summaryrefslogtreecommitdiffstats
path: root/clangd/XRefs.cpp
blob: c51631ad1934bfbc3424ae72458339204182eaff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
//===--- XRefs.cpp -----------------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "XRefs.h"
#include "AST.h"
#include "FindSymbols.h"
#include "Logger.h"
#include "SourceCode.h"
#include "URI.h"
#include "index/Merge.h"
#include "index/SymbolCollector.h"
#include "index/SymbolLocation.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Index/IndexDataConsumer.h"
#include "clang/Index/IndexSymbol.h"
#include "clang/Index/IndexingAction.h"
#include "clang/Index/USRGeneration.h"
#include "llvm/Support/Path.h"

namespace clang {
namespace clangd {
namespace {

// Returns the single definition of the entity declared by D, if visible.
// In particular:
// - for non-redeclarable kinds (e.g. local vars), return D
// - for kinds that allow multiple definitions (e.g. namespaces), return nullptr
// Kinds of nodes that always return nullptr here will not have definitions
// reported by locateSymbolAt().
const Decl *getDefinition(const Decl *D) {
  assert(D);
  // Decl has one definition that we can find.
  if (const auto *TD = dyn_cast<TagDecl>(D))
    return TD->getDefinition();
  if (const auto *VD = dyn_cast<VarDecl>(D))
    return VD->getDefinition();
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
    return FD->getDefinition();
  // Only a single declaration is allowed.
  if (isa<ValueDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
      isa<TemplateTemplateParmDecl>(D)) // except cases above
    return D;
  // Multiple definitions are allowed.
  return nullptr; // except cases above
}

void logIfOverflow(const SymbolLocation &Loc) {
  if (Loc.Start.hasOverflow() || Loc.End.hasOverflow())
    log("Possible overflow in symbol location: {0}", Loc);
}

// Convert a SymbolLocation to LSP's Location.
// TUPath is used to resolve the path of URI.
// FIXME: figure out a good home for it, and share the implementation with
// FindSymbols.
llvm::Optional<Location> toLSPLocation(const SymbolLocation &Loc,
                                       llvm::StringRef TUPath) {
  if (!Loc)
    return None;
  auto Uri = URI::parse(Loc.FileURI);
  if (!Uri) {
    elog("Could not parse URI {0}: {1}", Loc.FileURI, Uri.takeError());
    return None;
  }
  auto U = URIForFile::fromURI(*Uri, TUPath);
  if (!U) {
    elog("Could not resolve URI {0}: {1}", Loc.FileURI, U.takeError());
    return None;
  }

  Location LSPLoc;
  LSPLoc.uri = std::move(*U);
  LSPLoc.range.start.line = Loc.Start.line();
  LSPLoc.range.start.character = Loc.Start.column();
  LSPLoc.range.end.line = Loc.End.line();
  LSPLoc.range.end.character = Loc.End.column();
  logIfOverflow(Loc);
  return LSPLoc;
}

SymbolLocation toIndexLocation(const Location &Loc, std::string &URIStorage) {
  SymbolLocation SymLoc;
  URIStorage = Loc.uri.uri();
  SymLoc.FileURI = URIStorage.c_str();
  SymLoc.Start.setLine(Loc.range.start.line);
  SymLoc.Start.setColumn(Loc.range.start.character);
  SymLoc.End.setLine(Loc.range.end.line);
  SymLoc.End.setColumn(Loc.range.end.character);
  return SymLoc;
}

// Returns the preferred location between an AST location and an index location.
SymbolLocation getPreferredLocation(const Location &ASTLoc,
                                    const SymbolLocation &IdxLoc,
                                    std::string &Scratch) {
  // Also use a dummy symbol for the index location so that other fields (e.g.
  // definition) are not factored into the preferrence.
  Symbol ASTSym, IdxSym;
  ASTSym.ID = IdxSym.ID = SymbolID("dummy_id");
  ASTSym.CanonicalDeclaration = toIndexLocation(ASTLoc, Scratch);
  IdxSym.CanonicalDeclaration = IdxLoc;
  auto Merged = mergeSymbol(ASTSym, IdxSym);
  return Merged.CanonicalDeclaration;
}

struct MacroDecl {
  llvm::StringRef Name;
  const MacroInfo *Info;
};

/// Finds declarations locations that a given source location refers to.
class DeclarationAndMacrosFinder : public index::IndexDataConsumer {
  std::vector<MacroDecl> MacroInfos;
  llvm::DenseSet<const Decl *> Decls;
  const SourceLocation &SearchedLocation;
  const ASTContext &AST;
  Preprocessor &PP;

public:
  DeclarationAndMacrosFinder(const SourceLocation &SearchedLocation,
                             ASTContext &AST, Preprocessor &PP)
      : SearchedLocation(SearchedLocation), AST(AST), PP(PP) {}

