//===--- Diagnostic.h - C Language Family Diagnostic Handling ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief Defines the Diagnostic-related interfaces. /// //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_BASIC_DIAGNOSTIC_H #define LLVM_CLANG_BASIC_DIAGNOSTIC_H #include "clang/Basic/DiagnosticIDs.h" #include "clang/Basic/DiagnosticOptions.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IntrusiveRefCntPtr.h" #include "llvm/ADT/iterator_range.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include #include #include #include #include #include #include #include #include #include namespace clang { class DeclContext; class DiagnosticBuilder; class DiagnosticConsumer; class IdentifierInfo; class LangOptions; class Preprocessor; class StoredDiagnostic; namespace tok { enum TokenKind : unsigned short; } // end namespace tok /// \brief Annotates a diagnostic with some code that should be /// inserted, removed, or replaced to fix the problem. /// /// This kind of hint should be used when we are certain that the /// introduction, removal, or modification of a particular (small!) /// amount of code will correct a compilation error. The compiler /// should also provide full recovery from such errors, such that /// suppressing the diagnostic output can still result in successful /// compilation. class FixItHint { public: /// \brief Code that should be replaced to correct the error. Empty for an /// insertion hint. CharSourceRange RemoveRange; /// \brief Code in the specific range that should be inserted in the insertion /// location. CharSourceRange InsertFromRange; /// \brief The actual code to insert at the insertion location, as a /// string. std::string CodeToInsert; bool BeforePreviousInsertions; /// \brief Empty code modification hint, indicating that no code /// modification is known. FixItHint() : BeforePreviousInsertions(false) { } bool isNull() const { return !RemoveRange.isValid(); } /// \brief Create a code modification hint that inserts the given /// code string at a specific location. static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions = false) { FixItHint Hint; Hint.RemoveRange = CharSourceRange::getCharRange(InsertionLoc, InsertionLoc); Hint.CodeToInsert = Code; Hint.BeforePreviousInsertions = BeforePreviousInsertions; return Hint; } /// \brief Create a code modification hint that inserts the given /// code from \p FromRange at a specific location. static FixItHint CreateInsertionFromRange(SourceLocation InsertionLoc, CharSourceRange FromRange, bool BeforePreviousInsertions = false) { FixItHint Hint; Hint.RemoveRange = CharSourceRange::getCharRange(InsertionLoc, InsertionLoc); Hint.InsertFromRange = FromRange; Hint.BeforePreviousInsertions = BeforePreviousInsertions; return Hint; } /// \brief Create a code modification hint that removes the given /// source range. static FixItHint CreateRemoval(CharSourceRange RemoveRange) { FixItHint Hint; Hint.RemoveRange = RemoveRange; return Hint; } static FixItHint CreateRemoval(SourceRange RemoveRange) { return CreateRemoval(CharSourceRange::getTokenRange(RemoveRange)); } /// \brief Create a code modification hint that replaces the given /// source range with the given code string. static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code) { FixItHint Hint; Hint.RemoveRange = RemoveRange; Hint.CodeToInsert = Code; return Hint; } static FixItHint CreateReplacement(SourceRange RemoveRange, StringRef Code) { return CreateReplacement(CharSourceRange::getTokenRange(RemoveRange), Code); } }; /// \brief Concrete class used by the front-end to report problems and issues. /// /// This massages the diagnostics (e.g. handling things like "report warnings /// as errors" and passes them off to the DiagnosticConsumer for reporting to /// the user. DiagnosticsEngine is tied to one translation unit and one /// SourceManager. class DiagnosticsEngine : public RefCountedBase { public: /// \brief The level of the diagnostic, after it has been through mapping. enum Level { Ignored = DiagnosticIDs::Ignored, Note = DiagnosticIDs::Note, Remark = DiagnosticIDs::Remark, Warning = DiagnosticIDs::Warning, Error = DiagnosticIDs::Error, Fatal = DiagnosticIDs::Fatal }; enum ArgumentKind { ak_std_string, ///< std::string ak_c_string, ///< const char * ak_sint, ///< int ak_uint, ///< unsigned ak_tokenkind, ///< enum TokenKind : unsigned ak_identifierinfo, ///< IdentifierInfo ak_qualtype, ///< QualType ak_declarationname, ///< DeclarationName ak_nameddecl, ///< NamedDecl * ak_nestednamespec, ///< NestedNameSpecifier * ak_declcontext, ///< DeclContext * ak_qualtype_pair, ///< pair ak_attr ///< Attr * }; /// \brief Represents on argument value, which is a union discriminated /// by ArgumentKind, with a value. typedef std::pair ArgumentValue; private: unsigned char AllExtensionsSilenced; // Used by __extension__ bool SuppressAfterFatalError; // Suppress diagnostics after a fatal error? bool SuppressAllDiagnostics; // Suppress all diagnostics. bool ElideType; // Elide common types of templates. bool PrintTemplateTree; // Print a tree when comparing templates. bool ShowColors; // Color printing is enabled. OverloadsShown ShowOverloads; // Which overload candidates to show. unsigned ErrorLimit; // Cap of # errors emitted, 0 -> no limit. unsigned TemplateBacktraceLimit; // Cap on depth of template backtrace stack, // 0 -> no limit. unsigned ConstexprBacktraceLimit; // Cap on depth of constexpr evaluation // backtrace stack, 0 -> no limit. IntrusiveRefCntPtr Diags; IntrusiveRefCntPtr DiagOpts; DiagnosticConsumer *Client; std::unique_ptr Owner; SourceManager *SourceMgr; /// \brief Mapping information for diagnostics. /// /// Mapping info is packed into four bits per diagnostic. The low three /// bits are the mapping (an instance of diag::Severity), or zero if unset. /// The high bit is set when the mapping was established as a user mapping. /// If the high bit is clear, then the low bits are set to the default /// value, and should be mapped with -pedantic, -Werror, etc. /// /// A new DiagState is created and kept around when diagnostic pragmas modify /// the state so that we know what is the diagnostic state at any given /// source location. class DiagState { llvm::DenseMap DiagMap; public: // "Global" configuration state that can actually vary between modules. unsigned IgnoreAllWarnings : 1; // Ignore all warnings: -w unsigned EnableAllWarnings : 1; // Enable all warnings. unsigned WarningsAsErrors : 1; // Treat warnings like errors. unsigned ErrorsAsFatal : 1; // Treat errors like fatal errors. unsigned SuppressSystemWarnings : 1; // Suppress warnings in system headers. diag::Severity ExtBehavior; // Map extensions to warnings or errors? DiagState() : IgnoreAllWarnings(false), EnableAllWarnings(false), WarningsAsErrors(false), ErrorsAsFatal(false), SuppressSystemWarnings(false), ExtBehavior(diag::Severity::Ignored) {} typedef llvm::DenseMap::iterator iterator; typedef llvm::DenseMap::const_iterator const_iterator; void setMapping(diag::kind Diag, DiagnosticMapping Info) { DiagMap[Diag] = Info; } DiagnosticMapping lookupMapping(diag::kind Diag) const { return DiagMap.lookup(Diag); } DiagnosticMapping &getOrAddMapping(diag::kind Diag); const_iterator begin() const { return DiagMap.begin(); } const_iterator end() const { return DiagMap.end(); } }; /// \brief Keeps and automatically disposes all DiagStates that we create. std::list DiagStates; /// A mapping from files to the diagnostic states for those files. Lazily /// built on demand for files in which the diagnostic state has not changed. class DiagStateMap { public: /// Add an initial diagnostic state. void appendFirst(DiagState *State); /// Add a new latest state point. void append(SourceManager &SrcMgr, SourceLocation Loc, DiagState *State); /// Look up the diagnostic state at a given source location. DiagState *lookup(SourceManager &SrcMgr, SourceLocation Loc) const; /// Determine whether this map is empty. bool empty() const { return Files.empty(); } /// Clear out this map. void clear() { Files.clear(); FirstDiagState = CurDiagState = nullptr; CurDiagStateLoc = SourceLocation(); } /// Grab the most-recently-added state point. DiagState *getCurDiagState() const { return CurDiagState; } /// Get the location at which a diagnostic state was last added. SourceLocation getCurDiagStateLoc() const { return CurDiagStateLoc; } private: /// \brief Represents a point in source where the diagnostic state was /// modified because of a pragma. /// /// 'Loc' can be null if the point represents the diagnostic state /// modifications done through the command-line. struct DiagStatePoint { DiagState *State; unsigned Offset; DiagStatePoint(DiagState *State, unsigned Offset) : State(State), Offset(Offset) { } }; /// Description of the diagnostic states and state transitions for a /// particular FileID. struct File { /// The diagnostic state for the parent file. This is strictly redundant, /// as looking up the DecomposedIncludedLoc for the FileID in the Files /// map would give us this, but we cache it here for performance. File *Parent = nullptr; /// The offset of this file within its parent. unsigned ParentOffset = 0; /// Whether this file has any local (not imported from an AST file) /// diagnostic state transitions. bool HasLocalTransitions = false; /// The points within the file where the state changes. There will always /// be at least one of these (the state on entry to the file). llvm::SmallVector StateTransitions; DiagState *lookup(unsigned Offset) const; }; /// The diagnostic states for each file. mutable std::map Files; /// The initial diagnostic state. DiagState *FirstDiagState; /// The current diagnostic state. DiagState *CurDiagState; /// The location at which the current diagnostic state was established. SourceLocation CurDiagStateLoc; /// Get the diagnostic state information for a file. File *getFile(SourceManager &SrcMgr, FileID ID) const; friend class ASTReader; friend class ASTWriter; }; DiagStateMap DiagStatesByLoc; /// \brief Keeps the DiagState that was active during each diagnostic 'push' /// so we can get back at it when we 'pop'. std::vector DiagStateOnPushStack; DiagState *GetCurDiagState() const { return DiagStatesByLoc.getCurDiagState(); } void PushDiagStatePoint(DiagState *State, SourceLocation L); /// \brief Finds the DiagStatePoint that contains the diagnostic state of /// the given source location. DiagState *GetDiagStateForLoc(SourceLocation Loc) const { return SourceMgr ? DiagStatesByLoc.lookup(*SourceMgr, Loc) : DiagStatesByLoc.getCurDiagState(); } /// \brief Sticky flag set to \c true when an error is emitted. bool ErrorOccurred; /// \brief Sticky flag set to \c true when an "uncompilable error" occurs. /// I.e. an error that was not upgraded from a warning by -Werror. bool UncompilableErrorOccurred; /// \brief Sticky flag set to \c true when a fatal error is emitted. bool FatalErrorOccurred; /// \brief Indicates that an unrecoverable error has occurred. bool UnrecoverableErrorOccurred; /// \brief Counts for DiagnosticErrorTrap to check whether an error occurred /// during a parsing section, e.g. during parsing a function. unsigned TrapNumErrorsOccurred; unsigned TrapNumUnrecoverableErrorsOccurred; /// \brief The level of the last diagnostic emitted. /// /// This is used to emit continuation diagnostics with the same level as the /// diagnostic that they follow. DiagnosticIDs::Level LastDiagLevel; unsigned NumWarnings; ///< Number of warnings reported unsigned NumErrors; ///< Number of errors reported /// \brief A function pointer that converts an opaque diagnostic /// argument to a strings. /// /// This takes the modifiers and argument that was present in the diagnostic. /// /// The PrevArgs array indicates the previous arguments formatted for this /// diagnostic. Implementations of this function can use this information to /// avoid redundancy across arguments. /// /// This is a hack to avoid a layering violation between libbasic and libsema. typedef void (*ArgToStringFnTy)( ArgumentKind Kind, intptr_t Val, StringRef Modifier, StringRef Argument, ArrayRef PrevArgs, SmallVectorImpl &Output, void *Cookie, ArrayRef QualTypeVals); void *ArgToStringCookie; ArgToStringFnTy ArgToStringFn; /// \brief ID of the "delayed" diagnostic, which is a (typically /// fatal) diagnostic that had to be delayed because it was found /// while