summaryrefslogtreecommitdiffstats
path: root/clangd/Quality.cpp
blob: cef35c4ca0cf092db5d83a6ad777d02694cc7e2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
//===--- Quality.cpp ---------------------------------------------*- C++-*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Quality.h"
#include "AST.h"
#include "FileDistance.h"
#include "URI.h"
#include "index/Index.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Sema/CodeCompleteConsumer.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cmath>

namespace clang {
namespace clangd {
static bool isReserved(llvm::StringRef Name) {
  // FIXME: Should we exclude _Bool and others recognized by the standard?
  return Name.size() >= 2 && Name[0] == '_' &&
         (isUppercase(Name[1]) || Name[1] == '_');
}

static bool hasDeclInMainFile(const Decl &D) {
  auto &SourceMgr = D.getASTContext().getSourceManager();
  for (auto *Redecl : D.redecls()) {
    auto Loc = SourceMgr.getSpellingLoc(Redecl->getLocation());
    if (SourceMgr.isWrittenInMainFile(Loc))
      return true;
  }
  return false;
}

static bool hasUsingDeclInMainFile(const CodeCompletionResult &R) {
  const auto &Context = R.Declaration->getASTContext();
  const auto &SourceMgr = Context.getSourceManager();
  if (R.ShadowDecl) {
    const auto Loc = SourceMgr.getExpansionLoc(R.ShadowDecl->getLocation());
    if (SourceMgr.isWrittenInMainFile(Loc))
      return true;
  }
  return false;
}

static SymbolQualitySignals::SymbolCategory categorize(const NamedDecl &ND) {
  if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
    if (FD->isOverloadedOperator())
      return SymbolQualitySignals::Operator;
  }
  class Switch
      : public ConstDeclVisitor<Switch, SymbolQualitySignals::SymbolCategory> {
  public:
#define MAP(DeclType, Category)                                                \
  SymbolQualitySignals::SymbolCategory Visit##DeclType(const DeclType *) {     \
    return SymbolQualitySignals::Category;                                     \
  }
    MAP(NamespaceDecl, Namespace);
    MAP(NamespaceAliasDecl, Namespace);
    MAP(TypeDecl, Type);
    MAP(TypeAliasTemplateDecl, Type);
    MAP(ClassTemplateDecl, Type);
    MAP(CXXConstructorDecl, Constructor);
    MAP(CXXDestructorDecl, Destructor);
    MAP(ValueDecl, Variable);
    MAP(VarTemplateDecl, Variable);
    MAP(FunctionDecl, Function);
    MAP(FunctionTemplateDecl, Function);
    MAP(Decl, Unknown);
#undef MAP
  };
  return Switch().Visit(&ND);
}

static SymbolQualitySignals::SymbolCategory
categorize(const CodeCompletionResult &R) {
  if (R.Declaration)
    return categorize(*R.Declaration);
  if (R.Kind == CodeCompletionResult::RK_Macro)
    return SymbolQualitySignals::Macro;
  // Everything else is a keyword or a pattern. Patterns are mostly keywords
  // too, except a few which we recognize by cursor kind.
  switch (R.CursorKind) {
  case CXCursor_CXXMethod:
    return SymbolQualitySignals::Function;
  case CXCursor_ModuleImportDecl:
    return SymbolQualitySignals::Namespace;
  case CXCursor_MacroDefinition:
    return SymbolQualitySignals::Macro;
  case CXCursor_TypeRef:
    return SymbolQualitySignals::Type;
  case CXCursor_MemberRef:
    return SymbolQualitySignals::Variable;
  case CXCursor_Constructor:
    return SymbolQualitySignals::Constructor;
  default:
    return SymbolQualitySignals::Keyword;
  }
}

static SymbolQualitySignals::SymbolCategory
categorize(const index::SymbolInfo &D) {
  switch (D.Kind) {
  case index::SymbolKind::Namespace:
  case index::SymbolKind::NamespaceAlias:
    return SymbolQualitySignals::Namespace;
  case index::SymbolKind::Macro:
    return SymbolQualitySignals::Macro;
  case index::SymbolKind::Enum:
  case index::SymbolKind::Struct:
  case index::SymbolKind::Class:
  case index::SymbolKind::Protocol:
  case index::SymbolKind::Extension:
  case index::SymbolKind::Union:
  case index::SymbolKind::TypeAlias:
    return SymbolQualitySignals::Type;
  case index::SymbolKind::Function:
  case index::SymbolKind::ClassMethod:
  case index::SymbolKind::InstanceMethod:
  case index::SymbolKind::StaticMethod:
  case index::SymbolKind::InstanceProperty:
  case index::SymbolKind::ClassProperty:
  case index::SymbolKind::StaticProperty:
  case index::SymbolKind::ConversionFunction:
    return SymbolQualitySignals::Function;
  case index::SymbolKind::Destructor:
    return SymbolQualitySignals::Destructor;
  case index::SymbolKind::Constructor:
    return SymbolQualitySignals::Constructor;
  case index::SymbolKind::Variable:
  case index::SymbolKind::Field:
  case index::SymbolKind::EnumConstant:
  case index::SymbolKind::Parameter:
    return SymbolQualitySignals::Variable;
  case index::SymbolKind::Using:
  case index::SymbolKind::Module:
  case index::SymbolKind::Unknown:
    return SymbolQualitySignals::Unknown;
  }
  llvm_unreachable("Unknown index::SymbolKind");
}