  // The results are sorted by declaration location.
  std::vector<const Decl *> getFoundDecls() const {
    std::vector<const Decl *> Result;
    for (const Decl *D : Decls)
      Result.push_back(D);

    llvm::sort(Result, [](const Decl *L, const Decl *R) {
      return L->getBeginLoc() < R->getBeginLoc();
    });
    return Result;
  }

  std::vector<MacroDecl> takeMacroInfos() {
    // Don't keep the same Macro info multiple times.
    llvm::sort(MacroInfos, [](const MacroDecl &Left, const MacroDecl &Right) {
      return Left.Info < Right.Info;
    });

    auto Last = std::unique(MacroInfos.begin(), MacroInfos.end(),
                            [](const MacroDecl &Left, const MacroDecl &Right) {
                              return Left.Info == Right.Info;
                            });
    MacroInfos.erase(Last, MacroInfos.end());
    return std::move(MacroInfos);
  }

  bool
  handleDeclOccurence(const Decl *D, index::SymbolRoleSet Roles,
                      llvm::ArrayRef<index::SymbolRelation> Relations,
                      SourceLocation Loc,
                      index::IndexDataConsumer::ASTNodeInfo ASTNode) override {
    // Skip non-semantic references.
    if (Roles & static_cast<unsigned>(index::SymbolRole::NameReference))
      return true;

    if (Loc == SearchedLocation) {
      auto IsImplicitExpr = [](const Expr *E) {
        if (!E)
          return false;
        // We assume that a constructor expression is implict (was inserted by
        // clang) if it has an invalid paren/brace location, since such
        // experssion is impossible to write down.
        if (const auto *CtorExpr = dyn_cast<CXXConstructExpr>(E))
          return CtorExpr->getParenOrBraceRange().isInvalid();
        return isa<ImplicitCastExpr>(E);
      };

      if (IsImplicitExpr(ASTNode.OrigE))
        return true;
      // Find and add definition declarations (for GoToDefinition).
      // We don't use parameter `D`, as Parameter `D` is the canonical
      // declaration, which is the first declaration of a redeclarable
      // declaration, and it could be a forward declaration.
      if (const auto *Def = getDefinition(D)) {
        Decls.insert(Def);
      } else {
        // Couldn't find a definition, fall back to use `D`.
        Decls.insert(D);
      }
    }
    return true;
  }

private:
  void finish() override {
    // Also handle possible macro at the searched location.
    Token Result;
    auto &Mgr = AST.getSourceManager();
    if (!Lexer::getRawToken(Mgr.getSpellingLoc(SearchedLocation), Result, Mgr,
                            AST.getLangOpts(), false)) {
      if (Result.is(tok::raw_identifier)) {
        PP.LookUpIdentifierInfo(Result);
      }
      IdentifierInfo *IdentifierInfo = Result.getIdentifierInfo();
      if (IdentifierInfo && IdentifierInfo->hadMacroDefinition()) {
        std::pair<FileID, unsigned int> DecLoc =
            Mgr.getDecomposedExpansionLoc(SearchedLocation);
        // Get the definition just before the searched location so that a macro
        // referenced in a '#undef MACRO' can still be found.
        SourceLocation BeforeSearchedLocation = Mgr.getMacroArgExpandedLocation(
            Mgr.getLocForStartOfFile(DecLoc.first)
                .getLocWithOffset(DecLoc.second - 1));
        MacroDefinition MacroDef =
            PP.getMacroDefinitionAtLoc(IdentifierInfo, BeforeSearchedLocation);
        MacroInfo *MacroInf = MacroDef.getMacroInfo();
        if (MacroInf) {
          MacroInfos.push_back(MacroDecl{IdentifierInfo->getName(), MacroInf});
          assert(Decls.empty());
        }
      }
    }
  }
};

struct IdentifiedSymbol {
  std::vector<const Decl *> Decls;
  std::vector<MacroDecl> Macros;
};

IdentifiedSymbol getSymbolAtPosition(ParsedAST &AST, SourceLocation Pos) {
  auto DeclMacrosFinder = DeclarationAndMacrosFinder(Pos, AST.getASTContext(),
                                                     AST.getPreprocessor());
  index::IndexingOptions IndexOpts;
  IndexOpts.SystemSymbolFilter =
      index::IndexingOptions::SystemSymbolFilterKind::All;
  IndexOpts.IndexFunctionLocals = true;
  IndexOpts.IndexParametersInDeclarations = true;
  IndexOpts.IndexTemplateParameters = true;
  indexTopLevelDecls(AST.getASTContext(), AST.getPreprocessor(),
                     AST.getLocalTopLevelDecls(), DeclMacrosFinder, IndexOpts);

  return {DeclMacrosFinder.getFoundDecls(), DeclMacrosFinder.takeMacroInfos()};
}

Range getTokenRange(ParsedAST &AST, SourceLocation TokLoc) {
  const SourceManager &SourceMgr = AST.getASTContext().getSourceManager();
  SourceLocation LocEnd = Lexer::getLocForEndOfToken(
      TokLoc, 0, SourceMgr, AST.getASTContext().getLangOpts());
  return {sourceLocToPosition(SourceMgr, TokLoc),
          sourceLocToPosition(SourceMgr, LocEnd)};
}