emitting another diagnostic. unsigned DelayedDiagID; /// \brief First string argument for the delayed diagnostic. std::string DelayedDiagArg1; /// \brief Second string argument for the delayed diagnostic. std::string DelayedDiagArg2; /// \brief Optional flag value. /// /// Some flags accept values, for instance: -Wframe-larger-than= and /// -Rpass=. The content of this string is emitted after the flag name /// and '='. std::string FlagValue; public: explicit DiagnosticsEngine(IntrusiveRefCntPtr Diags, DiagnosticOptions *DiagOpts, DiagnosticConsumer *client = nullptr, bool ShouldOwnClient = true); DiagnosticsEngine(const DiagnosticsEngine &) = delete; DiagnosticsEngine &operator=(const DiagnosticsEngine &) = delete; ~DiagnosticsEngine(); const IntrusiveRefCntPtr &getDiagnosticIDs() const { return Diags; } /// \brief Retrieve the diagnostic options. DiagnosticOptions &getDiagnosticOptions() const { return *DiagOpts; } typedef llvm::iterator_range diag_mapping_range; /// \brief Get the current set of diagnostic mappings. diag_mapping_range getDiagnosticMappings() const { const DiagState &DS = *GetCurDiagState(); return diag_mapping_range(DS.begin(), DS.end()); } DiagnosticConsumer *getClient() { return Client; } const DiagnosticConsumer *getClient() const { return Client; } /// \brief Determine whether this \c DiagnosticsEngine object own its client. bool ownsClient() const { return Owner != nullptr; } /// \brief Return the current diagnostic client along with ownership of that /// client. std::unique_ptr takeClient() { return std::move(Owner); } bool hasSourceManager() const { return SourceMgr != nullptr; } SourceManager &getSourceManager() const { assert(SourceMgr && "SourceManager not set!"); return *SourceMgr; } void setSourceManager(SourceManager *SrcMgr) { assert(DiagStatesByLoc.empty() && "Leftover diag state from a different SourceManager."); SourceMgr = SrcMgr; } //===--------------------------------------------------------------------===// // DiagnosticsEngine characterization methods, used by a client to customize // how diagnostics are emitted. // /// \brief Copies the current DiagMappings and pushes the new copy /// onto the top of the stack. void pushMappings(SourceLocation Loc); /// \brief Pops the current DiagMappings off the top of the stack, /// causing the new top of the stack to be the active mappings. /// /// \returns \c true if the pop happens, \c false if there is only one /// DiagMapping on the stack. bool popMappings(SourceLocation Loc); /// \brief Set the diagnostic client associated with this diagnostic object. /// /// \param ShouldOwnClient true if the diagnostic object should take /// ownership of \c client. void setClient(DiagnosticConsumer *client, bool ShouldOwnClient = true); /// \brief Specify a limit for the number of errors we should /// emit before giving up. /// /// Zero disables the limit. void setErrorLimit(unsigned Limit) { ErrorLimit = Limit; } /// \brief Specify the maximum number of template instantiation /// notes to emit along with a given diagnostic. void setTemplateBacktraceLimit(unsigned Limit) { TemplateBacktraceLimit = Limit; } /// \brief Retrieve the maximum number of template instantiation /// notes to emit along with a given diagnostic. unsigned getTemplateBacktraceLimit() const { return TemplateBacktraceLimit; } /// \brief Specify the maximum number of constexpr evaluation /// notes to emit along with a given diagnostic. void setConstexprBacktraceLimit(unsigned Limit) { ConstexprBacktraceLimit = Limit; } /// \brief Retrieve the maximum number of constexpr evaluation /// notes to emit along with a given diagnostic. unsigned getConstexprBacktraceLimit() const { return ConstexprBacktraceLimit; } /// \brief When set to true, any unmapped warnings are ignored. /// /// If this and WarningsAsErrors are both set, then this one wins. void setIgnoreAllWarnings(bool Val) { GetCurDiagState()->IgnoreAllWarnings = Val; } bool getIgnoreAllWarnings() const { return GetCurDiagState()->IgnoreAllWarnings; } /// \brief When set to true, any unmapped ignored warnings are no longer /// ignored. /// /// If this and IgnoreAllWarnings are both set, then that one wins. void setEnableAllWarnings(bool Val) { GetCurDiagState()->EnableAllWarnings = Val; } bool getEnableAllWarnings() const { return GetCurDiagState()->EnableAllWarnings; } /// \brief When set to true, any warnings reported are issued as errors. void setWarningsAsErrors(bool Val) { GetCurDiagState()->WarningsAsErrors = Val; } bool getWarningsAsErrors() const { return GetCurDiagState()->WarningsAsErrors; } /// \brief When set to true, any error reported is made a fatal error. void setErrorsAsFatal(bool Val) { GetCurDiagState()->ErrorsAsFatal = Val; } bool getErrorsAsFatal() const { return GetCurDiagState()->ErrorsAsFatal; } /// \brief When set to true (the default), suppress further diagnostics after /// a fatal error. void setSuppressAfterFatalError(bool Val) { SuppressAfterFatalError = Val; } /// \brief When set to true mask warnings that come from system headers. void setSuppressSystemWarnings(bool Val) { GetCurDiagState()->SuppressSystemWarnings = Val; } bool getSuppressSystemWarnings() const { return GetCurDiagState()->SuppressSystemWarnings; } /// \brief Suppress all diagnostics, to silence the front end when we /// know that we don't want any more diagnostics to be passed along to the /// client void setSuppressAllDiagnostics(bool Val = true) { SuppressAllDiagnostics = Val; } bool getSuppressAllDiagnostics() const { return SuppressAllDiagnostics; } /// \brief Set type eliding, to skip outputting same types occurring in /// template types. void setElideType(bool Val = true) { ElideType = Val; } bool getElideType() { return ElideType; } /// \brief Set tree printing, to outputting the template difference in a /// tree format. void setPrintTemplateTree(bool Val = false) { PrintTemplateTree = Val; } bool getPrintTemplateTree() { return PrintTemplateTree; } /// \brief Set color printing, so the type diffing will inject color markers /// into the output. void setShowColors(bool Val = false) { ShowColors = Val; } bool getShowColors() { return ShowColors; } /// \brief Specify which