//===--- VTableBuilder.h - C++ vtable layout builder --------------*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code dealing with generation of the layout of virtual tables. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_VTABLEBUILDER_H #define LLVM_CLANG_AST_VTABLEBUILDER_H #include "clang/AST/BaseSubobject.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/GlobalDecl.h" #include "clang/AST/RecordLayout.h" #include "clang/Basic/ABI.h" #include "llvm/ADT/DenseMap.h" #include #include namespace clang { class CXXRecordDecl; /// Represents a single component in a vtable. class VTableComponent { public: enum Kind { CK_VCallOffset, CK_VBaseOffset, CK_OffsetToTop, CK_RTTI, CK_FunctionPointer, /// A pointer to the complete destructor. CK_CompleteDtorPointer, /// A pointer to the deleting destructor. CK_DeletingDtorPointer, /// An entry that is never used. /// /// In some cases, a vtable function pointer will end up never being /// called. Such vtable function pointers are represented as a /// CK_UnusedFunctionPointer. CK_UnusedFunctionPointer }; VTableComponent() = default; static VTableComponent MakeVCallOffset(CharUnits Offset) { return VTableComponent(CK_VCallOffset, Offset); } static VTableComponent MakeVBaseOffset(CharUnits Offset) { return VTableComponent(CK_VBaseOffset, Offset); } static VTableComponent MakeOffsetToTop(CharUnits Offset) { return VTableComponent(CK_OffsetToTop, Offset); } static VTableComponent MakeRTTI(const CXXRecordDecl *RD) { return VTableComponent(CK_RTTI, reinterpret_cast(RD)); } static VTableComponent MakeFunction(const CXXMethodDecl *MD) { assert(!isa(MD) && "Don't use MakeFunction with destructors!"); return VTableComponent(CK_FunctionPointer, reinterpret_cast(MD)); } static VTableComponent MakeCompleteDtor(const CXXDestructorDecl *DD) { return VTableComponent(CK_CompleteDtorPointer, reinterpret_cast(DD)); } static VTableComponent MakeDeletingDtor(const CXXDestructorDecl *DD) { return VTableComponent(CK_DeletingDtorPointer, reinterpret_cast(DD)); } static VTableComponent MakeUnusedFunction(const CXXMethodDecl *MD) { assert(!isa(MD) && "Don't use MakeUnusedFunction with destructors!"); return VTableComponent(CK_UnusedFunctionPointer, reinterpret_cast(MD)); } /// Get the kind of this vtable component. Kind getKind() const { return (Kind)(Value & 0x7); } CharUnits getVCallOffset() const { assert(getKind() == CK_VCallOffset && "Invalid component kind!"); return getOffset(); } CharUnits getVBaseOffset() const { assert(getKind() == CK_VBaseOffset && "Invalid component kind!"); return getOffset(); } CharUnits getOffsetToTop() const { assert(getKind() == CK_OffsetToTop && "Invalid component kind!"); return getOffset(); } const CXXRecordDecl *getRTTIDecl() const { assert(isRTTIKind() && "Invalid component kind!"); return reinterpret_cast(getPointer()); } const CXXMethodDecl *getFunctionDecl() const { assert(isFunctionPointerKind() && "Invalid component kind!"); if (isDestructorKind()) return getDestructorDecl(); return reinterpret_cast(getPointer()); } const CXXDestructorDecl *getDestructorDecl() const { assert(isDestructorKind() && "Invalid component kind!"); return reinterpret_cast(getPointer()); } const CXXMethodDecl *getUnusedFunctionDecl() const { assert(getKind() == CK_UnusedFunctionPointer && "Invalid component kind!"); return reinterpret_cast(getPointer()); } bool isDestructorKind() const { return isDestructorKind(getKind()); } bool isUsedFunctionPointerKind() const { return isUsedFunctionPointerKind(getKind()); } bool isFunctionPointerKind() const { return isFunctionPointerKind(getKind()); } bool isRTTIKind() const { return isRTTIKind(getKind()); } GlobalDecl getGlobalDecl() const { assert(isUsedFunctionPointerKind() && "GlobalDecl can be created only from virtual function"); auto *DtorDecl = dyn_cast(getFunctionDecl()); switch (getKind()) { case CK_FunctionPointer: return GlobalDecl(getFunctionDecl()); case CK_CompleteDtorPointer: return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Complete); case CK_DeletingDtorPointer: return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Deleting); case CK_VCallOffset: case CK_VBaseOffset: case CK_OffsetToTop: case CK_RTTI: case CK_UnusedFunctionPointer: llvm_unreachable("Only function pointers kinds"); } llvm_unreachable("Should already return"); } private: static bool isFunctionPointerKind(Kind ComponentKind) { return isUsedFunctionPointerKind(ComponentKind) || ComponentKind == CK_UnusedFunctionPointer; } static bool isUsedFunctionPointerKind(Kind ComponentKind) { return ComponentKind == CK_FunctionPointer || isDestructorKind(ComponentKind); } static bool isDestructorKind(Kind ComponentKind) { return ComponentKind == CK_CompleteDtorPointer || ComponentKind == CK_DeletingDtorPointer; } static bool isRTTIKind(Kind ComponentKind) { return ComponentKind == CK_RTTI; } VTableComponent(Kind ComponentKind, CharUnits Offset) { assert((ComponentKind == CK_VCallOffset || ComponentKind == CK_VBaseOffset || ComponentKind == CK_OffsetToTop) && "Invalid component kind!"); assert(Offset.getQuantity() < (1LL << 56) && "Offset is too big!"); assert(Offset.getQuantity() >= -(1LL << 56) && "Offset is too small!"); Value = (uint64_t(Offset.getQuantity()) << 3) | ComponentKind; } VTableComponent(Kind ComponentKind, uintptr_t Ptr) { assert((isRTTIKind(ComponentKind) || isFunctionPointerKind(ComponentKind)) && "Invalid component kind!"); assert((Ptr & 7) == 0 && "Pointer not sufficiently aligned!"); Value = Ptr | ComponentKind; } CharUnits getOffset() const { assert((getKind() == CK_VCallOffset || getKind() == CK_VBaseOffset || getKind() == CK_OffsetToTop) && "Invalid component kind!"); return CharUnits::fromQuantity(Value >> 3); } uintptr_t getPointer() const { assert((getKind() == CK_RTTI || isFunctionPointerKind()) && "Invalid component kind!"); return static_cast(Value & ~7ULL); } /// The kind is stored in the lower 3 bits of the value. For offsets, we /// make use of the facts that classes can't be larger than 2^55 bytes, /// so we store the offset in the lower part of the 61 bits that remain. /// (The reason that we're not simply using a PointerIntPair here is that we /// need the offsets to be 64-bit, even when on a 32-bit machine). int64_t Value; }; class VTableLayout { public: typedef std::pair VTableThunkTy; struct AddressPointLocation { unsigned VTableIndex, AddressPointIndex; }; typedef llvm::DenseMap AddressPointsMapTy; private: // Stores the component indices of the first component of each virtual table in // the virtual table group. To save a little memory in the common case where // the vtable group contains a single vtable, an empty vector here represents // the vector {0}. OwningArrayRef VTableIndices; OwningArrayRef VTableComponents; /// Contains thunks needed by vtables, sorted by indices. OwningArrayRef VTableThunks; /// Address points for all vtables. AddressPointsMapTy AddressPoints; public: VTableLayout(ArrayRef VTableIndices, ArrayRef VTableComponents, ArrayRef VTableThunks, const AddressPointsMapTy &AddressPoints); ~VTableLayout(); ArrayRef vtable_components() const { return VTableComponents; } ArrayRef vtable_thunks() const { return VTableThunks; } AddressPointLocation getAddressPoint(BaseSubobject Base) const { assert(AddressPoints.count(Base) && "Did not find address point!"); return AddressPoints.find(Base)->second; } const AddressPointsMapTy &getAddressPoints() const { return AddressPoints; } size_t getNumVTables() const { if (VTableIndices.empty()) return 1; return VTableIndices.size(); } size_t getVTableOffset(size_t i) const { if (VTableIndices.empty()) { assert(i == 0); return 0; } return VTableIndices[i]; } size_t getVTableSize(size_t i) const { if (VTableIndices.empty()) { assert(i == 0); return vtable_components().size(); } size_t thisIndex = VTableIndices[i]; size_t nextIndex = (i + 1 == VTableIndices.size()) ? vtable_components().size() : VTableIndices[i + 1]; return nextIndex - thisIndex; } }; class VTableContextBase { public: typedef SmallVector ThunkInfoVectorTy; bool isMicrosoft() const { return IsMicrosoftABI; } virtual ~VTableContextBase() {} protected: typedef llvm::DenseMap ThunksMapTy; /// Contains all thunks that a given method decl will need. ThunksMapTy Thunks; /// Compute and store all vtable