llvm::Optional<Location> makeLocation(ParsedAST &AST, SourceLocation TokLoc,
                                      llvm::StringRef TUPath) {
  const SourceManager &SourceMgr = AST.getASTContext().getSourceManager();
  const FileEntry *F = SourceMgr.getFileEntryForID(SourceMgr.getFileID(TokLoc));
  if (!F)
    return None;
  auto FilePath = getCanonicalPath(F, SourceMgr);
  if (!FilePath) {
    log("failed to get path!");
    return None;
  }
  Location L;
  L.uri = URIForFile::canonicalize(*FilePath, TUPath);
  L.range = getTokenRange(AST, TokLoc);
  return L;
}

} // namespace

std::vector<LocatedSymbol> locateSymbolAt(ParsedAST &AST, Position Pos,
                                          const SymbolIndex *Index) {
  const auto &SM = AST.getASTContext().getSourceManager();
  auto MainFilePath =
      getCanonicalPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
  if (!MainFilePath) {
    elog("Failed to get a path for the main file, so no references");
    return {};
  }

  // Treat #included files as symbols, to enable go-to-definition on them.
  for (auto &Inc : AST.getIncludeStructure().MainFileIncludes) {
    if (!Inc.Resolved.empty() && Inc.R.start.line == Pos.line) {
      LocatedSymbol File;
      File.Name = llvm::sys::path::filename(Inc.Resolved);
      File.PreferredDeclaration = {
          URIForFile::canonicalize(Inc.Resolved, *MainFilePath), Range{}};
      File.Definition = File.PreferredDeclaration;
      // We're not going to find any further symbols on #include lines.
      return {std::move(File)};
    }
  }

  SourceLocation SourceLocationBeg =
      getBeginningOfIdentifier(AST, Pos, SM.getMainFileID());
  auto Symbols = getSymbolAtPosition(AST, SourceLocationBeg);

  // Macros are simple: there's no declaration/definition distinction.
  // As a consequence, there's no need to look them up in the index either.
  std::vector<LocatedSymbol> Result;
  for (auto M : Symbols.Macros) {
    if (auto Loc =
            makeLocation(AST, M.Info->getDefinitionLoc(), *MainFilePath)) {
      LocatedSymbol Macro;
      Macro.Name = M.Name;
      Macro.PreferredDeclaration = *Loc;
      Macro.Definition = Loc;
      Result.push_back(std::move(Macro));
    }
  }

  // Decls are more complicated.
  // The AST contains at least a declaration, maybe a definition.
  // These are up-to-date, and so generally preferred over index results.
  // We perform a single batch index lookup to find additional definitions.

  // Results follow the order of Symbols.Decls.
  // Keep track of SymbolID -> index mapping, to fill in index data later.
  llvm::DenseMap<SymbolID, size_t> ResultIndex;

  // Emit all symbol locations (declaration or definition) from AST.
  for (const Decl *D : Symbols.Decls) {
    auto Loc = makeLocation(AST, findNameLoc(D), *MainFilePath);
    if (!Loc)
      continue;

    Result.emplace_back();
    if (auto *ND = dyn_cast<NamedDecl>(D))
      Result.back().Name = printName(AST.getASTContext(), *ND);
    Result.back().PreferredDeclaration = *Loc;
    // DeclInfo.D is always a definition if possible, so this check works.
    if (getDefinition(D) == D)
      Result.back().Definition = *Loc;

    // Record SymbolID for index lookup later.
    if (auto ID = getSymbolID(D))
      ResultIndex[*ID] = Result.size() - 1;
  }

  // Now query the index for all Symbol IDs we found in the AST.
  if (Index && !ResultIndex.empty()) {
    LookupRequest QueryRequest;
    for (auto It : ResultIndex)
      QueryRequest.IDs.insert(It.first);
    std::string Scratch;
    Index->lookup(QueryRequest, [&](const Symbol &Sym) {
      auto &R = Result[ResultIndex.lookup(Sym.ID)];

      if (R.Definition) { // from AST
        // Special case: if the AST yielded a definition, then it may not be
        // the right *declaration*. Prefer the one from the index.
        if (auto Loc = toLSPLocation(Sym.CanonicalDeclaration, *MainFilePath))
          R.PreferredDeclaration = *Loc;

        // We might still prefer the definition from the index, e.g. for
        // generated symbols.
        if (auto Loc = toLSPLocation(
                getPreferredLocation(*R.Definition, Sym.Definition, Scratch),
                *MainFilePath))
          R.Definition = *Loc;
      } else {
        R.Definition = toLSPLocation(Sym.Definition, *MainFilePath);