overload candidates to show when overload resolution /// fails. /// /// By default, we show all candidates. void setShowOverloads(OverloadsShown Val) { ShowOverloads = Val; } OverloadsShown getShowOverloads() const { return ShowOverloads; } /// \brief Pretend that the last diagnostic issued was ignored, so any /// subsequent notes will be suppressed. /// /// This can be used by clients who suppress diagnostics themselves. void setLastDiagnosticIgnored() { if (LastDiagLevel == DiagnosticIDs::Fatal) FatalErrorOccurred = true; LastDiagLevel = DiagnosticIDs::Ignored; } /// \brief Determine whether the previous diagnostic was ignored. This can /// be used by clients that want to determine whether notes attached to a /// diagnostic will be suppressed. bool isLastDiagnosticIgnored() const { return LastDiagLevel == DiagnosticIDs::Ignored; } /// \brief Controls whether otherwise-unmapped extension diagnostics are /// mapped onto ignore/warning/error. /// /// This corresponds to the GCC -pedantic and -pedantic-errors option. void setExtensionHandlingBehavior(diag::Severity H) { GetCurDiagState()->ExtBehavior = H; } diag::Severity getExtensionHandlingBehavior() const { return GetCurDiagState()->ExtBehavior; } /// \brief Counter bumped when an __extension__ block is/ encountered. /// /// When non-zero, all extension diagnostics are entirely silenced, no /// matter how they are mapped. void IncrementAllExtensionsSilenced() { ++AllExtensionsSilenced; } void DecrementAllExtensionsSilenced() { --AllExtensionsSilenced; } bool hasAllExtensionsSilenced() { return AllExtensionsSilenced != 0; } /// \brief This allows the client to specify that certain warnings are /// ignored. /// /// Notes can never be mapped, errors can only be mapped to fatal, and /// WARNINGs and EXTENSIONs can be mapped arbitrarily. /// /// \param Loc The source location that this change of diagnostic state should /// take affect. It can be null if we are setting the latest state. void setSeverity(diag::kind Diag, diag::Severity Map, SourceLocation Loc); /// \brief Change an entire diagnostic group (e.g. "unknown-pragmas") to /// have the specified mapping. /// /// \returns true (and ignores the request) if "Group" was unknown, false /// otherwise. /// /// \param Flavor The flavor of group to affect. -Rfoo does not affect the /// state of the -Wfoo group and vice versa. /// /// \param Loc The source location that this change of diagnostic state should /// take affect. It can be null if we are setting the state from command-line. bool setSeverityForGroup(diag::Flavor Flavor, StringRef Group, diag::Severity Map, SourceLocation Loc = SourceLocation()); /// \brief Set the warning-as-error flag for the given diagnostic group. /// /// This function always only operates on the current diagnostic state. /// /// \returns True if the given group is unknown, false otherwise. bool setDiagnosticGroupWarningAsError(StringRef Group, bool Enabled); /// \brief Set the error-as-fatal flag for the given diagnostic group. /// /// This function always only operates on the current diagnostic state. /// /// \returns True if the given group is unknown, false otherwise. bool setDiagnosticGroupErrorAsFatal(StringRef Group, bool Enabled); /// \brief Add the specified mapping to all diagnostics of the specified /// flavor. /// /// Mainly to be used by -Wno-everything to disable all warnings but allow /// subsequent -W options to enable specific warnings. void setSeverityForAll(diag::Flavor Flavor, diag::Severity Map, SourceLocation Loc = SourceLocation()); bool hasErrorOccurred() const { return ErrorOccurred; } /// \brief Errors that actually prevent compilation, not those that are /// upgraded from a warning by -Werror. bool hasUncompilableErrorOccurred() const { return UncompilableErrorOccurred; } bool hasFatalErrorOccurred() const { return FatalErrorOccurred; } /// \brief Determine whether any kind of unrecoverable error has occurred. bool hasUnrecoverableErrorOccurred() const { return FatalErrorOccurred || UnrecoverableErrorOccurred; } unsigned getNumWarnings() const { return NumWarnings; } void setNumWarnings(unsigned NumWarnings) { this->NumWarnings = NumWarnings; } /// \brief Return an ID for a diagnostic with the specified format string and /// level. /// /// If this is the first request for this diagnostic, it is registered and /// created, otherwise the existing ID is returned. /// /// \param FormatString A fixed diagnostic format string that will be hashed /// and mapped to a unique DiagID. template unsigned getCustomDiagID(Level L, const char (&FormatString)[N]) { return Diags->getCustomDiagID((DiagnosticIDs::Level)L, StringRef(FormatString, N - 1)); } /// \brief Converts a diagnostic argument (as an intptr_t) into the string /// that represents it. void ConvertArgToString(ArgumentKind Kind, intptr_t Val, StringRef Modifier, StringRef Argument, ArrayRef PrevArgs, SmallVectorImpl &Output, ArrayRef QualTypeVals) const { ArgToStringFn(Kind, Val, Modifier, Argument, PrevArgs, Output, ArgToStringCookie, QualTypeVals); } void SetArgToStringFn(ArgToStringFnTy Fn, void *Cookie) { ArgToStringFn = Fn; ArgToStringCookie = Cookie; } /// \brief Note that the prior diagnostic was emitted by some other /// \c DiagnosticsEngine, and we may be attaching a note to that diagnostic. void notePriorDiagnosticFrom(const DiagnosticsEngine &Other) { LastDiagLevel = Other.LastDiagLevel; } /// \brief Reset the state of the diagnostic object to its initial /// configuration. void Reset(); //===--------------------------------------------------------------------===// // DiagnosticsEngine classification and reporting interfaces. // /// \brief Determine whether the diagnostic is known to be ignored. /// /// This can be used to opportunistically avoid expensive checks when it's /// known for certain that the diagnostic has been suppressed at the /// specified location \p Loc. /// /// \param Loc The source location we are interested in finding out the /// diagnostic state. Can be null in order to query the latest state. bool isIgnored(unsigned DiagID, SourceLocation Loc) const { return Diags->getDiagnosticSeverity(DiagID, Loc, *this) == diag::Severity::Ignored; } /// \brief Based on the way the client configured the DiagnosticsEngine /// object, classify the specified diagnostic ID into a Level, consumable by /// the DiagnosticConsumer. /// /// To preserve invariant assumptions, this function should not be used to /// influence parse or semantic analysis actions. Instead consider using /// \c isIgnored(). /// /// \param Loc The source location we are interested in finding out the /// diagnostic state. Can be null in order to query the latest state. Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc) const { return (Level)Diags->getDiagnosticLevel(DiagID, Loc, *this); } /// \brief Issue the message to the client. /// /// This actually returns an instance of DiagnosticBuilder which emits the /// diagnostics (through @c ProcessDiag) when it is destroyed. /// /// \param DiagID A member of the @c diag::kind enum. /// \param Loc Represents the source location associated with the diagnostic, /// which can be an invalid location if no position information is available. inline DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID); inline DiagnosticBuilder Report(unsigned DiagID); void Report(const StoredDiagnostic &storedDiag); /// \brief Determine whethere there is already a diagnostic in flight. bool isDiagnosticInFlight() const { return CurDiagID != ~0U; } /// \brief Set the "delayed" diagnostic that will be emitted once /// the current diagnostic completes. /// /// If a diagnostic is already in-flight but the front end must /// report a problem (e.g., with an inconsistent file system /// state), this routine sets a "delayed" diagnostic that will be /// emitted after the current diagnostic completes. This should /// only be used for fatal errors detected at inconvenient /// times. If emitting a delayed diagnostic causes a second delayed /// diagnostic to be introduced, that second delayed diagnostic /// will be ignored. /// /// \param DiagID The ID of the diagnostic being delayed. /// /// \param Arg1 A string argument that will be provided to the /// diagnostic. A copy of this string will be stored in the /// DiagnosticsEngine object itself. /// /// \param Arg2 A string argument that will be provided to the /// diagnostic. A copy of this string will be stored in the /// DiagnosticsEngine object itself. void SetDelayedDiagnostic(unsigned DiagID, StringRef Arg1 = "", StringRef Arg2 = ""); /// \brief Clear out the current diagnostic. void Clear() { CurDiagID = ~0U; } /// \brief Return the value associated with this diagnostic flag. StringRef getFlagValue() const { return FlagValue; } private: /// \brief Report the delayed diagnostic. void ReportDelayed(); // This is private state used by DiagnosticBuilder. We put it here instead of // in DiagnosticBuilder in order to keep DiagnosticBuilder a small lightweight // object. This implementation choice means that we can only have one // diagnostic "in flight" at a time, but this seems to be a reasonable // tradeoff to keep these objects small. Assertions verify that only one // diagnostic is in flight at a time. friend class DiagnosticIDs; friend class DiagnosticBuilder; friend class Diagnostic; friend class PartialDiagnostic; friend class DiagnosticErrorTrap; /// \brief The location of the current diagnostic that is in flight. SourceLocation CurDiagLoc; /// \brief The ID of the current diagnostic that is in flight. /// /// This is set to ~0U when there is no diagnostic in flight. unsigned CurDiagID; enum { /// \brief The maximum number of arguments we can hold. /// /// We currently only support up to 10 arguments (%0-%9). A single /// diagnostic with more than that almost certainly has to be simplified /// anyway. MaxArguments = 10, }; /// \brief The number of entries in Arguments. signed char NumDiagArgs; /// \brief Specifies whether an argument is in DiagArgumentsStr or /// in DiagArguments. /// /// This is an array of ArgumentKind::ArgumentKind enum values, one for each /// argument. unsigned char DiagArgumentsKind[MaxArguments]; /// \brief Holds the values of each string argument for the current /// diagnostic. /// /// This is only used when the corresponding ArgumentKind is ak_std_string. std::string DiagArgumentsStr[MaxArguments]; /// \brief The values for the various substitution positions. /// /// This is used when the argument is not an std::string. The specific /// value is mangled into an intptr_t and the interpretation depends on /// exactly what sort of argument kind it is. intptr_t DiagArgumentsVal[MaxArguments]; /// \brief The list of ranges added to this diagnostic. SmallVector DiagRanges; /// \brief If valid, provides a hint with some code to insert, remove, /// or modify at a particular position. SmallVector DiagFixItHints; DiagnosticMapping makeUserMapping(diag::Severity Map, SourceLocation L) { bool isPragma = L.isValid(); DiagnosticMapping Mapping = DiagnosticMapping::Make(Map, /*IsUser=*/true, isPragma); // If this is a pragma mapping, then set the diagnostic mapping flags so // that we override command line options. if (isPragma) { Mapping.setNoWarningAsError(true); Mapping.setNoErrorAsFatal(true); } return Mapping; } /// \brief Used to report a diagnostic that is finally fully formed. /// /// \returns true if the diagnostic was emitted, false if it was suppressed. bool ProcessDiag() { return Diags->ProcessDiag(*this); } /// @name Diagnostic Emission /// @{ protected: // Sema requires access to the following functions because the current design // of SFINAE requires it to use its own SemaDiagnosticBuilder, which needs to // access us directly to ensure we minimize the emitted code for the common // Sema::Diag() patterns. friend class Sema; /// \brief Emit the current diagnostic and clear the diagnostic state. /// /// \param Force Emit the diagnostic regardless of suppression settings. bool EmitCurrentDiagnostic(bool Force = false); unsigned getCurrentDiagID() const { return CurDiagID; } SourceLocation getCurrentDiagLoc() const { return CurDiagLoc; } /// @} friend class ASTReader; friend class ASTWriter; }; /// \brief RAII class that determines when any errors have occurred /// between the time the instance was created and the time it was /// queried. class