//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the Sema class, which performs semantic analysis and // builds ASTs. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_SEMA_SEMA_H #define LLVM_CLANG_SEMA_SEMA_H #include "clang/Sema/Ownership.h" #include "clang/Sema/AnalysisBasedWarnings.h" #include "clang/Sema/IdentifierResolver.h" #include "clang/Sema/ObjCMethodList.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/ExternalSemaSource.h" #include "clang/Sema/LocInfoType.h" #include "clang/Sema/TypoCorrection.h" #include "clang/Sema/Weak.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/ExternalASTSource.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/NSAPI.h" #include "clang/Lex/ModuleLoader.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TemplateKinds.h" #include "clang/Basic/TypeTraits.h" #include "clang/Basic/ExpressionTraits.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include #include namespace llvm { class APSInt; template struct DenseMapInfo; template class DenseSet; class SmallBitVector; } namespace clang { class ADLResult; class ASTConsumer; class ASTContext; class ASTMutationListener; class ASTReader; class ASTWriter; class ArrayType; class AttributeList; class BlockDecl; class CXXBasePath; class CXXBasePaths; class CXXBindTemporaryExpr; typedef SmallVector CXXCastPath; class CXXConstructorDecl; class CXXConversionDecl; class CXXDestructorDecl; class CXXFieldCollector; class CXXMemberCallExpr; class CXXMethodDecl; class CXXScopeSpec; class CXXTemporary; class CXXTryStmt; class CallExpr; class ClassTemplateDecl; class ClassTemplatePartialSpecializationDecl; class ClassTemplateSpecializationDecl; class CodeCompleteConsumer; class CodeCompletionAllocator; class CodeCompletionTUInfo; class CodeCompletionResult; class Decl; class DeclAccessPair; class DeclContext; class DeclRefExpr; class DeclaratorDecl; class DeducedTemplateArgument; class DependentDiagnostic; class DesignatedInitExpr; class Designation; class EnumConstantDecl; class Expr; class ExtVectorType; class ExternalSemaSource; class FormatAttr; class FriendDecl; class FunctionDecl; class FunctionProtoType; class FunctionTemplateDecl; class ImplicitConversionSequence; class InitListExpr; class InitializationKind; class InitializationSequence; class InitializedEntity; class IntegerLiteral; class LabelStmt; class LambdaExpr; class LangOptions; class LocalInstantiationScope; class LookupResult; class MacroInfo; class MultiLevelTemplateArgumentList; class NamedDecl; class NonNullAttr; class ObjCCategoryDecl; class ObjCCategoryImplDecl; class ObjCCompatibleAliasDecl; class ObjCContainerDecl; class ObjCImplDecl; class ObjCImplementationDecl; class ObjCInterfaceDecl; class ObjCIvarDecl; template class ObjCList; class ObjCMessageExpr; class ObjCMethodDecl; class ObjCPropertyDecl; class ObjCProtocolDecl; class OverloadCandidateSet; class OverloadExpr; class ParenListExpr; class ParmVarDecl; class Preprocessor; class PseudoDestructorTypeStorage; class PseudoObjectExpr; class QualType; class StandardConversionSequence; class Stmt; class StringLiteral; class SwitchStmt; class TargetAttributesSema; class TemplateArgument; class TemplateArgumentList; class TemplateArgumentLoc; class TemplateDecl; class TemplateParameterList; class TemplatePartialOrderingContext; class TemplateTemplateParmDecl; class Token; class TypeAliasDecl; class TypedefDecl; class TypedefNameDecl; class TypeLoc; class UnqualifiedId; class UnresolvedLookupExpr; class UnresolvedMemberExpr; class UnresolvedSetImpl; class UnresolvedSetIterator; class UsingDecl; class UsingShadowDecl; class ValueDecl; class VarDecl; class VisibilityAttr; class VisibleDeclConsumer; class IndirectFieldDecl; namespace sema { class AccessedEntity; class BlockScopeInfo; class CompoundScopeInfo; class DelayedDiagnostic; class FunctionScopeInfo; class LambdaScopeInfo; class PossiblyUnreachableDiag; class TemplateDeductionInfo; } // FIXME: No way to easily map from TemplateTypeParmTypes to // TemplateTypeParmDecls, so we have this horrible PointerUnion. typedef std::pair, SourceLocation> UnexpandedParameterPack; /// Sema - This implements semantic analysis and AST building for C. class Sema { Sema(const Sema&); // DO NOT IMPLEMENT void operator=(const Sema&); // DO NOT IMPLEMENT mutable const TargetAttributesSema* TheTargetAttributesSema; public: typedef OpaquePtr DeclGroupPtrTy; typedef OpaquePtr TemplateTy; typedef OpaquePtr TypeTy; OpenCLOptions OpenCLFeatures; FPOptions FPFeatures; const LangOptions &LangOpts; Preprocessor &PP; ASTContext &Context; ASTConsumer &Consumer; DiagnosticsEngine &Diags; SourceManager &SourceMgr; /// \brief Flag indicating whether or not to collect detailed statistics. bool CollectStats; /// \brief Source of additional semantic information. ExternalSemaSource *ExternalSource; /// \brief Code-completion consumer. CodeCompleteConsumer *CodeCompleter; /// CurContext - This is the current declaration context of parsing. DeclContext *CurContext; /// \brief Generally null except when we temporarily switch decl contexts, /// like in \see ActOnObjCTemporaryExitContainerContext. DeclContext *OriginalLexicalContext; /// VAListTagName - The declaration name corresponding to __va_list_tag. /// This is used as part of a hack to omit that class from ADL results. DeclarationName VAListTagName; /// PackContext - Manages the stack for #pragma pack. An alignment /// of 0 indicates default alignment. void *PackContext; // Really a "PragmaPackStack*" bool MSStructPragmaOn; // True when #pragma ms_struct on /// VisContext - Manages the stack for #pragma GCC visibility. void *VisContext; // Really a "PragmaVisStack*" /// ExprNeedsCleanups - True if the current evaluation context /// requires cleanups to be run at its conclusion. bool ExprNeedsCleanups; /// ExprCleanupObjects - This is the stack of objects requiring /// cleanup that are created by the current full expression. The /// element type here is ExprWithCleanups::Object. SmallVector ExprCleanupObjects; llvm::SmallPtrSet MaybeODRUseExprs; /// \brief Stack containing information about each of the nested /// function, block, and method scopes that are currently active. /// /// This array is never empty. Clients should ignore the first /// element, which is used to cache a single FunctionScopeInfo /// that's used to parse every top-level function. SmallVector FunctionScopes; typedef LazyVector ExtVectorDeclsType; /// ExtVectorDecls - This is a list all the extended vector types. This allows /// us to associate a raw vector type with one of the ext_vector type names. /// This is only necessary for issuing pretty diagnostics. ExtVectorDeclsType ExtVectorDecls; /// \brief The set of types for which we have already complained about the /// definitions being hidden. /// /// This set is used to suppress redundant diagnostics. llvm::SmallPtrSet HiddenDefinitions; /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes. OwningPtr FieldCollector; typedef llvm::SmallPtrSet RecordDeclSetTy; /// PureVirtualClassDiagSet - a set of class declarations which we have /// emitted a list of pure virtual functions. Used to prevent emitting the /// same list more than once. OwningPtr PureVirtualClassDiagSet; /// ParsingInitForAutoVars - a set of declarations with auto types for which /// we are currently parsing the initializer. llvm::SmallPtrSet ParsingInitForAutoVars; /// \brief A mapping from external names to the most recent /// locally-scoped external declaration with that name. /// /// This map contains external declarations introduced in local /// scoped, e.g., /// /// \code /// void f() { /// void foo(int, int); /// } /// \endcode /// /// Here, the name "foo" will be associated with the declaration on /// "foo" within f. This name is not visible outside of /// "f". However, we still find it in two cases: /// /// - If we are declaring another external with the name "foo", we /// can find "foo" as a previous declaration, so that the types /// of this external declaration can be checked for /// compatibility. /// /// - If we would implicitly declare "foo" (e.g., due to a call to /// "foo" in C when no prototype or definition is visible), then /// we find this declaration of "foo" and complain that it is /// not visible. llvm::DenseMap LocallyScopedExternalDecls; /// \brief Look for a locally scoped external declaration by the given name. llvm::DenseMap::iterator findLocallyScopedExternalDecl(DeclarationName Name); typedef LazyVector TentativeDefinitionsType; /// \brief All the tentative definitions encountered in the TU. TentativeDefinitionsType TentativeDefinitions; typedef LazyVector UnusedFileScopedDeclsType; /// \brief The set of file scoped decls seen so far that have not been used /// and must warn if not used. Only contains the first declaration. UnusedFileScopedDeclsType UnusedFileScopedDecls; typedef LazyVector DelegatingCtorDeclsType; /// \brief All the delegating constructors seen so far in the file, used for /// cycle detection at the end of the TU. DelegatingCtorDeclsType DelegatingCtorDecls; /// \brief All the destructors seen during a class definition that had their /// exception spec computation delayed because it depended on an unparsed /// exception spec. SmallVector DelayedDestructorExceptionSpecs; /// \brief All the overriding destructors seen during a class definition /// (there could be multiple due to nested classes) that had their exception /// spec checks delayed, plus the overridden destructor. SmallVector, 2> DelayedDestructorExceptionSpecChecks; /// \brief Callback to the parser to parse templated functions when needed. typedef void LateTemplateParserCB(void *P, const FunctionDecl *FD); LateTemplateParserCB *LateTemplateParser; void *OpaqueParser; void SetLateTemplateParser(LateTemplateParserCB *LTP, void *P) { LateTemplateParser = LTP; OpaqueParser = P; } class DelayedDiagnostics; class ParsingDeclState { unsigned SavedStackSize; friend class Sema::DelayedDiagnostics; }; class ProcessingContextState { unsigned SavedParsingDepth; unsigned SavedActiveStackBase; friend class Sema::DelayedDiagnostics; }; /// A class which encapsulates the logic for delaying diagnostics /// during parsing and other processing. class DelayedDiagnostics { /// \brief The stack of diagnostics that were delayed due to being /// produced during the parsing of a declaration. sema::DelayedDiagnostic *Stack; /// \brief The number of objects on the delayed-diagnostics stack. unsigned StackSize; /// \brief The current capacity of the delayed-diagnostics stack. unsigned StackCapacity; /// \brief The index of the first "active" delayed diagnostic in /// the stack. When parsing class definitions, we ignore active /// delayed diagnostics from the surrounding context. unsigned ActiveStackBase; /// \brief The depth of the declarations we're currently parsing. /// This gets saved and reset whenever we enter a class definition. unsigned ParsingDepth; public: DelayedDiagnostics() : Stack(0), StackSize(0), StackCapacity(0), ActiveStackBase(0), ParsingDepth(0) {} ~DelayedDiagnostics() { delete[] reinterpret_cast(Stack); } /// Adds a delayed diagnostic. void add(const sema::DelayedDiagnostic &diag); /// Determines whether diagnostics should be delayed. bool shouldDelayDiagnostics() { return ParsingDepth > 0; } /// Observe that we've started parsing a declaration. Access and /// deprecation diagnostics will be delayed; when the declaration /// is completed, all active delayed diagnostics will be evaluated /// in its context, and then active diagnostics stack will be /// popped down to the saved depth. ParsingDeclState pushParsingDecl() { ParsingDepth++; ParsingDeclState state; state.SavedStackSize = StackSize; return state; } /// Observe that we're completed parsing a declaration. static void popParsingDecl(Sema &S, ParsingDeclState state, Decl *decl); /// Observe that we've started processing a different context, the /// contents of which are semantically separate from the /// declarations it may lexically appear in. This sets aside the /// current stack of active diagnostics and starts afresh. ProcessingContextState pushContext() { assert(StackSize >= ActiveStackBase); ProcessingContextState state; state.SavedParsingDepth = ParsingDepth; state.SavedActiveStackBase = ActiveStackBase; ActiveStackBase = StackSize; ParsingDepth = 0; return state; } /// Observe that we've stopped processing a context. This /// restores the previous stack of active diagnostics. void popContext(ProcessingContextState state) { assert(ActiveStackBase == StackSize); assert(ParsingDepth == 0); ActiveStackBase = state.SavedActiveStackBase; ParsingDepth = state.SavedParsingDepth; } } DelayedDiagnostics; /// A RAII object to temporarily push a declaration context. class ContextRAII { private: Sema &S; DeclContext *SavedContext; ProcessingContextState SavedContextState; QualType SavedCXXThisTypeOverride; public: ContextRAII(Sema &S, DeclContext *ContextToPush) : S(S), SavedContext(S.CurContext), SavedContextState(S.DelayedDiagnostics.pushContext()), SavedCXXThisTypeOverride(S.CXXThisTypeOverride) { assert(ContextToPush && "pushing null context"); S.CurContext = ContextToPush; } void pop() { if (!SavedContext) return; S.CurContext = SavedContext; S.DelayedDiagnostics.popContext(SavedContextState); S.CXXThisTypeOverride = SavedCXXThisTypeOverride; SavedContext = 0; } ~ContextRAII() { pop(); } }; /// WeakUndeclaredIdentifiers - Identifiers contained in /// #pragma weak before declared. rare. may alias another /// identifier, declared or undeclared llvm::DenseMap WeakUndeclaredIdentifiers; /// ExtnameUndeclaredIdentifiers - Identifiers contained in /// #pragma redefine_extname before declared. Used in Solaris system headers /// to define functions that occur in multiple standards to call the version /// in the currently selected standard. llvm::DenseMap ExtnameUndeclaredIdentifiers; /// \brief Load weak undeclared identifiers from the external source. void LoadExternalWeakUndeclaredIdentifiers(); /// WeakTopLevelDecl - Translation-unit scoped declarations generated by /// #pragma weak during processing of other Decls. /// I couldn't figure out a clean way to generate these in-line, so /// we store them here and handle separately -- which is a hack. /// It would be best to refactor this. SmallVector WeakTopLevelDecl; IdentifierResolver IdResolver; /// Translation Unit Scope - useful to Objective-C actions that need /// to lookup file scope declarations in the "ordinary" C decl namespace. /// For example, user-defined classes, built-in "id" type, etc. Scope *TUScope; /// \brief The C++ "std" namespace, where the standard library resides. LazyDeclPtr StdNamespace; /// \brief The C++ "std::bad_alloc" class, which is defined by the C++ /// standard library. LazyDeclPtr StdBadAlloc; /// \brief The C++ "std::initializer_list" template, which is defined in /// . ClassTemplateDecl *StdInitializerList; /// \brief The C++ "type_info" declaration, which is defined in . RecordDecl *CXXTypeInfoDecl; /// \brief The MSVC "_GUID" struct, which is defined in MSVC header files. RecordDecl *MSVCGuidDecl; /// \brief Caches identifiers/selectors for NSFoundation APIs. llvm::OwningPtr NSAPIObj; /// \brief The declaration of the Objective-C NSNumber class. ObjCInterfaceDecl *NSNumberDecl; /// \brief The Objective-C NSNumber methods used to create NSNumber literals. ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods]; /// \brief The declaration of the Objective-C NSArray class. ObjCInterfaceDecl *NSArrayDecl; /// \brief The declaration of the arrayWithObjects:count: method. ObjCMethodDecl *ArrayWithObjectsMethod; /// \brief The declaration of the Objective-C NSDictionary class. ObjCInterfaceDecl *NSDictionaryDecl; /// \brief The declaration of the dictionaryWithObjects:forKeys:count: method. ObjCMethodDecl *DictionaryWithObjectsMethod; /// \brief id type. QualType QIDNSCopying; /// A flag to remember whether the implicit forms of operator new and delete /// have been declared. bool GlobalNewDeleteDeclared; /// A flag that is set when parsing a -dealloc method and no [super dealloc] /// call was found yet. bool ObjCShouldCallSuperDealloc; /// A flag that is set when parsing a -finalize method and no [super finalize] /// call was found yet. bool ObjCShouldCallSuperFinalize; /// \brief Describes how the expressions currently being parsed are /// evaluated at run-time, if at all. enum ExpressionEvaluationContext { /// \brief The current expression and its subexpressions occur within an /// unevaluated operand (C++11 [expr]p7), such as the subexpression of /// \c sizeof, where the type of the expression may be significant but /// no code will be generated to evaluate the value of the expression at /// run time. Unevaluated, /// \brief The current context is "potentially evaluated" in C++11 terms, /// but the expression is evaluated at compile-time (like the values of /// cases in a switch statment). ConstantEvaluated, /// \brief The current expression is potentially evaluated at run time, /// which means that code may be generated to evaluate the value of the /// expression at run time. PotentiallyEvaluated, /// \brief The current expression is potentially evaluated, but any /// declarations referenced inside that expression are only used if /// in fact the current expression is used. /// /// This value is used when parsing default function arguments, for which /// we would like to provide diagnostics (e.g., passing non-POD arguments /// through varargs) but do not want to mark declarations as "referenced" /// until the default argument is used. PotentiallyEvaluatedIfUsed }; /// \brief Data structure used to record current or nested /// expression evaluation contexts. struct ExpressionEvaluationContextRecord { /// \brief The expression evaluation context. ExpressionEvaluationContext Context; /// \brief Whether the enclosing context needed a cleanup. bool ParentNeedsCleanups; /// \brief Whether we are in a decltype expression. bool IsDecltype; /// \brief The number of active cleanup objects when we entered /// this expression evaluation context. unsigned NumCleanupObjects; llvm::SmallPtrSet SavedMaybeODRUseExprs; /// \brief The lambdas that are present within this context, if it /// is indeed an unevaluated context. llvm::SmallVector Lambdas; /// \brief The declaration that provides context for the lambda expression /// if the normal declaration context does not suffice, e.g., in a /// default function argument. Decl *LambdaContextDecl; /// \brief The context information used to mangle lambda expressions /// within this context. /// /// This mangling information is allocated lazily, since most contexts /// do not have lambda expressions. LambdaMangleContext *LambdaMangle; /// \brief If we are processing a decltype type, a set of call expressions /// for which we have deferred checking the completeness of the return type. llvm::SmallVector DelayedDecltypeCalls; /// \brief If we are processing a decltype type, a set of temporary binding /// expressions for which we have deferred checking the destructor. llvm::SmallVector DelayedDecltypeBinds; ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context, unsigned NumCleanupObjects, bool ParentNeedsCleanups, Decl *LambdaContextDecl, bool IsDecltype) : Context(Context), ParentNeedsCleanups(ParentNeedsCleanups), IsDecltype(IsDecltype), NumCleanupObjects(NumCleanupObjects), LambdaContextDecl(LambdaContextDecl), LambdaMangle() { } ~ExpressionEvaluationContextRecord() { delete LambdaMangle; } /// \brief Retrieve the mangling context for lambdas. LambdaMangleContext &getLambdaMangleContext() { assert(LambdaContextDecl && "Need to have a lambda context declaration"); if (!LambdaMangle) LambdaMangle = new LambdaMangleContext; return *LambdaMangle; } }; /// A stack of expression evaluation contexts. SmallVector ExprEvalContexts; /// SpecialMemberOverloadResult - The overloading result for a special member /// function. /// /// This is basically a wrapper around PointerIntPair. The lowest bits of the /// integer are used to determine whether overload resolution succeeded, and /// whether, when looking up a copy constructor or assignment operator, we /// found a potential copy constructor/assignment operator whose first /// parameter is const-qualified. This is used for determining parameter types /// of other objects and is utterly meaningless on other types of special /// members. class SpecialMemberOverloadResult : public llvm::FastFoldingSetNode { public: enum Kind { NoMemberOrDeleted, Ambiguous, Success }; private: llvm::PointerIntPair Pair; public: SpecialMemberOverloadResult(const llvm::FoldingSetNodeID &ID) : FastFoldingSetNode(ID) {} CXXMethodDecl *getMethod() const { return Pair.getPointer(); } void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); } Kind getKind() const { return static_cast(Pair.getInt()); } void setKind(Kind K) { Pair.setInt(K); } }; /// \brief A cache of special member function overload resolution results /// for C++ records. llvm::FoldingSet SpecialMemberCache; /// \brief The kind of translation unit we are processing. /// /// When we're processing a complete translation unit, Sema will perform /// end-of-translation-unit semantic tasks (such as creating /// initializers for tentative definitions in C) once parsing has /// completed. Modules and precompiled headers perform different kinds of /// checks. TranslationUnitKind TUKind; llvm::BumpPtrAllocator BumpAlloc; /// \brief The number of SFINAE diagnostics that have been trapped. unsigned NumSFINAEErrors; typedef llvm::DenseMap > UnparsedDefaultArgInstantiationsMap; /// \brief A mapping from parameters with unparsed default arguments to the /// set of instantiations of each parameter. /// /// This mapping is a temporary data structure used when parsing /// nested class templates or nested classes of class templates, /// where we might end up instantiating an inner class before the /// default arguments of its methods have been parsed. UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations; // Contains the locations of the beginning of unparsed default // argument locations. llvm::DenseMap UnparsedDefaultArgLocs; /// UndefinedInternals - all the used, undefined objects with /// internal linkage in this translation unit. llvm::DenseMap UndefinedInternals; typedef std::pair GlobalMethods; typedef llvm::DenseMap GlobalMethodPool; /// Method Pool - allows efficient lookup when typechecking messages to "id". /// We need to maintain a list, since selectors can have differing signatures /// across classes. In Cocoa, this happens to be extremely uncommon (only 1% /// of selectors are "overloaded"). GlobalMethodPool MethodPool; /// Method selectors used in a @selector expression. Used for implementation /// of -Wselector. llvm::DenseMap ReferencedSelectors; void ReadMethodPool(Selector Sel); /// Private Helper predicate to check for 'self'. bool isSelfExpr(Expr *RExpr); /// \brief Cause the active diagnostic on the DiagosticsEngine to be /// emitted. This is closely coupled to the SemaDiagnosticBuilder class and /// should not be used elsewhere. void EmitCurrentDiagnostic(unsigned DiagID); public: Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, TranslationUnitKind TUKind = TU_Complete, CodeCompleteConsumer *CompletionConsumer = 0); ~Sema(); /// \brief Perform initialization that occurs after the parser has been /// initialized but before it parses anything. void Initialize(); const LangOptions &getLangOpts() const { return LangOpts; } OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; } FPOptions &getFPOptions() { return FPFeatures; } DiagnosticsEngine &getDiagnostics() const { return Diags; } SourceManager &getSourceManager() const { return SourceMgr; } const TargetAttributesSema &getTargetAttributesSema() const; Preprocessor &getPreprocessor() const { return PP; } ASTContext &getASTContext() const { return Context; } ASTConsumer &getASTConsumer() const { return Consumer; } ASTMutationListener *getASTMutationListener() const; void PrintStats() const; /// \brief Helper class that creates diagnostics with optional /// template instantiation stacks. /// /// This class provides a wrapper around the basic DiagnosticBuilder /// class that emits diagnostics. SemaDiagnosticBuilder is /// responsible for emitting the diagnostic (as DiagnosticBuilder /// does) and, if the diagnostic comes from inside a template /// instantiation, printing the template instantiation stack as /// well. class SemaDiagnosticBuilder : public DiagnosticBuilder { Sema &SemaRef; unsigned DiagID; public: SemaDiagnosticBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID) : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) { } ~SemaDiagnosticBuilder() { // If we aren't active, there is nothing to do. if (!isActive()) return; // Otherwise, we need to emit the diagnostic. First flush the underlying // DiagnosticBuilder data, and clear the diagnostic builder itself so it // won't emit the diagnostic in its own destructor. // // This seems wasteful, in that as written the DiagnosticBuilder dtor will // do its own needless checks to see if the diagnostic needs to be // emitted. However, because we take care to ensure that the builder // objects never escape, a sufficiently smart compiler will be able to // eliminate that code. FlushCounts(); Clear(); // Dispatch to Sema to emit the diagnostic. SemaRef.EmitCurrentDiagnostic(DiagID); } }; /// \brief Emit a diagnostic. SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) { DiagnosticBuilder DB = Diags.Report(Loc, DiagID); return SemaDiagnosticBuilder(DB, *this, DiagID); } /// \brief Emit a partial diagnostic. SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic& PD); /// \brief Build a partial diagnostic. PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h bool findMacroSpelling(SourceLocation &loc, StringRef name); /// \brief Get a string to suggest for zero-initialization of a type. const char *getFixItZeroInitializerForType(QualType T) const; ExprResult Owned(Expr* E) { return E; } ExprResult Owned(ExprResult R) { return R; } StmtResult Owned(Stmt* S) { return S; } void ActOnEndOfTranslationUnit(); void CheckDelegatingCtorCycles(); Scope *getScopeForContext(DeclContext *Ctx); void PushFunctionScope(); void PushBlockScope(Scope *BlockScope, BlockDecl *Block); void PushLambdaScope(CXXRecordDecl *Lambda, CXXMethodDecl *CallOperator); void PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP =0, const Decl *D = 0, const BlockExpr *blkExpr = 0); sema::FunctionScopeInfo *getCurFunction() const { return FunctionScopes.back(); } void PushCompoundScope(); void PopCompoundScope(); sema::CompoundScopeInfo &getCurCompoundScope() const; bool hasAnyUnrecoverableErrorsInThisFunction() const; /// \brief Retrieve the current block, if any. sema::BlockScopeInfo *getCurBlock(); /// \brief Retrieve the current lambda expression, if any. sema::LambdaScopeInfo *getCurLambda(); /// WeakTopLevelDeclDecls - access to #pragma weak-generated Decls SmallVector &WeakTopLevelDecls() { return WeakTopLevelDecl; } //===--------------------------------------------------------------------===// // Type Analysis / Processing: SemaType.cpp. // QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs); QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVR) { return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR)); } QualType BuildPointerType(QualType T, SourceLocation Loc, DeclarationName Entity); QualType BuildReferenceType(QualType T, bool LValueRef, SourceLocation Loc, DeclarationName Entity); QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, Expr *ArraySize, unsigned Quals, SourceRange Brackets, DeclarationName Entity); QualType BuildExtVectorType(QualType T, Expr *ArraySize, SourceLocation AttrLoc); QualType BuildFunctionType(QualType T, QualType *ParamTypes, unsigned NumParamTypes, bool Variadic, bool HasTrailingReturn, unsigned Quals, RefQualifierKind RefQualifier, SourceLocation Loc, DeclarationName Entity, FunctionType::ExtInfo Info); QualType BuildMemberPointerType(QualType T, QualType Class, SourceLocation Loc, DeclarationName Entity); QualType BuildBlockPointerType(QualType T, SourceLocation Loc, DeclarationName Entity); QualType BuildParenType(QualType T); QualType BuildAtomicType(QualType T, SourceLocation Loc); TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S); TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy); TypeSourceInfo *GetTypeSourceInfoForDeclarator(Declarator &D, QualType T, TypeSourceInfo *ReturnTypeInfo); /// \brief Package the given type and TSI into a ParsedType. ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo); DeclarationNameInfo GetNameForDeclarator(Declarator &D); DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name); static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo = 0); CanThrowResult canThrow(const Expr *E); const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT); bool CheckSpecifiedExceptionType(QualType T, const SourceRange &Range); bool CheckDistantExceptionSpec(QualType T); bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New); bool CheckEquivalentExceptionSpec( const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc); bool CheckEquivalentExceptionSpec( const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc, bool *MissingExceptionSpecification = 0, bool *MissingEmptyExceptionSpecification = 0, bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false); bool CheckExceptionSpecSubset( const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, const FunctionProtoType *Superset, SourceLocation SuperLoc, const FunctionProtoType *Subset, SourceLocation SubLoc); bool CheckParamExceptionSpec(const PartialDiagnostic & NoteID, const FunctionProtoType *Target, SourceLocation TargetLoc, const FunctionProtoType *Source, SourceLocation SourceLoc); TypeResult ActOnTypeName(Scope *S, Declarator &D); /// \brief The parser has parsed the context-sensitive type 'instancetype' /// in an Objective-C message declaration. Return the appropriate type. ParsedType ActOnObjCInstanceType(SourceLocation Loc); bool RequireCompleteType(SourceLocation Loc, QualType T, const PartialDiagnostic &PD, std::pair Note); bool RequireCompleteType(SourceLocation Loc, QualType T, const PartialDiagnostic &PD); bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID); bool RequireCompleteExprType(Expr *E, const PartialDiagnostic &PD, std::pair Note); bool RequireLiteralType(SourceLocation Loc, QualType T, const PartialDiagnostic &PD); QualType getElaboratedType(ElaboratedTypeKeyword Keyword, const CXXScopeSpec &SS, QualType T); QualType BuildTypeofExprType(Expr *E, SourceLocation Loc); QualType BuildDecltypeType(Expr *E, SourceLocation Loc); QualType BuildUnaryTransformType(QualType BaseType, UnaryTransformType::UTTKind UKind, SourceLocation Loc); //===--------------------------------------------------------------------===// // Symbol table / Decl tracking callbacks: SemaDecl.cpp. // /// List of decls defined in a function prototype. This contains EnumConstants /// that incorrectly end up in translation unit scope because there is no /// function to pin them on. ActOnFunctionDeclarator reads this list and patches /// them into the FunctionDecl. std::vector DeclsInPrototypeScope; /// Nonzero if we are currently parsing a function declarator. This is a counter /// as opposed to a boolean so we can deal with nested function declarators /// such as: /// void f(void (*g)(), ...) unsigned InFunctionDeclarator; DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = 0); void DiagnoseUseOfUnimplementedSelectors(); ParsedType getTypeName(IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec *SS = 0, bool isClassName = false, bool HasTrailingDot = false, ParsedType ObjectType = ParsedType(), bool IsCtorOrDtorName = false, bool WantNontrivialTypeSourceInfo = false, IdentifierInfo **CorrectedII = 0); TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S); bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S); bool DiagnoseUnknownTypeName(const IdentifierInfo &II, SourceLocation IILoc, Scope *S, CXXScopeSpec *SS, ParsedType &SuggestedType); /// \brief Describes the result of the name lookup and resolution performed /// by \c ClassifyName(). enum NameClassificationKind { NC_Unknown, NC_Error, NC_Keyword, NC_Type, NC_Expression, NC_NestedNameSpecifier, NC_TypeTemplate, NC_FunctionTemplate }; class NameClassification { NameClassificationKind Kind; ExprResult Expr; TemplateName Template; ParsedType Type; const IdentifierInfo *Keyword; explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {} public: NameClassification(ExprResult Expr) : Kind(NC_Expression), Expr(Expr) {} NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {} NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword), Keyword(Keyword) { } static NameClassification Error() { return NameClassification(NC_Error); } static NameClassification Unknown() { return NameClassification(NC_Unknown); } static NameClassification NestedNameSpecifier() { return NameClassification(NC_NestedNameSpecifier); } static NameClassification TypeTemplate(TemplateName Name) { NameClassification Result(NC_TypeTemplate); Result.Template = Name; return Result; } static NameClassification FunctionTemplate(TemplateName Name) { NameClassification Result(NC_FunctionTemplate); Result.Template = Name; return Result; } NameClassificationKind getKind() const { return Kind; } ParsedType getType() const { assert(Kind == NC_Type); return Type; } ExprResult getExpression() const { assert(Kind == NC_Expression); return Expr; } TemplateName getTemplateName() const { assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate); return Template; } TemplateNameKind getTemplateNameKind() const { assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate); return