        // Use merge logic to choose AST or index declaration.
        if (auto Loc = toLSPLocation(
                getPreferredLocation(R.PreferredDeclaration,
                                     Sym.CanonicalDeclaration, Scratch),
                *MainFilePath))
          R.PreferredDeclaration = *Loc;
      }
    });
  }

  return Result;
}

namespace {

/// Collects references to symbols within the main file.
class ReferenceFinder : public index::IndexDataConsumer {
public:
  struct Reference {
    const Decl *CanonicalTarget;
    SourceLocation Loc;
    index::SymbolRoleSet Role;
  };

  ReferenceFinder(ASTContext &AST, Preprocessor &PP,
                  const std::vector<const Decl *> &TargetDecls)
      : AST(AST) {
    for (const Decl *D : TargetDecls)
      CanonicalTargets.insert(D->getCanonicalDecl());
  }

  std::vector<Reference> take() && {
    llvm::sort(References, [](const Reference &L, const Reference &R) {
      return std::tie(L.Loc, L.CanonicalTarget, L.Role) <
             std::tie(R.Loc, R.CanonicalTarget, R.Role);
    });
    // We sometimes see duplicates when parts of the AST get traversed twice.
    References.erase(
        std::unique(References.begin(), References.end(),
                    [](const Reference &L, const Reference &R) {
                      return std::tie(L.CanonicalTarget, L.Loc, L.Role) ==
                             std::tie(R.CanonicalTarget, R.Loc, R.Role);
                    }),
        References.end());
    return std::move(References);
  }

  bool
  handleDeclOccurence(const Decl *D, index::SymbolRoleSet Roles,
                      llvm::ArrayRef<index::SymbolRelation> Relations,
                      SourceLocation Loc,
                      index::IndexDataConsumer::ASTNodeInfo ASTNode) override {
    assert(D->isCanonicalDecl() && "expect D to be a canonical declaration");
    const SourceManager &SM = AST.getSourceManager();
    Loc = SM.getFileLoc(Loc);
    if (SM.isWrittenInMainFile(Loc) && CanonicalTargets.count(D))
      References.push_back({D, Loc, Roles});
    return true;
  }

private:
  llvm::SmallSet<const Decl *, 4> CanonicalTargets;
  std::vector<Reference> References;
  const ASTContext &AST;
};

std::vector<ReferenceFinder::Reference>
findRefs(const std::vector<const Decl *> &Decls, ParsedAST &AST) {
  ReferenceFinder RefFinder(AST.getASTContext(), AST.getPreprocessor(), Decls);
  index::IndexingOptions IndexOpts;
  IndexOpts.SystemSymbolFilter =
      index::IndexingOptions::SystemSymbolFilterKind::All;
  IndexOpts.IndexFunctionLocals = true;
  IndexOpts.IndexParametersInDeclarations = true;
  IndexOpts.IndexTemplateParameters = true;
  indexTopLevelDecls(AST.getASTContext(), AST.getPreprocessor(),
                     AST.getLocalTopLevelDecls(), RefFinder, IndexOpts);
  return std::move(RefFinder).take();
}

} // namespace

std::vector<DocumentHighlight> findDocumentHighlights(ParsedAST &AST,
                                                      Position Pos) {
  const SourceManager &SM = AST.getASTContext().getSourceManager();
  auto Symbols = getSymbolAtPosition(
      AST, getBeginningOfIdentifier(AST, Pos, SM.getMainFileID()));
  auto References = findRefs(Symbols.Decls, AST);

  std::vector<DocumentHighlight> Result;
  for (const auto &Ref : References) {
    DocumentHighlight DH;
    DH.range = getTokenRange(AST, Ref.Loc);
    if (Ref.Role & index::SymbolRoleSet(index::SymbolRole::Write))
      DH.kind = DocumentHighlightKind::Write;
    else if (Ref.Role & index::SymbolRoleSet(index::SymbolRole::Read))
      DH.kind = DocumentHighlightKind::Read;
    else
      DH.kind = DocumentHighlightKind::Text;
    Result.push_back(std::move(DH));
  }
  return Result;
}

static PrintingPolicy printingPolicyForDecls(PrintingPolicy Base) {
  PrintingPolicy Policy(Base);

  Policy.AnonymousTagLocations = false;
  Policy.TerseOutput = true;
  Policy.PolishForDeclaration = true;
  Policy.ConstantsAsWritten = true;
  Policy.SuppressTagKeyword = false;

  return Policy;
}

/// Return a string representation (e.g. "class MyNamespace::MyClass") of
/// the type declaration \p TD.
static std::string typeDeclToString(const TypeDecl *TD) {
  QualType Type = TD->getASTContext().getTypeDeclType(TD);