static bool isInstanceMember(const NamedDecl *ND) {
  if (!ND)
    return false;
  if (const auto *TP = dyn_cast<FunctionTemplateDecl>(ND))
    ND = TP->TemplateDecl::getTemplatedDecl();
  if (const auto *CM = dyn_cast<CXXMethodDecl>(ND))
    return !CM->isStatic();
  return isa<FieldDecl>(ND); // Note that static fields are VarDecl.
}

static bool isInstanceMember(const index::SymbolInfo &D) {
  switch (D.Kind) {
  case index::SymbolKind::InstanceMethod:
  case index::SymbolKind::InstanceProperty:
  case index::SymbolKind::Field:
    return true;
  default:
    return false;
  }
}

void SymbolQualitySignals::merge(const CodeCompletionResult &SemaCCResult) {
  Deprecated |= (SemaCCResult.Availability == CXAvailability_Deprecated);
  Category = categorize(SemaCCResult);

  if (SemaCCResult.Declaration) {
    ImplementationDetail |= isImplementationDetail(SemaCCResult.Declaration);
    if (auto *ID = SemaCCResult.Declaration->getIdentifier())
      ReservedName = ReservedName || isReserved(ID->getName());
  } else if (SemaCCResult.Kind == CodeCompletionResult::RK_Macro)
    ReservedName = ReservedName || isReserved(SemaCCResult.Macro->getName());
}

void SymbolQualitySignals::merge(const Symbol &IndexResult) {
  Deprecated |= (IndexResult.Flags & Symbol::Deprecated);
  ImplementationDetail |= (IndexResult.Flags & Symbol::ImplementationDetail);
  References = std::max(IndexResult.References, References);
  Category = categorize(IndexResult.SymInfo);
  ReservedName = ReservedName || isReserved(IndexResult.Name);
}

float SymbolQualitySignals::evaluate() const {
  float Score = 1;

  // This avoids a sharp gradient for tail symbols, and also neatly avoids the
  // question of whether 0 references means a bad symbol or missing data.
  if (References >= 10) {
    // Use a sigmoid style boosting function, which flats out nicely for large
    // numbers (e.g. 2.58 for 1M refererences).
    // The following boosting function is equivalent to:
    //   m = 0.06
    //   f = 12.0
    //   boost = f * sigmoid(m * std::log(References)) - 0.5 * f + 0.59
    // Sample data points: (10, 1.00), (100, 1.41), (1000, 1.82),
    //                     (10K, 2.21), (100K, 2.58), (1M, 2.94)
    float S = std::pow(References, -0.06);
    Score *= 6.0 * (1 - S) / (1 + S) + 0.59;
  }

  if (Deprecated)
    Score *= 0.1f;
  if (ReservedName)
    Score *= 0.1f;
  if (ImplementationDetail)
    Score *= 0.2f;

  switch (Category) {
  case Keyword: // Often relevant, but misses most signals.
    Score *= 4; // FIXME: important keywords should have specific boosts.
    break;
  case Type:
  case Function:
  case Variable:
    Score *= 1.1f;
    break;
  case Namespace:
    Score *= 0.8f;
    break;
  case Macro:
  case Destructor:
  case Operator:
    Score *= 0.5f;
    break;
  case Constructor: // No boost constructors so they are after class types.
  case Unknown:
    break;
  }

  return Score;
}

llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
                              const SymbolQualitySignals &S) {
  OS << llvm::formatv("=== Symbol quality: {0}\n", S.evaluate());
  OS << llvm::formatv("\tReferences: {0}\n", S.References);
  OS << llvm::formatv("\tDeprecated: {0}\n", S.Deprecated);
  OS << llvm::formatv("\tReserved name: {0}\n", S.ReservedName);
  OS << llvm::formatv("\tCategory: {0}\n", static_cast<int>(S.Category));
  return OS;
}

