic_stmts()) {
    SyntheticStmtSourceMap[SyntheticStmt.first] = SyntheticStmt.second;
  }
}

bool ExprSequence::inSequence(const Stmt *Before, const Stmt *After) const {
  Before = resolveSyntheticStmt(Before);
  After = resolveSyntheticStmt(After);

  // If 'After' is in the subtree of the siblings that follow 'Before' in the
  // chain of successors, we know that 'After' is sequenced after 'Before'.
  for (const Stmt *Successor = getSequenceSuccessor(Before); Successor;
       Successor = getSequenceSuccessor(Successor)) {
    if (isDescendantOrEqual(After, Successor, Context))
      return true;
  }

  // If 'After' is a parent of 'Before' or is sequenced after one of these
  // parents, we know that it is sequenced after 'Before'.
  for (const Stmt *Parent : getParentStmts(Before, Context)) {
    if (Parent == After || inSequence(Parent, After))
      return true;
  }

  return false;
}

bool ExprSequence::potentiallyAfter(const Stmt *After,
                                    const Stmt *Before) const {
  return !inSequence(After, Before);
}

const Stmt *ExprSequence::getSequenceSuccessor(const Stmt *S) const {
  for (const Stmt *Parent : getParentStmts(S, Context)) {
    // If a statement has multiple parents, make sure we're using the parent
    // that lies within the sub-tree under Root.
    if (!isDescendantOrEqual(Parent, Root, Context))
      continue;

    if (const auto *BO = dyn_cast<BinaryOperator>(Parent)) {
      // Comma operator: Right-hand side is sequenced after the left-hand side.
      if (BO->getLHS() == S && BO->getOpcode() == BO_Comma)
        return BO->getRHS();
    } else if (const auto *InitList = dyn_cast<InitListExpr>(Parent)) {
      // Initializer list: Each initializer clause is sequenced after the
      // clauses that precede it.
      for (unsigned I = 1; I < InitList->getNumInits(); ++I) {
        if (InitList->getInit(I - 1) == S)
          return InitList->getInit(I);
      }
    } else if (const auto *Compound = dyn_cast<CompoundStmt>(Parent)) {
      // Compound statement: Each sub-statement is sequenced after the
      // statements that precede it.
      const Stmt *Previous = nullptr;
      for (const auto *Child : Compound->body()) {
        if (Previous == S)
          return Child;
        Previous = Child;
      }
    } else if (const auto *TheDeclStmt = dyn_cast<DeclStmt>(Parent)) {
      // Declaration: Every initializer expression is sequenced after the
      // initializer expressions that precede it.
      const Expr *PreviousInit = nullptr;
      for (const Decl *TheDecl : TheDeclStmt->decls()) {
        if (const auto *TheVarDecl = dyn_cast<VarDecl>(TheDecl)) {
          if (const Expr *Init = TheVarDecl->getInit()) {
            if (PreviousInit == S)
              return Init;
            PreviousInit = Init;
          }
        }
      }
    } else if (const auto *ForRange = dyn_cast<CXXForRangeStmt>(Parent)) {
      // Range-based for: Loop variable declaration is sequenced before the
      // body. (We need this rule because these get placed in the same
      // CFGBlock.)
      if (S == ForRange->getLoopVarStmt())
        return ForRange->getBody();
    } else if (const auto *TheIfStmt = dyn_cast<IfStmt>(Parent)) {
      // If statement:
      // - Sequence init statement before variable declaration.
      // - Sequence variable declaration (along with the expression used to
      //   initialize it) before the evaluation of the condition.
      if (S == TheIfStmt->getInit())
        return TheIfStmt->getConditionVariableDeclStmt();
      if (S == TheIfStmt->getConditionVariableDeclStmt())
        return TheIfStmt->getCond();
    } else if (const auto *TheSwitchStmt = dyn_cast<SwitchStmt>(Parent)) {
      // Ditto for switch statements.
      if (S == TheSwitchStmt->getInit())
        return TheSwitchStmt->getConditionVariableDeclStmt();
      if (S == TheSwitchStmt->getConditionVariableDeclStmt())
        return TheSwitchStmt->getCond();
    } else if (const auto *TheWhileStmt = dyn_cast<WhileStmt>(Parent)) {
      // While statement: Sequence variable declaration (along with the
      // expression used to initialize it) before the evaluation of the
      // condition.
      if (S == TheWhileStmt->getConditionVariableDeclStmt())
        return TheWhileStmt->getCond();
    }
  }

  return nullptr;
}

const Stmt *ExprSequence::resolveSyntheticStmt(const Stmt *S) const {
  if (SyntheticStmtSourceMap.count(S))
    return SyntheticStmtSourceMap.lookup(S);
  return S;
}

StmtToBlockMap::StmtToBlockMap(const CFG *TheCFG, ASTContext *TheContext)
    : Context(TheContext) {
  for (const auto *B : *TheCFG) {
    for (const auto &Elem : *B) {
      if (Optional<CFGStmt> S = Elem.getAs<CFGStmt>())
        Map[S->getStmt()] = B;
    }
  }
}

const CFGBlock *StmtToBlockMap::blockContainingStmt(const Stmt *S) const {
  while (!Map.count(S)) {
    SmallVector<const Stmt *, 1> Parents = getParentStmts(S, Context);
    if (Parents.empty())
      return nullptr;
    S = Parents[0];
  }

  return Map.lookup(S);
}

} // namespace utils
} // namespace tidy
} // namespace clang