  PrintingPolicy Policy =
      printingPolicyForDecls(TD->getASTContext().getPrintingPolicy());

  std::string Name;
  llvm::raw_string_ostream Stream(Name);
  Type.print(Stream, Policy);

  return Stream.str();
}

/// Return a string representation (e.g. "namespace ns1::ns2") of
/// the named declaration \p ND.
static std::string namedDeclQualifiedName(const NamedDecl *ND,
                                          llvm::StringRef Prefix) {
  PrintingPolicy Policy =
      printingPolicyForDecls(ND->getASTContext().getPrintingPolicy());

  std::string Name;
  llvm::raw_string_ostream Stream(Name);
  Stream << Prefix << ' ';
  ND->printQualifiedName(Stream, Policy);

  return Stream.str();
}

/// Given a declaration \p D, return a human-readable string representing the
/// scope in which it is declared.  If the declaration is in the global scope,
/// return the string "global namespace".
static llvm::Optional<std::string> getScopeName(const Decl *D) {
  const DeclContext *DC = D->getDeclContext();

  if (isa<TranslationUnitDecl>(DC))
    return std::string("global namespace");
  if (const TypeDecl *TD = dyn_cast<TypeDecl>(DC))
    return typeDeclToString(TD);
  else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC))
    return namedDeclQualifiedName(ND, "namespace");
  else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
    return namedDeclQualifiedName(FD, "function");

  return None;
}

/// Generate a \p Hover object given the declaration \p D.
static Hover getHoverContents(const Decl *D) {
  Hover H;
  llvm::Optional<std::string> NamedScope = getScopeName(D);

  // Generate the "Declared in" section.
  if (NamedScope) {
    assert(!NamedScope->empty());

    H.contents.value += "Declared in ";
    H.contents.value += *NamedScope;
    H.contents.value += "\n\n";
  }

  // We want to include the template in the Hover.
  if (TemplateDecl *TD = D->getDescribedTemplate())
    D = TD;

  std::string DeclText;
  llvm::raw_string_ostream OS(DeclText);

  PrintingPolicy Policy =
      printingPolicyForDecls(D->getASTContext().getPrintingPolicy());

  D->print(OS, Policy);

  OS.flush();

  H.contents.value += DeclText;
  return H;
}

/// Generate a \p Hover object given the type \p T.
static Hover getHoverContents(QualType T, ASTContext &ASTCtx) {
  Hover H;
  std::string TypeText;
  llvm::raw_string_ostream OS(TypeText);
  PrintingPolicy Policy = printingPolicyForDecls(ASTCtx.getPrintingPolicy());
  T.print(OS, Policy);
  OS.flush();
  H.contents.value += TypeText;
  return H;
}

/// Generate a \p Hover object given the macro \p MacroDecl.
static Hover getHoverContents(MacroDecl Decl, ParsedAST &AST) {
  SourceManager &SM = AST.getASTContext().getSourceManager();
  std::string Definition = Decl.Name;

  // Try to get the full definition, not just the name
  SourceLocation StartLoc = Decl.Info->getDefinitionLoc();
  SourceLocation EndLoc = Decl.Info->getDefinitionEndLoc();
  if (EndLoc.isValid()) {
    EndLoc = Lexer::getLocForEndOfToken(EndLoc, 0, SM,
                                        AST.getASTContext().getLangOpts());
    bool Invalid;
    StringRef Buffer = SM.getBufferData(SM.getFileID(StartLoc), &Invalid);
    if (!Invalid) {
      unsigned StartOffset = SM.getFileOffset(StartLoc);
      unsigned EndOffset = SM.getFileOffset(EndLoc);
      if (EndOffset <= Buffer.size() && StartOffset < EndOffset)
        Definition = Buffer.substr(StartOffset, EndOffset - StartOffset).str();
    }
  }

  Hover H;
  H.contents.kind = MarkupKind::PlainText;
  H.contents.value = "#define " + Definition;
  return H;
}

namespace {
/// Computes the deduced type at a given location by visiting the relevant
/// nodes. We use this to display the actual type when hovering over an "auto"
/// keyword or "decltype()" expression.
/// FIXME: This could have been a lot simpler by visiting AutoTypeLocs but it
/// seems that the AutoTypeLocs that can be visited along with their AutoType do
/// not have the deduced type set. Instead, we have to go to the appropriate
/// DeclaratorDecl/FunctionDecl and work our back to the AutoType that does have
/// a deduced type set. The AST should be improved to simplify this scenario.
class DeducedTypeVisitor : public RecursiveASTVisitor<DeducedTypeVisitor> {
  SourceLocation SearchedLocation;
  llvm::Optional<QualType> DeducedType;

public:
  DeducedTypeVisitor(SourceLocation SearchedLocation)
      : SearchedLocation(SearchedLocation) {}

  llvm::Optional<QualType> getDeducedType() { return DeducedType; }

  // Handle auto initializers:
  //- auto i = 1;
  //- decltype(auto) i = 1;
  //- auto& i = 1;
  //- auto* i = &a;
  bool VisitDeclaratorDecl(DeclaratorDecl *D) {
    if (!D->getTypeSourceInfo() ||
        D->getTypeSourceInfo()->getTypeLoc().getBeginLoc() != SearchedLocation)
      return true;

    if (auto *AT = D->getType()->getContainedAutoType()) {
      if (!AT->getDeducedType().isNull())
        DeducedType = AT->getDeducedType();
    }
    return true;
  }