static SymbolRelevanceSignals::AccessibleScope
computeScope(const NamedDecl *D) {
  // Injected "Foo" within the class "Foo" has file scope, not class scope.
  const DeclContext *DC = D->getDeclContext();
  if (auto *R = dyn_cast_or_null<RecordDecl>(D))
    if (R->isInjectedClassName())
      DC = DC->getParent();
  // Class constructor should have the same scope as the class.
  if (isa<CXXConstructorDecl>(D))
    DC = DC->getParent();
  bool InClass = false;
  for (; !DC->isFileContext(); DC = DC->getParent()) {
    if (DC->isFunctionOrMethod())
      return SymbolRelevanceSignals::FunctionScope;
    InClass = InClass || DC->isRecord();
  }
  if (InClass)
    return SymbolRelevanceSignals::ClassScope;
  // This threshold could be tweaked, e.g. to treat module-visible as global.
  if (D->getLinkageInternal() < ExternalLinkage)
    return SymbolRelevanceSignals::FileScope;
  return SymbolRelevanceSignals::GlobalScope;
}

void SymbolRelevanceSignals::merge(const Symbol &IndexResult) {
  // FIXME: Index results always assumed to be at global scope. If Scope becomes
  // relevant to non-completion requests, we should recognize class members etc.

  SymbolURI = IndexResult.CanonicalDeclaration.FileURI;
  SymbolScope = IndexResult.Scope;
  IsInstanceMember |= isInstanceMember(IndexResult.SymInfo);
}

void SymbolRelevanceSignals::merge(const CodeCompletionResult &SemaCCResult) {
  if (SemaCCResult.Availability == CXAvailability_NotAvailable ||
      SemaCCResult.Availability == CXAvailability_NotAccessible)
    Forbidden = true;

  if (SemaCCResult.Declaration) {
    SemaSaysInScope = true;
    // We boost things that have decls in the main file. We give a fixed score
    // for all other declarations in sema as they are already included in the
    // translation unit.
    float DeclProximity = (hasDeclInMainFile(*SemaCCResult.Declaration) ||
                           hasUsingDeclInMainFile(SemaCCResult))
                              ? 1.0
                              : 0.6;
    SemaFileProximityScore = std::max(DeclProximity, SemaFileProximityScore);
    IsInstanceMember |= isInstanceMember(SemaCCResult.Declaration);
    InBaseClass |= SemaCCResult.InBaseClass;
  }

  // Declarations are scoped, others (like macros) are assumed global.
  if (SemaCCResult.Declaration)
    Scope = std::min(Scope, computeScope(SemaCCResult.Declaration));

  NeedsFixIts = !SemaCCResult.FixIts.empty();
}

static std::pair<float, unsigned> uriProximity(llvm::StringRef SymbolURI,
                                               URIDistance *D) {
  if (!D || SymbolURI.empty())
    return {0.f, 0u};
  unsigned Distance = D->distance(SymbolURI);
  // Assume approximately default options are used for sensible scoring.
  return {std::exp(Distance * -0.4f / FileDistanceOptions().UpCost), Distance};
}

static float scopeBoost(ScopeDistance &Distance,
                        llvm::Optional<llvm::StringRef> SymbolScope) {
  if (!SymbolScope)
    return 1;
  auto D = Distance.distance(*SymbolScope);
  if (D == FileDistance::Unreachable)
    return 0.6f;
  return std::max(0.65, 2.0 * std::pow(0.6, D / 2.0));
}

float SymbolRelevanceSignals::evaluate() const {
  float Score = 1;

  if (Forbidden)
    return 0;

  Score *= NameMatch;

  // File proximity scores are [0,1] and we translate them into a multiplier in
  // the range from 1 to 3.
  Score *= 1 + 2 * std::max(uriProximity(SymbolURI, FileProximityMatch).first,
                            SemaFileProximityScore);

  if (ScopeProximityMatch)
    // Use a constant scope boost for sema results, as scopes of sema results
    // can be tricky (e.g. class/function scope). Set to the max boost as we
    // don't load top-level symbols from the preamble and sema results are
    // always in the accessible scope.
    Score *=
        SemaSaysInScope ? 2.0 : scopeBoost(*ScopeProximityMatch, SymbolScope);