related information (vtable layout, vbase /// offset offsets, thunks etc) for the given record decl. virtual void computeVTableRelatedInformation(const CXXRecordDecl *RD) = 0; VTableContextBase(bool MS) : IsMicrosoftABI(MS) {} public: virtual const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) { const CXXMethodDecl *MD = cast(GD.getDecl()->getCanonicalDecl()); computeVTableRelatedInformation(MD->getParent()); // This assumes that all the destructors present in the vtable // use exactly the same set of thunks. ThunksMapTy::const_iterator I = Thunks.find(MD); if (I == Thunks.end()) { // We did not find a thunk for this method. return nullptr; } return &I->second; } bool IsMicrosoftABI; }; class ItaniumVTableContext : public VTableContextBase { private: /// Contains the index (relative to the vtable address point) /// where the function pointer for a virtual function is stored. typedef llvm::DenseMap MethodVTableIndicesTy; MethodVTableIndicesTy MethodVTableIndices; typedef llvm::DenseMap> VTableLayoutMapTy; VTableLayoutMapTy VTableLayouts; typedef std::pair ClassPairTy; /// vtable offsets for offsets of virtual bases of a class. /// /// Contains the vtable offset (relative to the address point) in chars /// where the offsets for virtual bases of a class are stored. typedef llvm::DenseMap VirtualBaseClassOffsetOffsetsMapTy; VirtualBaseClassOffsetOffsetsMapTy VirtualBaseClassOffsetOffsets; void computeVTableRelatedInformation(const CXXRecordDecl *RD) override; public: ItaniumVTableContext(ASTContext &Context); ~ItaniumVTableContext() override; const VTableLayout &getVTableLayout(const CXXRecordDecl *RD) { computeVTableRelatedInformation(RD); assert(VTableLayouts.count(RD) && "No layout for this record decl!"); return *VTableLayouts[RD]; } std::unique_ptr createConstructionVTableLayout( const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset, bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass); /// Locate a virtual function in the vtable. /// /// Return the index (relative to the vtable address point) where the /// function pointer for the given virtual function is stored. uint64_t getMethodVTableIndex(GlobalDecl GD); /// Return the offset in chars (relative to the vtable address point) where /// the offset of the virtual base that contains the given base is stored, /// otherwise, if no virtual base contains the given class, return 0. /// /// Base must be a virtual base class or an unambiguous base. CharUnits getVirtualBaseOffsetOffset(const CXXRecordDecl *RD, const CXXRecordDecl *VBase); static bool classof(const VTableContextBase *VT) { return !VT->isMicrosoft(); } }; /// Holds information about the inheritance path to a virtual base or function /// table pointer. A record may contain as many vfptrs or vbptrs as there are /// base subobjects. struct VPtrInfo { typedef SmallVector BasePath; VPtrInfo(const CXXRecordDecl *RD) : ObjectWithVPtr(RD), IntroducingObject(RD), NextBaseToMangle(RD) {} /// This is the most derived class that has this vptr at offset zero. When /// single inheritance is used, this is always the most derived class. If /// multiple inheritance is used, it may be any direct or indirect base. const CXXRecordDecl *ObjectWithVPtr; /// This is the class that introduced the vptr by declaring new virtual /// methods or virtual bases. const CXXRecordDecl *IntroducingObject; /// IntroducingObject is at this offset from its containing complete object or /// virtual base. CharUnits NonVirtualOffset; /// The bases from the inheritance path that got used to mangle the vbtable /// name. This is not really a full path like a CXXBasePath. It holds the /// subset of records that need to be mangled into the vbtable symbol name in /// order to get a unique name. BasePath MangledPath; /// The next base to push onto the mangled path if this path is ambiguous in a /// derived class. If it's null, then it's already been pushed onto the path. const CXXRecordDecl *NextBaseToMangle; /// The set of possibly indirect vbases that contain this vbtable. When a /// derived class indirectly inherits from the same vbase twice, we only keep /// vtables and their