DiagnosticErrorTrap { DiagnosticsEngine &Diag; unsigned NumErrors; unsigned NumUnrecoverableErrors; public: explicit DiagnosticErrorTrap(DiagnosticsEngine &Diag) : Diag(Diag) { reset(); } /// \brief Determine whether any errors have occurred since this /// object instance was created. bool hasErrorOccurred() const { return Diag.TrapNumErrorsOccurred > NumErrors; } /// \brief Determine whether any unrecoverable errors have occurred since this /// object instance was created. bool hasUnrecoverableErrorOccurred() const { return Diag.TrapNumUnrecoverableErrorsOccurred > NumUnrecoverableErrors; } /// \brief Set to initial state of "no errors occurred". void reset() { NumErrors = Diag.TrapNumErrorsOccurred; NumUnrecoverableErrors = Diag.TrapNumUnrecoverableErrorsOccurred; } }; //===----------------------------------------------------------------------===// // DiagnosticBuilder //===----------------------------------------------------------------------===// /// \brief A little helper class used to produce diagnostics. /// /// This is constructed by the DiagnosticsEngine::Report method, and /// allows insertion of extra information (arguments and source ranges) into /// the currently "in flight" diagnostic. When the temporary for the builder /// is destroyed, the diagnostic is issued. /// /// Note that many of these will be created as temporary objects (many call /// sites), so we want them to be small and we never want their address taken. /// This ensures that compilers with somewhat reasonable optimizers will promote /// the common fields to registers, eliminating increments of the NumArgs field, /// for example. class DiagnosticBuilder { mutable DiagnosticsEngine *DiagObj = nullptr; mutable unsigned NumArgs = 0; /// \brief Status variable indicating if this diagnostic is still active. /// // NOTE: This field is redundant with DiagObj (IsActive iff (DiagObj == 0)), // but LLVM is not currently smart enough to eliminate the null check that // Emit() would end up with if we used that as our status variable. mutable bool IsActive = false; /// \brief Flag indicating that this diagnostic is being emitted via a /// call to ForceEmit. mutable bool IsForceEmit = false; friend class DiagnosticsEngine; DiagnosticBuilder() = default; explicit DiagnosticBuilder(DiagnosticsEngine *diagObj) : DiagObj(diagObj), IsActive(true) { assert(diagObj && "DiagnosticBuilder requires a valid DiagnosticsEngine!"); diagObj->DiagRanges.clear(); diagObj->DiagFixItHints.clear(); } friend class PartialDiagnostic; protected: void FlushCounts() { DiagObj->NumDiagArgs = NumArgs; } /// \brief Clear out the current diagnostic. void Clear() const { DiagObj = nullptr; IsActive = false; IsForceEmit = false; } /// \brief Determine whether this diagnostic is still active. bool isActive() const { return IsActive; } /// \brief Force the diagnostic builder to emit the diagnostic now. /// /// Once this function has been called, the DiagnosticBuilder object /// should not be used again before it is destroyed. /// /// \returns true if a diagnostic was emitted, false if the /// diagnostic was suppressed. bool Emit() { // If this diagnostic is inactive, then its soul was stolen by the copy ctor // (or by a subclass, as in SemaDiagnosticBuilder). if (!isActive()) return false; // When emitting diagnostics, we set the final argument count into // the DiagnosticsEngine object. FlushCounts(); // Process the diagnostic. bool Result = DiagObj->EmitCurrentDiagnostic(IsForceEmit); // This diagnostic is dead. Clear(); return Result; } public: /// Copy constructor. When copied, this "takes" the diagnostic info from the /// input and neuters it. DiagnosticBuilder(const DiagnosticBuilder &D) { DiagObj = D.DiagObj; IsActive = D.IsActive; IsForceEmit = D.IsForceEmit; D.Clear(); NumArgs = D.NumArgs; } DiagnosticBuilder &operator=(const DiagnosticBuilder &) = delete; /// \brief Emits the diagnostic. ~DiagnosticBuilder() { Emit(); } /// \brief Retrieve an empty diagnostic builder. static DiagnosticBuilder getEmpty() { return DiagnosticBuilder(); } /// \brief Forces the diagnostic to be emitted. const DiagnosticBuilder &setForceEmit() const { IsForceEmit = true; return *this; } /// \brief Conversion of DiagnosticBuilder to bool always returns \c true. /// /// This allows is to be used in boolean error contexts (where \c true is /// used to indicate that an error has occurred), like: /// \code /// return Diag(...); /// \endcode operator bool() const { return true; } void AddString(StringRef S) const { assert(isActive() && "Clients must not add to cleared diagnostic!"); assert(NumArgs < DiagnosticsEngine::MaxArguments && "Too many arguments to diagnostic!"); DiagObj->DiagArgumentsKind[NumArgs] = DiagnosticsEngine::ak_std_string; DiagObj->DiagArgumentsStr[NumArgs++] = S; } void AddTaggedVal(intptr_t V, DiagnosticsEngine::ArgumentKind Kind) const { assert(isActive() && "Clients must not add to cleared diagnostic!"); assert(NumArgs < DiagnosticsEngine::MaxArguments && "Too many arguments to diagnostic!"); DiagObj->DiagArgumentsKind[NumArgs] = Kind; DiagObj->DiagArgumentsVal[NumArgs++] = V; } void AddSourceRange(const CharSourceRange &R) const { assert(isActive() && "Clients must not add to cleared diagnostic!"); DiagObj->DiagRanges.push_back(R); } void AddFixItHint(const FixItHint &Hint) const { assert(isActive() && "Clients must not add to cleared diagnostic!"); if (!Hint.isNull()) DiagObj->DiagFixItHints.push_back(Hint); } void addFlagValue(StringRef V) const { DiagObj->FlagValue = V; } }; struct AddFlagValue { explicit AddFlagValue(StringRef V) : Val(V) {} StringRef Val; }; /// \brief Register a value for the flag in the current diagnostic. This /// value will be shown as the suffix "=value" after the flag name. It is /// useful in cases where the diagnostic flag accepts values (e.g., /// -Rpass or -Wframe-larger-than). inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const AddFlagValue V) { DB.addFlagValue(V.Val); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, StringRef S) { DB.AddString(S); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const char *Str) { DB.AddTaggedVal(reinterpret_cast(Str), DiagnosticsEngine::ak_c_string); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, int