  // Symbols like local variables may only be referenced within their scope.
  // Conversely if we're in that scope, it's likely we'll reference them.
  if (Query == CodeComplete) {
    // The narrower the scope where a symbol is visible, the more likely it is
    // to be relevant when it is available.
    switch (Scope) {
    case GlobalScope:
      break;
    case FileScope:
      Score *= 1.5;
      break;
    case ClassScope:
      Score *= 2;
      break;
    case FunctionScope:
      Score *= 4;
      break;
    }
  }

  if (TypeMatchesPreferred)
    Score *= 5.0;

  // Penalize non-instance members when they are accessed via a class instance.
  if (!IsInstanceMember &&
      (Context == CodeCompletionContext::CCC_DotMemberAccess ||
       Context == CodeCompletionContext::CCC_ArrowMemberAccess)) {
    Score *= 0.2f;
  }

  if (InBaseClass)
    Score *= 0.5f;

  // Penalize for FixIts.
  if (NeedsFixIts)
    Score *= 0.5f;

  return Score;
}

llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
                              const SymbolRelevanceSignals &S) {
  OS << llvm::formatv("=== Symbol relevance: {0}\n", S.evaluate());
  OS << llvm::formatv("\tName match: {0}\n", S.NameMatch);
  OS << llvm::formatv("\tForbidden: {0}\n", S.Forbidden);
  OS << llvm::formatv("\tNeedsFixIts: {0}\n", S.NeedsFixIts);
  OS << llvm::formatv("\tIsInstanceMember: {0}\n", S.IsInstanceMember);
  OS << llvm::formatv("\tContext: {0}\n", getCompletionKindString(S.Context));
  OS << llvm::formatv("\tQuery type: {0}\n", static_cast<int>(S.Query));
  OS << llvm::formatv("\tScope: {0}\n", static_cast<int>(S.Scope));

  OS << llvm::formatv("\tSymbol URI: {0}\n", S.SymbolURI);
  OS << llvm::formatv("\tSymbol scope: {0}\n",
                      S.SymbolScope ? *S.SymbolScope : "<None>");

  if (S.FileProximityMatch) {
    auto Score = uriProximity(S.SymbolURI, S.FileProximityMatch);
    OS << llvm::formatv("\tIndex URI proximity: {0} (distance={1})\n",
                        Score.first, Score.second);
  }
  OS << llvm::formatv("\tSema file proximity: {0}\n", S.SemaFileProximityScore);

  OS << llvm::formatv("\tSema says in scope: {0}\n", S.SemaSaysInScope);
  if (S.ScopeProximityMatch)
    OS << llvm::formatv("\tIndex scope boost: {0}\n",
                        scopeBoost(*S.ScopeProximityMatch, S.SymbolScope));

  OS << llvm::formatv(
      "\tType matched preferred: {0} (Context type: {1}, Symbol type: {2}\n",
      S.TypeMatchesPreferred, S.HadContextType, S.HadSymbolType);

  return OS;
}

float evaluateSymbolAndRelevance(float SymbolQuality, float SymbolRelevance) {
  return SymbolQuality * SymbolRelevance;
}

// Produces an integer that sorts in the same order as F.
// That is: a < b <==> encodeFloat(a) < encodeFloat(b).
static uint32_t encodeFloat(float F) {
  static_assert(std::numeric_limits<float>::is_iec559, "");
  constexpr uint32_t TopBit = ~(~uint32_t{0} >> 1);

  // Get the bits of the float. Endianness is the same as for integers.
  uint32_t U = llvm::FloatToBits(F);
  // IEEE 754 floats compare like sign-magnitude integers.
  if (U & TopBit)    // Negative float.
    return 0 - U;    // Map onto the low half of integers, order reversed.
  return U + TopBit; // Positive floats map onto the high half of integers.
}

std::string sortText(float Score, llvm::StringRef Name) {
  // We convert -Score to an integer, and hex-encode for readability.
  // Example: [0.5, "foo"] -> "41000000foo"
  std::string S;
  llvm::raw_string_ostream OS(S);
  llvm::write_hex(OS, encodeFloat(-Score), llvm::HexPrintStyle::Lower,
                  /*Width=*/2 * sizeof(Score));
  OS << Name;
  OS.flush();
  return S;
}

llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
                              const SignatureQualitySignals &S) {
  OS << llvm::formatv("=== Signature Quality:\n");
  OS << llvm::formatv("\tNumber of parameters: {0}\n", S.NumberOfParameters);
  OS << llvm::formatv("\tNumber of optional parameters: {0}\n",
                      S.NumberOfOptionalParameters);
  OS << llvm::formatv("\tContains active parameter: {0}\n",
                      S.ContainsActiveParameter);
  OS << llvm::formatv("\tKind: {0}\n", S.Kind);
  return OS;
}

} // namespace clangd
} // namespace clang