paths from the first instance. BasePath ContainingVBases; /// This holds the base classes path from the complete type to the first base /// with the given vfptr offset, in the base-to-derived order. Only used for /// vftables. BasePath PathToIntroducingObject; /// Static offset from the top of the most derived class to this vfptr, /// including any virtual base offset. Only used for vftables. CharUnits FullOffsetInMDC; /// The vptr is stored inside the non-virtual component of this virtual base. const CXXRecordDecl *getVBaseWithVPtr() const { return ContainingVBases.empty() ? nullptr : ContainingVBases.front(); } }; typedef SmallVector, 2> VPtrInfoVector; /// All virtual base related information about a given record decl. Includes /// information on all virtual base tables and the path components that are used /// to mangle them. struct VirtualBaseInfo { /// A map from virtual base to vbtable index for doing a conversion from the /// the derived class to the a base. llvm::DenseMap VBTableIndices; /// Information on all virtual base tables used when this record is the most /// derived class. VPtrInfoVector VBPtrPaths; }; struct MethodVFTableLocation { /// If nonzero, holds the vbtable index of the virtual base with the vfptr. uint64_t VBTableIndex; /// If nonnull, holds the last vbase which contains the vfptr that the /// method definition is adjusted to. const CXXRecordDecl *VBase; /// This is the offset of the vfptr from the start of the last vbase, or the /// complete type if there are no virtual bases. CharUnits VFPtrOffset; /// Method's index in the vftable. uint64_t Index; MethodVFTableLocation() : VBTableIndex(0), VBase(nullptr), VFPtrOffset(CharUnits::Zero()), Index(0) {} MethodVFTableLocation(uint64_t VBTableIndex, const CXXRecordDecl *VBase, CharUnits VFPtrOffset, uint64_t Index) : VBTableIndex(VBTableIndex), VBase(VBase), VFPtrOffset(VFPtrOffset), Index(Index) {} bool operator<(const MethodVFTableLocation &other) const { if (VBTableIndex != other.VBTableIndex) { assert(VBase != other.VBase); return VBTableIndex < other.VBTableIndex; } return std::tie(VFPtrOffset, Index) < std::tie(other.VFPtrOffset, other.Index); } }; class MicrosoftVTableContext : public VTableContextBase { public: private: ASTContext &Context; typedef llvm::DenseMap MethodVFTableLocationsTy; MethodVFTableLocationsTy MethodVFTableLocations; typedef llvm::DenseMap> VFPtrLocationsMapTy; VFPtrLocationsMapTy VFPtrLocations; typedef std::pair VFTableIdTy; typedef llvm::DenseMap> VFTableLayoutMapTy; VFTableLayoutMapTy VFTableLayouts; llvm::DenseMap> VBaseInfo; void enumerateVFPtrs(const CXXRecordDecl *ForClass, VPtrInfoVector &Result); void computeVTableRelatedInformation(const CXXRecordDecl *RD) override; void dumpMethodLocations(const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods, raw_ostream &); const VirtualBaseInfo & computeVBTableRelatedInformation(const CXXRecordDecl *RD); void computeVTablePaths(bool ForVBTables, const CXXRecordDecl *RD, VPtrInfoVector &Paths); public: MicrosoftVTableContext(ASTContext &Context) : VTableContextBase(/*MS=*/true), Context(Context) {} ~MicrosoftVTableContext() override; const VPtrInfoVector &getVFPtrOffsets(const CXXRecordDecl *RD); const VTableLayout &getVFTableLayout(const CXXRecordDecl *RD, CharUnits VFPtrOffset); MethodVFTableLocation getMethodVFTableLocation(GlobalDecl GD); const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) override { // Complete destructors don't have a slot in a vftable, so no thunks needed. if (isa(GD.getDecl()) && GD.getDtorType() == Dtor_Complete) return nullptr; return VTableContextBase::getThunkInfo(GD); } /// Returns the index of VBase in the vbtable of Derived. /// VBase must be a morally virtual base of Derived. /// The vbtable is an array of i32 offsets. The first entry is a self entry, /// and the rest are offsets from the vbptr to virtual bases. unsigned getVBTableIndex(const CXXRecordDecl *Derived, const CXXRecordDecl *VBase); const VPtrInfoVector &enumerateVBTables(const CXXRecordDecl *RD); static bool classof(const VTableContextBase *VT) { return VT->isMicrosoft(); } }; } // namespace clang #endif