  // Handle auto return types:
  //- auto foo() {}
  //- auto& foo() {}
  //- auto foo() -> int {}
  //- auto foo() -> decltype(1+1) {}
  //- operator auto() const { return 10; }
  bool VisitFunctionDecl(FunctionDecl *D) {
    if (!D->getTypeSourceInfo())
      return true;
    // Loc of auto in return type (c++14).
    auto CurLoc = D->getReturnTypeSourceRange().getBegin();
    // Loc of "auto" in operator auto()
    if (CurLoc.isInvalid() && dyn_cast<CXXConversionDecl>(D))
      CurLoc = D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
    // Loc of "auto" in function with traling return type (c++11).
    if (CurLoc.isInvalid())
      CurLoc = D->getSourceRange().getBegin();
    if (CurLoc != SearchedLocation)
      return true;

    const AutoType *AT = D->getReturnType()->getContainedAutoType();
    if (AT && !AT->getDeducedType().isNull()) {
      DeducedType = AT->getDeducedType();
    } else if (auto DT = dyn_cast<DecltypeType>(D->getReturnType())) {
      // auto in a trailing return type just points to a DecltypeType and
      // getContainedAutoType does not unwrap it.
      if (!DT->getUnderlyingType().isNull())
        DeducedType = DT->getUnderlyingType();
    } else if (!D->getReturnType().isNull()) {
      DeducedType = D->getReturnType();
    }
    return true;
  }

  // Handle non-auto decltype, e.g.:
  // - auto foo() -> decltype(expr) {}
  // - decltype(expr);
  bool VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
    if (TL.getBeginLoc() != SearchedLocation)
      return true;

    // A DecltypeType's underlying type can be another DecltypeType! E.g.
    //  int I = 0;
    //  decltype(I) J = I;
    //  decltype(J) K = J;
    const DecltypeType *DT = dyn_cast<DecltypeType>(TL.getTypePtr());
    while (DT && !DT->getUnderlyingType().isNull()) {
      DeducedType = DT->getUnderlyingType();
      DT = dyn_cast<DecltypeType>(DeducedType->getTypePtr());
    }
    return true;
  }
};
} // namespace

/// Retrieves the deduced type at a given location (auto, decltype).
llvm::Optional<QualType> getDeducedType(ParsedAST &AST,
                                        SourceLocation SourceLocationBeg) {
  Token Tok;
  auto &ASTCtx = AST.getASTContext();
  // Only try to find a deduced type if the token is auto or decltype.
  if (!SourceLocationBeg.isValid() ||
      Lexer::getRawToken(SourceLocationBeg, Tok, ASTCtx.getSourceManager(),
                         ASTCtx.getLangOpts(), false) ||
      !Tok.is(tok::raw_identifier)) {
    return {};
  }
  AST.getPreprocessor().LookUpIdentifierInfo(Tok);
  if (!(Tok.is(tok::kw_auto) || Tok.is(tok::kw_decltype)))
    return {};

  DeducedTypeVisitor V(SourceLocationBeg);
  V.TraverseAST(AST.getASTContext());
  return V.getDeducedType();
}

llvm::Optional<Hover> getHover(ParsedAST &AST, Position Pos) {
  const SourceManager &SourceMgr = AST.getASTContext().getSourceManager();
  SourceLocation SourceLocationBeg =
      getBeginningOfIdentifier(AST, Pos, SourceMgr.getMainFileID());
  // Identified symbols at a specific position.
  auto Symbols = getSymbolAtPosition(AST, SourceLocationBeg);

  if (!Symbols.Macros.empty())
    return getHoverContents(Symbols.Macros[0], AST);

  if (!Symbols.Decls.empty())
    return getHoverContents(Symbols.Decls[0]);

  auto DeducedType = getDeducedType(AST, SourceLocationBeg);
  if (DeducedType && !DeducedType->isNull())
    return getHoverContents(*DeducedType, AST.getASTContext());

  return None;
}

std::vector<Location> findReferences(ParsedAST &AST, Position Pos,
                                     uint32_t Limit, const SymbolIndex *Index) {
  if (!Limit)
    Limit = std::numeric_limits<uint32_t>::max();
  std::vector<Location> Results;
  const SourceManager &SM = AST.getASTContext().getSourceManager();
  auto MainFilePath =
      getCanonicalPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
  if (!MainFilePath) {
    elog("Failed to get a path for the main file, so no references");
    return Results;
  }
  auto Loc = getBeginningOfIdentifier(AST, Pos, SM.getMainFileID());
  auto Symbols = getSymbolAtPosition(AST, Loc);