I) { DB.AddTaggedVal(I, DiagnosticsEngine::ak_sint); return DB; } // We use enable_if here to prevent that this overload is selected for // pointers or other arguments that are implicitly convertible to bool. template inline typename std::enable_if::value, const DiagnosticBuilder &>::type operator<<(const DiagnosticBuilder &DB, T I) { DB.AddTaggedVal(I, DiagnosticsEngine::ak_sint); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, unsigned I) { DB.AddTaggedVal(I, DiagnosticsEngine::ak_uint); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, tok::TokenKind I) { DB.AddTaggedVal(static_cast(I), DiagnosticsEngine::ak_tokenkind); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const IdentifierInfo *II) { DB.AddTaggedVal(reinterpret_cast(II), DiagnosticsEngine::ak_identifierinfo); return DB; } // Adds a DeclContext to the diagnostic. The enable_if template magic is here // so that we only match those arguments that are (statically) DeclContexts; // other arguments that derive from DeclContext (e.g., RecordDecls) will not // match. template inline typename std::enable_if< std::is_same::type, DeclContext>::value, const DiagnosticBuilder &>::type operator<<(const DiagnosticBuilder &DB, T *DC) { DB.AddTaggedVal(reinterpret_cast(DC), DiagnosticsEngine::ak_declcontext); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, SourceRange R) { DB.AddSourceRange(CharSourceRange::getTokenRange(R)); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, ArrayRef Ranges) { for (SourceRange R : Ranges) DB.AddSourceRange(CharSourceRange::getTokenRange(R)); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const CharSourceRange &R) { DB.AddSourceRange(R); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, const FixItHint &Hint) { DB.AddFixItHint(Hint); return DB; } inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, ArrayRef Hints) { for (const FixItHint &Hint : Hints) DB.AddFixItHint(Hint); return DB; } /// A nullability kind paired with a bit indicating whether it used a /// context-sensitive keyword. typedef std::pair DiagNullabilityKind; const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, DiagNullabilityKind nullability); inline DiagnosticBuilder DiagnosticsEngine::Report(SourceLocation Loc, unsigned DiagID) { assert(CurDiagID == ~0U && "Multiple diagnostics in flight at once!"); CurDiagLoc = Loc; CurDiagID = DiagID; FlagValue.clear(); return DiagnosticBuilder(this); } inline DiagnosticBuilder DiagnosticsEngine::Report(unsigned DiagID) { return Report(SourceLocation(), DiagID); } //===----------------------------------------------------------------------===// // Diagnostic //===----------------------------------------------------------------------===// /// A little helper class (which is basically a smart pointer that forwards /// info from DiagnosticsEngine) that allows clients to enquire about the /// currently in-flight diagnostic. class Diagnostic { const DiagnosticsEngine *DiagObj; StringRef StoredDiagMessage; public: explicit Diagnostic(const DiagnosticsEngine *DO) : DiagObj(DO) {} Diagnostic(const DiagnosticsEngine *DO, StringRef storedDiagMessage) : DiagObj(DO), StoredDiagMessage(storedDiagMessage) {} const DiagnosticsEngine *getDiags() const { return DiagObj; } unsigned getID() const { return DiagObj->CurDiagID; } const SourceLocation &getLocation() const { return DiagObj->CurDiagLoc; } bool hasSourceManager() const { return DiagObj->hasSourceManager(); } SourceManager &getSourceManager() const { return DiagObj->getSourceManager();} unsigned getNumArgs() const { return DiagObj->NumDiagArgs; } /// \brief Return the kind of the specified index. /// /// Based on the kind of argument, the accessors below can be used to get /// the value. /// /// \pre Idx < getNumArgs() DiagnosticsEngine::ArgumentKind getArgKind(unsigned Idx) const { assert(Idx < getNumArgs() && "Argument index out of range!"); return (DiagnosticsEngine::ArgumentKind)DiagObj->DiagArgumentsKind[Idx]; } /// \brief Return the provided argument string specified by \p Idx. /// \pre getArgKind(Idx) == DiagnosticsEngine::ak_std_string const std::string &getArgStdStr(unsigned Idx) const { assert(getArgKind(Idx) == DiagnosticsEngine::ak_std_string && "invalid argument accessor!"); return DiagObj->DiagArgumentsStr[Idx]; } /// \brief Return the specified C string argument. /// \pre getArgKind(Idx) == DiagnosticsEngine::ak_c_string const char *getArgCStr(unsigned Idx) const { assert(getArgKind(Idx) == DiagnosticsEngine::ak_c_string && "invalid argument accessor!"); return reinterpret_cast(DiagObj->DiagArgumentsVal[Idx]); } /// \brief Return the specified signed integer argument. /// \pre getArgKind(Idx) == DiagnosticsEngine::ak_sint int getArgSInt(unsigned Idx) const { assert(getArgKind(Idx) == DiagnosticsEngine::ak_sint && "invalid argument accessor!"); return (int)DiagObj->DiagArgumentsVal[Idx]; } /// \brief Return the specified unsigned integer argument. /// \pre getArgKind(Idx) == DiagnosticsEngine::ak_uint unsigned getArgUInt(unsigned Idx) const { assert(getArgKind(Idx) == DiagnosticsEngine::ak_uint && "invalid argument accessor!"); return (unsigned)DiagObj->DiagArgumentsVal[Idx]; } /// \brief Return the specified IdentifierInfo argument. /// \pre getArgKind(Idx) == DiagnosticsEngine::ak_identifierinfo const IdentifierInfo *getArgIdentifier(unsigned Idx) const { assert(getArgKind(Idx) == DiagnosticsEngine::ak_identifierinfo && "invalid argument accessor!"); return reinterpret_cast(DiagObj->DiagArgumentsVal[Idx]); } /// \brief Return the specified non-string argument in an opaque form. /// \pre getArgKind(Idx) != DiagnosticsEngine::ak_std_string intptr_t getRawArg(unsigned Idx) const { assert(getArgKind(Idx) != DiagnosticsEngine::ak_std_string && "invalid argument accessor!"); return DiagObj->DiagArgumentsVal[Idx]; } /// \brief Return the number of source ranges associated with this diagnostic. unsigned getNumRanges() const { return DiagObj->DiagRanges.size(); } /// \pre Idx < getNumRanges() const CharSourceRange &getRange(unsigned Idx) const { assert(Idx < getNumRanges() && "Invalid diagnostic range index!"); return DiagObj->DiagRanges[Idx]; } /// \brief