Kind == NC_TypeTemplate? TNK_Type_template : TNK_Function_template; } }; /// \brief Perform name lookup on the given name, classifying it based on /// the results of name lookup and the following token. /// /// This routine is used by the parser to resolve identifiers and help direct /// parsing. When the identifier cannot be found, this routine will attempt /// to correct the typo and classify based on the resulting name. /// /// \param S The scope in which we're performing name lookup. /// /// \param SS The nested-name-specifier that precedes the name. /// /// \param Name The identifier. If typo correction finds an alternative name, /// this pointer parameter will be updated accordingly. /// /// \param NameLoc The location of the identifier. /// /// \param NextToken The token following the identifier. Used to help /// disambiguate the name. NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name, SourceLocation NameLoc, const Token &NextToken); Decl *ActOnDeclarator(Scope *S, Declarator &D); Decl *HandleDeclarator(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists); void RegisterLocallyScopedExternCDecl(NamedDecl *ND, const LookupResult &Previous, Scope *S); bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info); bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, DeclarationName Name, SourceLocation Loc); void DiagnoseFunctionSpecifiers(Declarator& D); void CheckShadow(Scope *S, VarDecl *D, const LookupResult& R); void CheckShadow(Scope *S, VarDecl *D); void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange); void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D); NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, TypeSourceInfo *TInfo, LookupResult &Previous); NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D, LookupResult &Previous, bool &Redeclaration); NamedDecl* ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC, TypeSourceInfo *TInfo, LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists); // Returns true if the variable declaration is a redeclaration bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous); void CheckCompleteVariableDeclaration(VarDecl *var); void ActOnStartFunctionDeclarator(); void ActOnEndFunctionDeclarator(); NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC, TypeSourceInfo *TInfo, LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, bool &AddToScope); bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD); bool CheckConstexprFunctionDecl(const FunctionDecl *FD); bool CheckConstexprFunctionBody(const FunctionDecl *FD, Stmt *Body); void DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD); // Returns true if the function declaration is a redeclaration bool CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, LookupResult &Previous, bool IsExplicitSpecialization); void CheckMain(FunctionDecl *FD, const DeclSpec &D); Decl *ActOnParamDeclarator(Scope *S, Declarator &D); ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC, SourceLocation Loc, QualType T); ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc, SourceLocation NameLoc, IdentifierInfo *Name, QualType T, TypeSourceInfo *TSInfo, StorageClass SC, StorageClass SCAsWritten); void ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, Expr *defarg); void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc, SourceLocation ArgLoc); void ActOnParamDefaultArgumentError(Decl *param); bool SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg, SourceLocation EqualLoc); void CheckSelfReference(Decl *OrigDecl, Expr *E); void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit, bool TypeMayContainAuto); void ActOnUninitializedDecl(Decl *dcl, bool TypeMayContainAuto); void ActOnInitializerError(Decl *Dcl); void ActOnCXXForRangeDecl(Decl *D); void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc); void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc); void FinalizeDeclaration(Decl *D); DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, Decl **Group, unsigned NumDecls); DeclGroupPtrTy BuildDeclaratorGroup(Decl **Group, unsigned NumDecls, bool TypeMayContainAuto = true); void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, SourceLocation LocAfterDecls); void CheckForFunctionRedefinition(FunctionDecl *FD); Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D); Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D); void ActOnStartOfObjCMethodDef(Scope *S, Decl *D); void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope); Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body); Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation); /// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an /// attribute for which parsing is delayed. void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs); /// \brief Diagnose any unused parameters in the given sequence of /// ParmVarDecl pointers. void DiagnoseUnusedParameters(ParmVarDecl * const *Begin, ParmVarDecl * const *End); /// \brief Diagnose whether the size of parameters or return value of a /// function or obj-c method definition is pass-by-value and larger than a /// specified threshold. void DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Begin, ParmVarDecl * const *End, QualType ReturnTy, NamedDecl *D); void DiagnoseInvalidJumps(Stmt *Body); Decl *ActOnFileScopeAsmDecl(Expr *expr, SourceLocation AsmLoc, SourceLocation RParenLoc); /// \brief The parser has processed a module import declaration. /// /// \param AtLoc The location of the '@' symbol, if any. /// /// \param ImportLoc The location of the 'import' keyword. /// /// \param Path The module access path. DeclResult ActOnModuleImport(SourceLocation AtLoc, SourceLocation ImportLoc, ModuleIdPath Path); /// \brief Retrieve a suitable printing policy. PrintingPolicy getPrintingPolicy() const { return getPrintingPolicy(Context, PP); } /// \brief Retrieve a suitable printing policy. static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx, const Preprocessor &PP); /// Scope actions. void ActOnPopScope(SourceLocation Loc, Scope *S); void ActOnTranslationUnitScope(Scope *S); Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS); Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, MultiTemplateParamsArg TemplateParams); Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, AccessSpecifier AS, RecordDecl *Record); Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, RecordDecl *Record); bool isAcceptableTagRedeclaration(const TagDecl *Previous, TagTypeKind NewTag, bool isDefinition, SourceLocation NewTagLoc, const IdentifierInfo &Name); enum TagUseKind { TUK_Reference, // Reference to a tag: 'struct foo *X;' TUK_Declaration, // Fwd decl of a tag: 'struct foo;' TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;' TUK_Friend // Friend declaration: 'friend struct foo;' }; Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, AttributeList *Attr, AccessSpecifier AS, SourceLocation ModulePrivateLoc, MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl, bool &IsDependent, SourceLocation ScopedEnumKWLoc, bool ScopedEnumUsesClassTag, TypeResult UnderlyingType); Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, AttributeList *Attr, MultiTemplateParamsArg TempParamLists); TypeResult ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation TagLoc, SourceLocation NameLoc); void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, IdentifierInfo *ClassName, SmallVectorImpl &Decls); Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth); FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, bool HasInit, AccessSpecifier AS); FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T, TypeSourceInfo *TInfo, RecordDecl *Record, SourceLocation Loc, bool Mutable, Expr *BitfieldWidth, bool HasInit, SourceLocation TSSL, AccessSpecifier AS, NamedDecl *PrevDecl, Declarator *D = 0); enum CXXSpecialMember { CXXDefaultConstructor, CXXCopyConstructor, CXXMoveConstructor, CXXCopyAssignment, CXXMoveAssignment, CXXDestructor, CXXInvalid }; bool CheckNontrivialField(FieldDecl *FD); void DiagnoseNontrivial(const RecordType* Record, CXXSpecialMember mem); CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD); void ActOnLastBitfield(SourceLocation DeclStart, SmallVectorImpl &AllIvarDecls); Decl *ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, tok::ObjCKeywordKind visibility); // This is used for both record definitions and ObjC interface declarations. void ActOnFields(Scope* S, SourceLocation RecLoc, Decl *TagDecl, llvm::ArrayRef Fields, SourceLocation LBrac, SourceLocation RBrac, AttributeList *AttrList); /// ActOnTagStartDefinition - Invoked when we have entered the /// scope of a tag's definition (e.g., for an enumeration, class, /// struct, or union). void ActOnTagStartDefinition(Scope *S, Decl *TagDecl); Decl *ActOnObjCContainerStartDefinition(Decl *IDecl); /// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a /// C++ record definition's base-specifiers clause and are starting its /// member declarations. void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl, SourceLocation FinalLoc, SourceLocation LBraceLoc); /// ActOnTagFinishDefinition - Invoked once we have finished parsing /// the definition of a tag (enumeration, class, struct, or union). void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl, SourceLocation RBraceLoc); void ActOnObjCContainerFinishDefinition(); /// \brief Invoked when we must temporarily exit the objective-c container /// scope for parsing/looking-up C constructs. /// /// Must be followed by a call to \see ActOnObjCReenterContainerContext void ActOnObjCTemporaryExitContainerContext(DeclContext *DC); void ActOnObjCReenterContainerContext(DeclContext *DC); /// ActOnTagDefinitionError - Invoked when there was an unrecoverable /// error parsing the definition of a tag. void ActOnTagDefinitionError(Scope *S, Decl *TagDecl); EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum, EnumConstantDecl *LastEnumConst, SourceLocation IdLoc, IdentifierInfo *Id, Expr *val); bool CheckEnumUnderlyingType(TypeSourceInfo *TI); bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, QualType EnumUnderlyingTy, const EnumDecl *Prev); Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant, SourceLocation IdLoc, IdentifierInfo *Id, AttributeList *Attrs, SourceLocation EqualLoc, Expr *Val); void ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc, SourceLocation RBraceLoc, Decl *EnumDecl, Decl **Elements, unsigned NumElements, Scope *S, AttributeList *Attr); DeclContext *getContainingDC(DeclContext *DC); /// Set the current declaration context until it gets popped. void PushDeclContext(Scope *S, DeclContext *DC); void PopDeclContext(); /// EnterDeclaratorContext - Used when we must lookup names in the context /// of a declarator's nested name specifier. void EnterDeclaratorContext(Scope *S, DeclContext *DC); void ExitDeclaratorContext(Scope *S); /// Push the parameters of D, which must be a function, into scope. void ActOnReenterFunctionContext(Scope* S, Decl* D); void ActOnExitFunctionContext(); DeclContext *getFunctionLevelDeclContext(); /// getCurFunctionDecl - If inside of a function body, this returns a pointer /// to the function decl for the function being parsed. If we're currently /// in a 'block', this returns the containing context. FunctionDecl *getCurFunctionDecl(); /// getCurMethodDecl - If inside of a method body, this returns a pointer to /// the method decl for the method being parsed. If we're currently /// in a 'block', this returns the containing context. ObjCMethodDecl *getCurMethodDecl(); /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method /// or C function we're in, otherwise return null. If we're currently /// in a 'block', this returns the containing context. NamedDecl *getCurFunctionOrMethodDecl(); /// Add this decl to the scope shadowed decl chains. void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true); /// \brief Make the given externally-produced declaration visible at the /// top level scope. /// /// \param D The externally-produced declaration to push. /// /// \param Name The name of the externally-produced declaration. void pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name); /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns /// true if 'D' belongs to the given declaration context. /// /// \param ExplicitInstantiationOrSpecialization When true, we are checking /// whether the declaration is in scope for the purposes of explicit template /// instantiation or specialization. The default is false. bool isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S = 0, bool ExplicitInstantiationOrSpecialization = false); /// Finds the scope corresponding to the given decl context, if it /// happens to be an enclosing scope. Otherwise return NULL. static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC); /// Subroutines of ActOnDeclarator(). TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T, TypeSourceInfo *TInfo); bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New); void mergeDeclAttributes(Decl *New, Decl *Old, bool MergeDeprecation = true); void MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls); bool MergeFunctionDecl(FunctionDecl *New, Decl *Old, Scope *S); bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, Scope *S); void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old); void MergeVarDecl(VarDecl *New, LookupResult &OldDecls); void MergeVarDeclTypes(VarDecl *New, VarDecl *Old); void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old); bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S); // AssignmentAction - This is used by all the assignment diagnostic functions // to represent what is actually causing the operation enum AssignmentAction { AA_Assigning, AA_Passing, AA_Returning, AA_Converting, AA_Initializing, AA_Sending, AA_Casting }; /// C++ Overloading. enum OverloadKind { /// This is a legitimate overload: the existing declarations are /// functions or function templates with different signatures. Ovl_Overload, /// This is not an overload because the signature exactly matches /// an existing declaration. Ovl_Match, /// This is not an overload because the lookup results contain a /// non-function. Ovl_NonFunction }; OverloadKind CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &OldDecls, NamedDecl *&OldDecl, bool IsForUsingDecl); bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl); /// \brief Checks availability of the function depending on the current /// function context.Inside an unavailable function,unavailability is ignored. /// /// \returns true if \arg FD is unavailable and current context is inside /// an available function, false otherwise. bool isFunctionConsideredUnavailable(FunctionDecl *FD); ImplicitConversionSequence TryImplicitConversion(Expr *From, QualType ToType, bool SuppressUserConversions, bool AllowExplicit, bool InOverloadResolution, bool CStyle, bool AllowObjCWritebackConversion); bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType); bool IsFloatingPointPromotion(QualType FromType, QualType ToType); bool IsComplexPromotion(QualType FromType, QualType ToType); bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType& ConvertedType, bool &IncompatibleObjC); bool isObjCPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC); bool isObjCWritebackConversion(QualType FromType, QualType ToType, QualType &ConvertedType); bool IsBlockPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType); bool FunctionArgTypesAreEqual(const FunctionProtoType *OldType, const FunctionProtoType *NewType, unsigned *ArgPos = 0); void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, QualType FromType, QualType ToType); CastKind PrepareCastToObjCObjectPointer(ExprResult &E); bool CheckPointerConversion(Expr *From, QualType ToType, CastKind &Kind, CXXCastPath& BasePath, bool IgnoreBaseAccess); bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType &ConvertedType); bool CheckMemberPointerConversion(Expr *From, QualType ToType, CastKind &Kind, CXXCastPath &BasePath, bool IgnoreBaseAccess); bool IsQualificationConversion(QualType FromType, QualType ToType, bool CStyle, bool &ObjCLifetimeConversion); bool IsNoReturnConversion(QualType FromType, QualType ToType, QualType &ResultTy); bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType); ExprResult PerformMoveOrCopyInitialization(const InitializedEntity &Entity, const VarDecl *NRVOCandidate, QualType ResultType, Expr *Value, bool AllowNRVO = true); bool CanPerformCopyInitialization(const InitializedEntity &Entity, ExprResult Init); ExprResult PerformCopyInitialization(const InitializedEntity &Entity, SourceLocation EqualLoc, ExprResult Init, bool TopLevelOfInitList = false, bool AllowExplicit = false); ExprResult PerformObjectArgumentInitialization(Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, CXXMethodDecl *Method); ExprResult PerformContextuallyConvertToBool(Expr *From); ExprResult PerformContextuallyConvertToObjCPointer(Expr *From); /// Contexts in which a converted constant expression is required. enum CCEKind { CCEK_CaseValue, ///< Expression in a case label. CCEK_Enumerator, ///< Enumerator value with fixed underlying type. CCEK_TemplateArg ///< Value of a non-type template parameter. }; ExprResult CheckConvertedConstantExpression(Expr *From, QualType T, llvm::APSInt &Value, CCEKind CCE); ExprResult ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *FromE, const PartialDiagnostic &NotIntDiag, const PartialDiagnostic &IncompleteDiag, const PartialDiagnostic &ExplicitConvDiag, const PartialDiagnostic &ExplicitConvNote, const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &AmbigNote, const PartialDiagnostic &ConvDiag, bool AllowScopedEnumerations); enum ObjCSubscriptKind { OS_Array, OS_Dictionary, OS_Error }; ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE); ExprResult PerformObjectMemberConversion(Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, NamedDecl *Member); // Members have to be NamespaceDecl* or TranslationUnitDecl*. // TODO: make this is a typesafe union. typedef llvm::SmallPtrSet AssociatedNamespaceSet; typedef llvm::SmallPtrSet AssociatedClassSet; void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl, llvm::ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false, bool AllowExplicit = false); void AddFunctionCandidates(const UnresolvedSetImpl &Functions, llvm::ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false, TemplateArgumentListInfo *ExplicitTemplateArgs = 0); void AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, Expr::Classification ObjectClassification, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool SuppressUserConversion = false); void AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, QualType ObjectType, Expr::Classification ObjectClassification, llvm::ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false); void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, Expr::Classification ObjectClassification, llvm::ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false); void AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, TemplateArgumentListInfo *ExplicitTemplateArgs, llvm::ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false); void AddConversionCandidate(CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, Expr *From, QualType ToType, OverloadCandidateSet& CandidateSet); void AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, Expr *From, QualType ToType, OverloadCandidateSet &CandidateSet); void AddSurrogateCandidate(CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, const FunctionProtoType *Proto, Expr *Object, llvm::ArrayRef Args, OverloadCandidateSet& CandidateSet); void AddMemberOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, SourceRange OpRange = SourceRange()); void AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet, bool IsAssignmentOperator = false, unsigned NumContextualBoolArguments = 0); void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, Expr **Args, unsigned NumArgs, OverloadCandidateSet& CandidateSet); void AddArgumentDependentLookupCandidates(DeclarationName Name, bool Operator, SourceLocation Loc, llvm::ArrayRef Args, TemplateArgumentListInfo *ExplicitTemplateArgs, OverloadCandidateSet& CandidateSet, bool PartialOverloading = false, bool StdNamespaceIsAssociated = false); // Emit as a 'note' the specific overload candidate void NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType = QualType()); // Emit as a series of 'note's all template and non-templates // identified by the expression Expr void NoteAllOverloadCandidates(Expr* E, QualType DestType = QualType()); // [PossiblyAFunctionType] --> [Return] // NonFunctionType --> NonFunctionType // R (A) --> R(A) // R (*)(A) --> R (A) // R (&)(A) --> R (A) // R (S::*)(A) --> R (A) QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType); FunctionDecl * ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType, bool Complain, DeclAccessPair &Found, bool *pHadMultipleCandidates = 0); FunctionDecl *ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, bool Complain = false, DeclAccessPair* Found = 0); bool ResolveAndFixSingleFunctionTemplateSpecialization( ExprResult &SrcExpr, bool DoFunctionPointerConverion = false, bool Complain = false, const SourceRange& OpRangeForComplaining = SourceRange(), QualType DestTypeForComplaining = QualType(), unsigned DiagIDForComplaining = 0); Expr *FixOverloadedFunctionReference(Expr *E, DeclAccessPair FoundDecl, FunctionDecl *Fn); ExprResult FixOverloadedFunctionReference(ExprResult, DeclAccessPair FoundDecl, FunctionDecl *Fn); void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, llvm::ArrayRef Args, OverloadCandidateSet &CandidateSet, bool PartialOverloading = false); ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc, Expr *ExecConfig, bool AllowTypoCorrection=true); ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned Opc, const UnresolvedSetImpl &Fns, Expr *input); ExprResult CreateOverloadedBinOp(SourceLocation OpLoc, unsigned Opc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS); ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, SourceLocation RLoc, Expr *Base,Expr *Idx); ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc); ExprResult BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc); ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc); /// CheckCallReturnType - Checks that a call expression's return type is /// complete. Returns true on failure. The location passed in is the location /// that best represents the call. bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc, CallExpr *CE, FunctionDecl *FD); /// Helpers for dealing with blocks and functions. bool CheckParmsForFunctionDef(ParmVarDecl **Param, ParmVarDecl **ParamEnd, bool CheckParameterNames); void CheckCXXDefaultArguments(FunctionDecl *FD); void CheckExtraCXXDefaultArguments(Declarator &D); Scope *getNonFieldDeclScope(Scope *S); /// \name Name lookup /// /// These routines provide name lookup that is used during semantic /// analysis to resolve the various kinds of names (identifiers, /// overloaded operator names, constructor names, etc.) into zero or /// more declarations within a particular scope. The major entry /// points are LookupName, which performs unqualified name lookup, /// and LookupQualifiedName, which performs qualified name lookup. /// /// All name lookup is performed based on some specific criteria, /// which specify what names will be visible to name lookup and how /// far name lookup should work. These criteria are important both /// for capturing language semantics (certain lookups will ignore /// certain names, for example) and for performance, since name /// lookup is often a bottleneck in the compilation of C++. Name /// lookup criteria is specified via the LookupCriteria enumeration. /// /// The results of name lookup can vary based on the kind of name /// lookup performed, the current language, and the translation /// unit. In C, for example, name lookup will either return nothing /// (no entity found) or a single declaration. In C++, name lookup /// can additionally refer to a set of overloaded functions or /// result in an ambiguity. All of the possible results of name /// lookup are captured by the LookupResult class, which provides /// the ability to distinguish among them. //@{ /// @brief Describes the kind of name lookup to perform. enum LookupNameKind { /// Ordinary name lookup, which finds ordinary names (functions, /// variables, typedefs, etc.) in C and most kinds of names /// (functions, variables, members, types, etc.) in C++. LookupOrdinaryName = 0, /// Tag name lookup, which finds the names of enums, classes, /// structs, and unions. LookupTagName, /// Label name lookup. LookupLabel, /// Member name lookup, which finds the names of /// class/struct/union members. LookupMemberName, /// Look up of an operator name (e.g., operator+) for use with /// operator overloading. This lookup is similar to ordinary name /// lookup, but will ignore any declarations that are class members. LookupOperatorName, /// Look up of a name that precedes the '::' scope resolution /// operator in C++. This lookup completely ignores operator, object, /// function, and enumerator names (C++ [basic.lookup.qual]p1). LookupNestedNameSpecifierName, /// Look up a namespace name within a C++ using directive or /// namespace alias definition, ignoring non-namespace names (C++ /// [basic.lookup.udir]p1). LookupNamespaceName, /// Look up all declarations in a scope with the given name, /// including resolved using declarations. This is appropriate /// for checking redeclarations for a using declaration. LookupUsingDeclName, /// Look up an ordinary name that is going to be redeclared as a /// name with linkage. This lookup ignores any declarations that /// are outside of the current scope unless they have linkage. See /// C99 6.2.2p4-5 and C++ [basic.link]p6. LookupRedeclarationWithLinkage, /// Look up the name of an Objective-C protocol. LookupObjCProtocolName, /// Look up implicit 'self' parameter of an objective-c method. LookupObjCImplicitSelfParam, /// \brief Look up any declaration with any name. LookupAnyName }; /// \brief Specifies whether (or how) name lookup is being performed for a /// redeclaration (vs. a reference). enum RedeclarationKind { /// \brief The lookup is a reference to this name that is not for the /// purpose of redeclaring the name. NotForRedeclaration = 0, /// \brief The lookup results will be used for redeclaration of a name, /// if an entity by that name already exists. ForRedeclaration }; /// \brief The possible outcomes of name lookup for a literal operator. enum LiteralOperatorLookupResult { /// \brief The lookup resulted in an error. LOLR_Error, /// \brief The lookup found a single 'cooked' literal operator, which /// expects a normal literal to be built and passed to it. LOLR_Cooked, /// \brief The lookup found a single 'raw' literal operator, which expects /// a string literal containing the spelling of the literal token. LOLR_Raw, /// \brief The lookup found an overload set of literal operator templates, /// which expect the characters of the spelling of the literal token to be /// passed as a non-type template argument pack. LOLR_Template }; SpecialMemberOverloadResult *LookupSpecialMember(CXXRecordDecl *D, CXXSpecialMember SM, bool ConstArg, bool VolatileArg, bool RValueThis, bool ConstThis, bool VolatileThis); private: bool CppLookupName(LookupResult &R, Scope *S); // \brief The set of known/encountered (unique, canonicalized) NamespaceDecls. // // The boolean value will be true to indicate that the namespace was loaded // from an AST/PCH file, or false otherwise. llvm::DenseMap KnownNamespaces; /// \brief Whether we have already loaded known namespaces from an extenal /// source. bool LoadedExternalKnownNamespaces; public: /// \brief Look up a name, looking for a single declaration. Return /// null if the results were absent, ambiguous, or overloaded. /// /// It is preferable to use the elaborated form and explicitly handle /// ambiguity and overloaded. NamedDecl *LookupSingleName(Scope *S, DeclarationName Name, SourceLocation Loc, LookupNameKind NameKind, RedeclarationKind Redecl = NotForRedeclaration); bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation = false); bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup = false); bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, bool AllowBuiltinCreation = false, bool EnteringContext = false); ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc, RedeclarationKind Redecl = NotForRedeclaration); void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, QualType T1, QualType T2, UnresolvedSetImpl &Functions); LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc, SourceLocation GnuLabelLoc = SourceLocation()); DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class); CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class); CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class, unsigned Quals); CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals); CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class); CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, bool RValueThis, unsigned ThisQuals); CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class); LiteralOperatorLookupResult LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef ArgTys, bool AllowRawAndTemplate); void ArgumentDependentLookup(DeclarationName Name, bool Operator, SourceLocation Loc, llvm::ArrayRef Args, ADLResult &Functions, bool StdNamespaceIsAssociated = false); void LookupVisibleDecls(Scope *S, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope = true); void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope = true); TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, DeclContext *MemberContext = 0, bool EnteringContext = false, const ObjCObjectPointerType *OPT = 0); void FindAssociatedClassesAndNamespaces(llvm::ArrayRef Args, AssociatedNamespaceSet &AssociatedNamespaces, AssociatedClassSet &AssociatedClasses); void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, bool ConsiderLinkage, bool ExplicitInstantiationOrSpecialization); bool DiagnoseAmbiguousLookup(LookupResult &Result); //@} ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id, SourceLocation IdLoc, bool TypoCorrection = false); NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S, bool ForRedeclaration, SourceLocation Loc); NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, Scope *S); void AddKnownFunctionAttributes(FunctionDecl *FD); // More parsing and symbol table subroutines. // Decl attributes - this routine is the top level dispatcher. void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD, bool NonInheritable = true, bool Inheritable = true); void ProcessDeclAttributeList(Scope *S, Decl *D, const AttributeList *AL, bool NonInheritable = true, bool Inheritable = true); bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, const AttributeList *AttrList); void checkUnusedDeclAttributes(Declarator &D); bool CheckRegparmAttr(const AttributeList &attr, unsigned &value); bool CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC); bool CheckNoReturnAttr(const AttributeList &attr); /// \brief Stmt attributes - this routine is the top level dispatcher. StmtResult ProcessStmtAttributes(Stmt *Stmt, AttributeList *Attrs, SourceRange Range); void WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, bool &IncompleteImpl, unsigned DiagID); void WarnConflictingTypedMethods(ObjCMethodDecl *Method, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl); void CheckConflictingOverridingMethod(ObjCMethodDecl *Method, ObjCMethodDecl *Overridden, bool IsProtocolMethodDecl); /// WarnExactTypedMethods - This routine issues a warning if method /// implementation declaration matches exactly that of its declaration. void WarnExactTypedMethods(ObjCMethodDecl *Method, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl); bool isPropertyReadonly(ObjCPropertyDecl *PropertyDecl, ObjCInterfaceDecl *IDecl); typedef llvm::DenseSet > SelectorSet; typedef llvm::DenseMap ProtocolsMethodsMap; /// CheckProtocolMethodDefs - This routine checks unimplemented /// methods declared in protocol, and those referenced by it. /// \param IDecl - Used for checking for methods which may have been /// inherited. void CheckProtocolMethodDefs(SourceLocation ImpLoc, ObjCProtocolDecl *PDecl, bool& IncompleteImpl, const SelectorSet &InsMap, const SelectorSet &ClsMap, ObjCContainerDecl *CDecl); /// CheckImplementationIvars - This routine checks if the instance variables /// listed in the implelementation match those listed in the interface. void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, ObjCIvarDecl **Fields, unsigned nIvars, SourceLocation Loc); /// ImplMethodsVsClassMethods - This is main routine to warn if any method /// remains unimplemented in the class or category @implementation. void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl, bool IncompleteImpl = false); /// DiagnoseUnimplementedProperties - This routine warns on those properties /// which must be implemented by this implementation. void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl, ObjCContainerDecl *CDecl, const SelectorSet &InsMap); /// DefaultSynthesizeProperties - This routine default synthesizes all /// properties which must be synthesized in class's @implementation. void DefaultSynthesizeProperties (Scope *S, ObjCImplDecl* IMPDecl, ObjCInterfaceDecl *IDecl); void DefaultSynthesizeProperties(Scope *S, Decl *D); /// CollectImmediateProperties - This routine collects all properties in /// the class and its conforming protocols; but not those it its super class. void CollectImmediateProperties(ObjCContainerDecl *CDecl, llvm::DenseMap& PropMap, llvm::DenseMap& SuperPropMap); /// LookupPropertyDecl - Looks up a property in the current class and all /// its protocols. ObjCPropertyDecl *LookupPropertyDecl(const ObjCContainerDecl *CDecl, IdentifierInfo *II); /// Called by ActOnProperty to handle @property declarations in //// class extensions. Decl *HandlePropertyInClassExtension(Scope *S, SourceLocation AtLoc, SourceLocation LParenLoc, FieldDeclarator &FD, Selector GetterSel, Selector SetterSel, const bool isAssign, const bool isReadWrite, const unsigned Attributes, const unsigned AttributesAsWritten, bool *isOverridingProperty, TypeSourceInfo *T, tok::ObjCKeywordKind MethodImplKind); /// Called by ActOnProperty and HandlePropertyInClassExtension to /// handle creating the ObjcPropertyDecl for a category or @interface. ObjCPropertyDecl *CreatePropertyDecl(Scope *S, ObjCContainerDecl *CDecl, SourceLocation AtLoc, SourceLocation LParenLoc, FieldDeclarator &FD, Selector GetterSel, Selector SetterSel, const bool isAssign, const bool isReadWrite, const unsigned Attributes, const unsigned AttributesAsWritten, TypeSourceInfo *T, tok::ObjCKeywordKind MethodImplKind, DeclContext *lexicalDC = 0); /// AtomicPropertySetterGetterRules - This routine enforces the rule (via /// warning) when atomic property has one but not the other user-declared /// setter or getter. void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl); void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D); void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID); enum MethodMatchStrategy { MMS_loose, MMS_strict }; /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns /// true, or false, accordingly. bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method, const ObjCMethodDecl *PrevMethod, MethodMatchStrategy strategy = MMS_strict); /// MatchAllMethodDeclarations - Check methods declaraed in interface or /// or protocol against those declared in their implementations. void MatchAllMethodDeclarations(const SelectorSet &InsMap, const SelectorSet &ClsMap, SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl, bool &IncompleteImpl, bool ImmediateClass, bool WarnCategoryMethodImpl=false); /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in /// category matches with those implemented in its primary class and /// warns each time an exact match is found. void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP); /// \brief Add the given method to the list of globally-known methods. void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method); private: /// AddMethodToGlobalPool - Add an instance or factory method to the global /// pool. See descriptoin of AddInstanceMethodToGlobalPool. void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance); /// LookupMethodInGlobalPool - Returns the instance or factory method and /// optionally warns if there are multiple signatures. ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass, bool warn, bool instance); public: /// AddInstanceMethodToGlobalPool - All instance methods in a translation /// unit are added to a global pool. This allows us to efficiently associate /// a selector with a method declaraation for purposes of typechecking /// messages sent to "id" (where the class of the object is unknown). void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) { AddMethodToGlobalPool(Method, impl, /*instance*/true); } /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods. void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) { AddMethodToGlobalPool(Method, impl, /*instance*/false); } /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global /// pool. void AddAnyMethodToGlobalPool(Decl *D); /// LookupInstanceMethodInGlobalPool - Returns the method and warns if /// there are multiple signatures. ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass=false, bool warn=true) { return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass, warn, /*instance*/true); } /// LookupFactoryMethodInGlobalPool - Returns the method and warns if /// there are multiple signatures. ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass=false, bool warn=true) { return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass, warn, /*instance*/false); } /// LookupImplementedMethodInGlobalPool - Returns the method which has an /// implementation. ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel); /// CollectIvarsToConstructOrDestruct - Collect those ivars which require /// initialization. void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, SmallVectorImpl &Ivars); //===--------------------------------------------------------------------===// // Statement Parsing Callbacks: SemaStmt.cpp. public: class FullExprArg { public: FullExprArg(Sema &actions) : E(0) { } // FIXME: The const_cast here is ugly. RValue references would make this // much nicer (or we could duplicate a bunch of the move semantics // emulation code from Ownership.h). FullExprArg(const FullExprArg& Other) : E(Other.E) {} ExprResult release() { return move(E); } Expr *get() const { return E; } Expr *operator->() { return E; } private: // FIXME: No need to make the entire Sema class a friend when it's just // Sema::MakeFullExpr that needs access to the constructor below. friend class Sema; explicit FullExprArg(Expr *expr) : E(expr) {} Expr *E; }; FullExprArg MakeFullExpr(Expr *Arg) { return FullExprArg(ActOnFinishFullExpr(Arg).release()); } StmtResult ActOnExprStmt(FullExprArg Expr); StmtResult ActOnNullStmt(SourceLocation SemiLoc, bool HasLeadingEmptyMacro = false); void ActOnStartOfCompoundStmt(); void ActOnFinishOfCompoundStmt(); StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, MultiStmtArg Elts, bool isStmtExpr); /// \brief A RAII object to enter scope of a compound statement. class CompoundScopeRAII { public: CompoundScopeRAII(Sema &S): S(S) { S.ActOnStartOfCompoundStmt(); } ~CompoundScopeRAII() { S.ActOnFinishOfCompoundStmt(); } private: Sema &S; }; StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc, SourceLocation EndLoc); void ActOnForEachDeclStmt(DeclGroupPtrTy Decl); StmtResult ActOnForEachLValueExpr(Expr *E); StmtResult ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal, SourceLocation DotDotDotLoc, Expr *RHSVal, SourceLocation ColonLoc); void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt); StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt, Scope *CurScope); StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, SourceLocation ColonLoc, Stmt *SubStmt); StmtResult ActOnAttributedStmt(SourceLocation AttrLoc, const AttrVec &Attrs, Stmt *SubStmt); StmtResult ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal); StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond, Decl *CondVar); StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, Stmt *Body); StmtResult ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, Decl *CondVar, Stmt *Body); StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation CondLParen, Expr *Cond, SourceLocation CondRParen); StmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *First, FullExprArg Second, Decl *SecondVar, FullExprArg Third, SourceLocation RParenLoc, Stmt *Body); ExprResult ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection); StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, SourceLocation LParenLoc, Stmt *First, Expr *Second, SourceLocation RParenLoc, Stmt *Body); StmtResult ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *LoopVar, SourceLocation ColonLoc, Expr *Collection, SourceLocation RParenLoc); StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *BeginEndDecl, Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc); StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body); StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *TheDecl); StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *DestExp); StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope); StmtResult ActOnBreakStmt(SourceLocation GotoLoc, Scope *CurScope); const VarDecl *getCopyElisionCandidate(QualType ReturnType, Expr *E, bool AllowFunctionParameters); StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp); StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp); StmtResult ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, IdentifierInfo **Names, MultiExprArg Constraints, MultiExprArg Exprs, Expr *AsmString, MultiExprArg Clobbers, SourceLocation RParenLoc, bool MSAsm = false); VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, bool Invalid = false); Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D); StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, Decl *Parm, Stmt *Body); StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body); StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, MultiStmtArg Catch, Stmt *Finally); StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw); StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, Scope *CurScope); ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand); StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SynchExpr, Stmt *SynchBody); StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body); VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id); Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D); StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, Stmt *HandlerBlock); StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, MultiStmtArg Handlers); StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ? SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler); StmtResult ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, Stmt *Block); StmtResult ActOnSEHFinallyBlock(SourceLocation Loc, Stmt *Block); void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock); bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const; /// \brief If it's a file scoped decl that must warn if not used, keep track /// of it. void MarkUnusedFileScopedDecl(const DeclaratorDecl *D); /// DiagnoseUnusedExprResult - If the statement passed in is an expression /// whose result is unused, warn. void DiagnoseUnusedExprResult(const Stmt *S); void DiagnoseUnusedDecl(const NamedDecl *ND); /// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null /// statement as a \p Body, and it is located on the same line. /// /// This helps prevent bugs due to typos, such as: /// if (condition); /// do_stuff(); void DiagnoseEmptyStmtBody(SourceLocation StmtLoc, const Stmt *Body, unsigned DiagID); /// Warn if a for/while loop statement \p S, which is followed by /// \p PossibleBody, has a suspicious null statement as a body. void DiagnoseEmptyLoopBody(const Stmt *S, const Stmt *PossibleBody); ParsingDeclState PushParsingDeclaration() { return DelayedDiagnostics.pushParsingDecl(); } void PopParsingDeclaration(ParsingDeclState state, Decl *decl) { DelayedDiagnostics::popParsingDecl(*this, state, decl); } typedef ProcessingContextState ParsingClassState; ParsingClassState PushParsingClass() { return DelayedDiagnostics.pushContext(); } void PopParsingClass(ParsingClassState state) { DelayedDiagnostics.popContext(state); } void EmitDeprecationWarning(NamedDecl *D, StringRef Message, SourceLocation Loc, const ObjCInterfaceDecl *UnknownObjCClass=0); void HandleDelayedDeprecationCheck(sema::DelayedDiagnostic &DD, Decl *Ctx); bool