  // We traverse the AST to find references in the main file.
  // TODO: should we handle macros, too?
  auto MainFileRefs = findRefs(Symbols.Decls, AST);
  for (const auto &Ref : MainFileRefs) {
    Location Result;
    Result.range = getTokenRange(AST, Ref.Loc);
    Result.uri = URIForFile::canonicalize(*MainFilePath, *MainFilePath);
    Results.push_back(std::move(Result));
  }

  // Now query the index for references from other files.
  if (Index && Results.size() < Limit) {
    RefsRequest Req;
    Req.Limit = Limit;

    for (const Decl *D : Symbols.Decls) {
      // Not all symbols can be referenced from outside (e.g. function-locals).
      // TODO: we could skip TU-scoped symbols here (e.g. static functions) if
      // we know this file isn't a header. The details might be tricky.
      if (D->getParentFunctionOrMethod())
        continue;
      if (auto ID = getSymbolID(D))
        Req.IDs.insert(*ID);
    }
    if (Req.IDs.empty())
      return Results;
    Index->refs(Req, [&](const Ref &R) {
      auto LSPLoc = toLSPLocation(R.Location, *MainFilePath);
      // Avoid indexed results for the main file - the AST is authoritative.
      if (LSPLoc && LSPLoc->uri.file() != *MainFilePath)
        Results.push_back(std::move(*LSPLoc));
    });
  }
  if (Results.size() > Limit)
    Results.resize(Limit);
  return Results;
}

std::vector<SymbolDetails> getSymbolInfo(ParsedAST &AST, Position Pos) {
  const SourceManager &SM = AST.getASTContext().getSourceManager();

  auto Loc = getBeginningOfIdentifier(AST, Pos, SM.getMainFileID());
  auto Symbols = getSymbolAtPosition(AST, Loc);

  std::vector<SymbolDetails> Results;

  for (const Decl *D : Symbols.Decls) {
    SymbolDetails NewSymbol;
    if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
      std::string QName = printQualifiedName(*ND);
      std::tie(NewSymbol.containerName, NewSymbol.name) =
          splitQualifiedName(QName);

      if (NewSymbol.containerName.empty()) {
        if (const auto *ParentND =
                dyn_cast_or_null<NamedDecl>(ND->getDeclContext()))
          NewSymbol.containerName = printQualifiedName(*ParentND);
      }
    }
    llvm::SmallString<32> USR;
    if (!index::generateUSRForDecl(D, USR)) {
      NewSymbol.USR = USR.str();
      NewSymbol.ID = SymbolID(NewSymbol.USR);
    }
    Results.push_back(std::move(NewSymbol));
  }

  for (const auto &Macro : Symbols.Macros) {
    SymbolDetails NewMacro;
    NewMacro.name = Macro.Name;
    llvm::SmallString<32> USR;
    if (!index::generateUSRForMacro(NewMacro.name,
                                    Macro.Info->getDefinitionLoc(), SM, USR)) {
      NewMacro.USR = USR.str();
      NewMacro.ID = SymbolID(NewMacro.USR);
    }
    Results.push_back(std::move(NewMacro));
  }

  return Results;
}

llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const LocatedSymbol &S) {
  OS << S.Name << ": " << S.PreferredDeclaration;
  if (S.Definition)
    OS << " def=" << *S.Definition;
  return OS;
}

// FIXME(nridge): Reduce duplication between this function and declToSym().
static llvm::Optional<TypeHierarchyItem>
declToTypeHierarchyItem(ASTContext &Ctx, const NamedDecl &ND) {
  auto &SM = Ctx.getSourceManager();

  SourceLocation NameLoc = findNameLoc(&ND);
  // getFileLoc is a good choice for us, but we also need to make sure
  // sourceLocToPosition won't switch files, so we call getSpellingLoc on top of
  // that to make sure it does not switch files.
  // FIXME: sourceLocToPosition should not switch files!
  SourceLocation BeginLoc = SM.getSpellingLoc(SM.getFileLoc(ND.getBeginLoc()));
  SourceLocation EndLoc = SM.getSpellingLoc(SM.getFileLoc(ND.getEndLoc()));
  if (NameLoc.isInvalid() || BeginLoc.isInvalid() || EndLoc.isInvalid())
    return llvm::None;

  Position NameBegin = sourceLocToPosition(SM, NameLoc);
  Position NameEnd = sourceLocToPosition(
      SM, Lexer::getLocForEndOfToken(NameLoc, 0, SM, Ctx.getLangOpts()));

  index::SymbolInfo SymInfo = index::getSymbolInfo(&ND);
  // FIXME: this is not classifying constructors, destructors and operators
  //        correctly (they're all "methods").
  SymbolKind SK = indexSymbolKindToSymbolKind(SymInfo.Kind);