Return an array reference for this diagnostic's ranges. ArrayRef getRanges() const { return DiagObj->DiagRanges; } unsigned getNumFixItHints() const { return DiagObj->DiagFixItHints.size(); } const FixItHint &getFixItHint(unsigned Idx) const { assert(Idx < getNumFixItHints() && "Invalid index!"); return DiagObj->DiagFixItHints[Idx]; } ArrayRef getFixItHints() const { return DiagObj->DiagFixItHints; } /// \brief Format this diagnostic into a string, substituting the /// formal arguments into the %0 slots. /// /// The result is appended onto the \p OutStr array. void FormatDiagnostic(SmallVectorImpl &OutStr) const; /// \brief Format the given format-string into the output buffer using the /// arguments stored in this diagnostic. void FormatDiagnostic(const char *DiagStr, const char *DiagEnd, SmallVectorImpl &OutStr) const; }; /** * \brief Represents a diagnostic in a form that can be retained until its * corresponding source manager is destroyed. */ class StoredDiagnostic { unsigned ID; DiagnosticsEngine::Level Level; FullSourceLoc Loc; std::string Message; std::vector Ranges; std::vector FixIts; public: StoredDiagnostic() = default; StoredDiagnostic(DiagnosticsEngine::Level Level, const Diagnostic &Info); StoredDiagnostic(DiagnosticsEngine::Level Level, unsigned ID, StringRef Message); StoredDiagnostic(DiagnosticsEngine::Level Level, unsigned ID, StringRef Message, FullSourceLoc Loc, ArrayRef Ranges, ArrayRef Fixits); /// \brief Evaluates true when this object stores a diagnostic. explicit operator bool() const { return !Message.empty(); } unsigned getID() const { return ID; } DiagnosticsEngine::Level getLevel() const { return Level; } const FullSourceLoc &getLocation() const { return Loc; } StringRef getMessage() const { return Message; } void setLocation(FullSourceLoc Loc) { this->Loc = Loc; } typedef std::vector::const_iterator range_iterator; range_iterator range_begin() const { return Ranges.begin(); } range_iterator range_end() const { return Ranges.end(); } unsigned range_size() const { return Ranges.size(); } ArrayRef getRanges() const { return llvm::makeArrayRef(Ranges); } typedef std::vector::const_iterator fixit_iterator; fixit_iterator fixit_begin() const { return FixIts.begin(); } fixit_iterator fixit_end() const { return FixIts.end(); } unsigned fixit_size() const { return FixIts.size(); } ArrayRef getFixIts() const { return llvm::makeArrayRef(FixIts); } }; /// \brief Abstract interface, implemented by clients of the front-end, which /// formats and prints fully processed diagnostics. class DiagnosticConsumer { protected: unsigned NumWarnings = 0; ///< Number of warnings reported unsigned NumErrors = 0; ///< Number of errors reported public: DiagnosticConsumer() = default; virtual ~DiagnosticConsumer(); unsigned getNumErrors() const { return NumErrors; } unsigned getNumWarnings() const { return NumWarnings; } virtual void clear() { NumWarnings = NumErrors = 0; } /// \brief Callback to inform the diagnostic client that processing /// of a source file is beginning. /// /// Note that diagnostics may be emitted outside the processing of a source /// file, for example during the parsing of command line options. However, /// diagnostics with source range information are required to only be emitted /// in between BeginSourceFile() and EndSourceFile(). /// /// \param LangOpts The language options for the source file being processed. /// \param PP The preprocessor object being used for the source; this is /// optional, e.g., it may not be present when processing AST source files. virtual void BeginSourceFile(const LangOptions &LangOpts, const Preprocessor *PP = nullptr) {} /// \brief Callback to inform the diagnostic client that processing /// of a source file has ended. /// /// The diagnostic client should assume that any objects made available via /// BeginSourceFile() are inaccessible. virtual void EndSourceFile() {} /// \brief Callback to inform the diagnostic client that processing of all /// source files has ended. virtual void finish() {} /// \brief Indicates whether the diagnostics handled by this /// DiagnosticConsumer should be included in the number of diagnostics /// reported by DiagnosticsEngine. /// /// The default implementation returns true. virtual bool IncludeInDiagnosticCounts() const; /// \brief Handle this diagnostic, reporting it to the user or /// capturing it to a log as needed. /// /// The default implementation just keeps track of the total number of /// warnings and errors. virtual void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, const Diagnostic &Info); }; /// \brief A diagnostic client that ignores all diagnostics. class IgnoringDiagConsumer : public DiagnosticConsumer { virtual void anchor(); void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, const Diagnostic &Info) override { // Just ignore it. } }; /// \brief Diagnostic consumer that forwards diagnostics along to an /// existing, already-initialized diagnostic consumer. /// class ForwardingDiagnosticConsumer : public DiagnosticConsumer { DiagnosticConsumer &Target; public: ForwardingDiagnosticConsumer(DiagnosticConsumer &Target) : Target(Target) {} ~ForwardingDiagnosticConsumer() override; void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, const Diagnostic &Info) override; void clear() override; bool IncludeInDiagnosticCounts() const override; }; // Struct used for sending info about how a type should be printed. struct TemplateDiffTypes { intptr_t FromType; intptr_t ToType; unsigned PrintTree : 1; unsigned PrintFromType : 1; unsigned ElideType : 1; unsigned ShowColors : 1; // The printer sets this variable to true if the template diff was used. unsigned TemplateDiffUsed : 1; }; /// Special character that the diagnostic printer will use to toggle the bold /// attribute. The character itself will be not be printed. const char ToggleHighlight = 127; /// ProcessWarningOptions - Initialize the diagnostic client and process the /// warning options specified on the command line. void ProcessWarningOptions(DiagnosticsEngine &Diags, const DiagnosticOptions &Opts, bool ReportDiags = true); } // end namespace clang #endif // LLVM_CLANG_BASIC_DIAGNOSTIC_H