  TypeHierarchyItem THI;
  THI.name = printName(Ctx, ND);
  THI.kind = SK;
  THI.deprecated = ND.isDeprecated();
  THI.range =
      Range{sourceLocToPosition(SM, BeginLoc), sourceLocToPosition(SM, EndLoc)};
  THI.selectionRange = Range{NameBegin, NameEnd};
  if (!THI.range.contains(THI.selectionRange)) {
    // 'selectionRange' must be contained in 'range', so in cases where clang
    // reports unrelated ranges we need to reconcile somehow.
    THI.range = THI.selectionRange;
  }

  auto FilePath =
      getCanonicalPath(SM.getFileEntryForID(SM.getFileID(BeginLoc)), SM);
  auto TUPath = getCanonicalPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
  if (!FilePath || !TUPath)
    return llvm::None; // Not useful without a uri.
  THI.uri = URIForFile::canonicalize(*FilePath, *TUPath);

  return THI;
}

using RecursionProtectionSet = llvm::SmallSet<const CXXRecordDecl *, 4>;

static Optional<TypeHierarchyItem>
getTypeAncestors(const CXXRecordDecl &CXXRD, ASTContext &ASTCtx,
                 RecursionProtectionSet &RPSet) {
  Optional<TypeHierarchyItem> Result = declToTypeHierarchyItem(ASTCtx, CXXRD);
  if (!Result)
    return Result;

  Result->parents.emplace();

  // typeParents() will replace dependent template specializations
  // with their class template, so to avoid infinite recursion for
  // certain types of hierarchies, keep the templates encountered
  // along the parent chain in a set, and stop the recursion if one
  // starts to repeat.
  auto *Pattern = CXXRD.getDescribedTemplate() ? &CXXRD : nullptr;
  if (Pattern) {
    if (!RPSet.insert(Pattern).second) {
      return Result;
    }
  }

  for (const CXXRecordDecl *ParentDecl : typeParents(&CXXRD)) {
    if (Optional<TypeHierarchyItem> ParentSym =
            getTypeAncestors(*ParentDecl, ASTCtx, RPSet)) {
      Result->parents->emplace_back(std::move(*ParentSym));
    }
  }

  if (Pattern) {
    RPSet.erase(Pattern);
  }

  return Result;
}

const CXXRecordDecl *findRecordTypeAt(ParsedAST &AST, Position Pos) {
  ASTContext &ASTCtx = AST.getASTContext();
  const SourceManager &SourceMgr = ASTCtx.getSourceManager();
  SourceLocation SourceLocationBeg =
      getBeginningOfIdentifier(AST, Pos, SourceMgr.getMainFileID());
  IdentifiedSymbol Symbols = getSymbolAtPosition(AST, SourceLocationBeg);
  if (Symbols.Decls.empty())
    return nullptr;

  const Decl *D = Symbols.Decls[0];

  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    // If this is a variable, use the type of the variable.
    return VD->getType().getTypePtr()->getAsCXXRecordDecl();
  }

  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
    // If this is a method, use the type of the class.
    return Method->getParent();
  }

  // We don't handle FieldDecl because it's not clear what behaviour
  // the user would expect: the enclosing class type (as with a
  // method), or the field's type (as with a variable).

  return dyn_cast<CXXRecordDecl>(D);
}

std::vector<const CXXRecordDecl *> typeParents(const CXXRecordDecl *CXXRD) {
  std::vector<const CXXRecordDecl *> Result;

  for (auto Base : CXXRD->bases()) {
    const CXXRecordDecl *ParentDecl = nullptr;

    const Type *Type = Base.getType().getTypePtr();
    if (const RecordType *RT = Type->getAs<RecordType>()) {
      ParentDecl = RT->getAsCXXRecordDecl();
    }

    if (!ParentDecl) {
      // Handle a dependent base such as "Base<T>" by using the primary
      // template.
      if (const TemplateSpecializationType *TS =
              Type->getAs<TemplateSpecializationType>()) {
        TemplateName TN = TS->getTemplateName();
        if (TemplateDecl *TD = TN.getAsTemplateDecl()) {
          ParentDecl = dyn_cast<CXXRecordDecl>(TD->getTemplatedDecl());
        }
      }
    }

    if (ParentDecl)
      Result.push_back(ParentDecl);
  }

  return Result;
}

llvm::Optional<TypeHierarchyItem>
getTypeHierarchy(ParsedAST &AST, Position Pos, int ResolveLevels,
                 TypeHierarchyDirection Direction) {
  const CXXRecordDecl *CXXRD = findRecordTypeAt(AST, Pos);
  if (!CXXRD)
    return llvm::None;

  RecursionProtectionSet RPSet;
  Optional<TypeHierarchyItem> Result =
      getTypeAncestors(*CXXRD, AST.getASTContext(), RPSet);

  // FIXME(nridge): Resolve type descendants if direction is Children or Both,
  // and ResolveLevels > 0.

  return Result;
}

} // namespace clangd
} // namespace clang