makeUnavailableInSystemHeader(SourceLocation loc, StringRef message); //===--------------------------------------------------------------------===// // Expression Parsing Callbacks: SemaExpr.cpp. bool CanUseDecl(NamedDecl *D); bool DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc, const ObjCInterfaceDecl *UnknownObjCClass=0); void NoteDeletedFunction(FunctionDecl *FD); std::string getDeletedOrUnavailableSuffix(const FunctionDecl *FD); bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD, ObjCMethodDecl *Getter, SourceLocation Loc); void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, Expr **Args, unsigned NumArgs); void PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = 0, bool IsDecltype = false); void PopExpressionEvaluationContext(); void DiscardCleanupsInEvaluationContext(); ExprResult TranformToPotentiallyEvaluated(Expr *E); ExprResult HandleExprEvaluationContextForTypeof(Expr *E); ExprResult ActOnConstantExpression(ExprResult Res); // Functions for marking a declaration referenced. These functions also // contain the relevant logic for marking if a reference to a function or // variable is an odr-use (in the C++11 sense). There are separate variants // for expressions referring to a decl; these exist because odr-use marking // needs to be delayed for some constant variables when we build one of the // named expressions. void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D); void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func); void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var); void MarkDeclRefReferenced(DeclRefExpr *E); void MarkMemberReferenced(MemberExpr *E); void UpdateMarkingForLValueToRValue(Expr *E); void CleanupVarDeclMarking(); enum TryCaptureKind { TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef }; /// \brief Try to capture the given variable. /// /// \param Var The variable to capture. /// /// \param Loc The location at which the capture occurs. /// /// \param Kind The kind of capture, which may be implicit (for either a /// block or a lambda), or explicit by-value or by-reference (for a lambda). /// /// \param EllipsisLoc The location of the ellipsis, if one is provided in /// an explicit lambda capture. /// /// \param BuildAndDiagnose Whether we are actually supposed to add the /// captures or diagnose errors. If false, this routine merely check whether /// the capture can occur without performing the capture itself or complaining /// if the variable cannot be captured. /// /// \param CaptureType Will be set to the type of the field used to capture /// this variable in the innermost block or lambda. Only valid when the /// variable can be captured. /// /// \param DeclRefType Will be set to the type of a refernce to the capture /// from within the current scope. Only valid when the variable can be /// captured. /// /// \returns true if an error occurred (i.e., the variable cannot be /// captured) and false if the capture succeeded. bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType); /// \brief Try to capture the given variable. bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind = TryCapture_Implicit, SourceLocation EllipsisLoc = SourceLocation()); /// \brief Given a variable, determine the type that a reference to that /// variable will have in the given scope. QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc); void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T); void MarkDeclarationsReferencedInExpr(Expr *E, bool SkipLocalVariables = false); /// \brief Try to recover by turning the given expression into a /// call. Returns true if recovery was attempted or an error was /// emitted; this may also leave the ExprResult invalid. bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD, bool ForceComplain = false, bool (*IsPlausibleResult)(QualType) = 0); /// \brief Figure out if an expression could be turned into a call. bool isExprCallable(const Expr &E, QualType &ZeroArgCallReturnTy, UnresolvedSetImpl &NonTemplateOverloads); /// \brief Conditionally issue a diagnostic based on the current /// evaluation context. /// /// \param stmt - If stmt is non-null, delay reporting the diagnostic until /// the function body is parsed, and then do a basic reachability analysis to /// determine if the statement is reachable. If it is unreachable, the /// diagnostic will not be emitted. bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, const PartialDiagnostic &PD); // Primary Expressions. SourceRange getExprRange(Expr *E) const; ExprResult ActOnIdExpression(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand, CorrectionCandidateCallback *CCC = 0); void DecomposeUnqualifiedId(const UnqualifiedId &Id, TemplateArgumentListInfo &Buffer, DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *&TemplateArgs); bool DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, CorrectionCandidateCallback &CCC, TemplateArgumentListInfo *ExplicitTemplateArgs = 0, llvm::ArrayRef Args = llvm::ArrayRef()); ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S, IdentifierInfo *II, bool AllowBuiltinCreation=false); ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, bool isAddressOfOperand, const TemplateArgumentListInfo *TemplateArgs); ExprResult BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, SourceLocation Loc, const CXXScopeSpec *SS = 0); ExprResult BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, const DeclarationNameInfo &NameInfo, const CXXScopeSpec *SS = 0); ExprResult BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS, SourceLocation nameLoc, IndirectFieldDecl *indirectField, Expr *baseObjectExpr = 0, SourceLocation opLoc = SourceLocation()); ExprResult BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs); ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, bool IsDefiniteInstance); bool UseArgumentDependentLookup(const CXXScopeSpec &SS, const LookupResult &R, bool HasTrailingLParen); ExprResult BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo); ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool NeedsADL); ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D); ExprResult BuildLiteralOperatorCall(LookupResult &R, DeclarationNameInfo &SuffixInfo, ArrayRef Args, SourceLocation LitEndLoc, TemplateArgumentListInfo *ExplicitTemplateArgs = 0); ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind); ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val); ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = 0); ExprResult ActOnCharacterConstant(const Token &Tok, Scope *UDLScope = 0); ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E); ExprResult ActOnParenListExpr(SourceLocation L, SourceLocation R, MultiExprArg Val); /// ActOnStringLiteral - The specified tokens were lexed as pasted string /// fragments (e.g. "foo" "bar" L"baz"). ExprResult ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks, Scope *UDLScope = 0); ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, MultiTypeArg ArgTypes, MultiExprArg ArgExprs); ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, TypeSourceInfo **Types, Expr **Exprs, unsigned NumAssocs); // Binary/Unary Operators. 'Tok' is the token for the operator. ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *InputExpr); ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *Input); ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, Expr *Input); ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, SourceRange R); ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind); ExprResult ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, bool IsType, void *TyOrEx, const SourceRange &ArgRange); ExprResult CheckPlaceholderExpr(Expr *E); bool CheckVecStepExpr(Expr *E); bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind); bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc, SourceRange ExprRange, UnaryExprOrTypeTrait ExprKind); ExprResult ActOnSizeofParameterPackExpr(Scope *S, SourceLocation OpLoc, IdentifierInfo &Name, SourceLocation NameLoc, SourceLocation RParenLoc); ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Kind, Expr *Input); ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc); ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc); ExprResult BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); ExprResult BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, bool SuppressQualifierCheck = false); ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow); ExprResult LookupMemberExpr(LookupResult &R, ExprResult &Base, bool &IsArrow, SourceLocation OpLoc, CXXScopeSpec &SS, Decl *ObjCImpDecl, bool HasTemplateArgs); bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType, const CXXScopeSpec &SS, const LookupResult &R); ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Member, Decl *ObjCImpDecl, bool HasTrailingLParen); void ActOnDefaultCtorInitializers(Decl *CDtorDecl); bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, FunctionDecl *FDecl, const FunctionProtoType *Proto, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc, bool ExecConfig = false); void CheckStaticArrayArgument(SourceLocation CallLoc, ParmVarDecl *Param, const Expr *ArgExpr); /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. /// This provides the location of the left/right parens and a list of comma /// locations. ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, MultiExprArg ArgExprs, SourceLocation RParenLoc, Expr *ExecConfig = 0, bool IsExecConfig = false); ExprResult BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc, Expr *Config = 0, bool IsExecConfig = false); ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, MultiExprArg ExecConfig, SourceLocation GGGLoc); ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc, Declarator &D, ParsedType &Ty, SourceLocation RParenLoc, Expr *CastExpr); ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty, SourceLocation RParenLoc, Expr *Op); CastKind PrepareScalarCast(ExprResult &src, QualType destType); /// \brief Build an altivec or OpenCL literal. ExprResult BuildVectorLiteral(SourceLocation LParenLoc, SourceLocation RParenLoc, Expr *E, TypeSourceInfo *TInfo); ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME); ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, SourceLocation RParenLoc, Expr *InitExpr); ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, SourceLocation RParenLoc, Expr *LiteralExpr); ExprResult ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, SourceLocation RBraceLoc); ExprResult ActOnDesignatedInitializer(Designation &Desig, SourceLocation Loc, bool GNUSyntax, ExprResult Init); ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr); ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr); ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr); /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null /// in the case of a the GNU conditional expr extension. ExprResult ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr); /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, LabelDecl *TheDecl); void ActOnStartStmtExpr(); ExprResult ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, SourceLocation RPLoc); // "({..})" void ActOnStmtExprError(); // __builtin_offsetof(type, identifier(.identifier|[expr])*) struct OffsetOfComponent { SourceLocation LocStart, LocEnd; bool isBrackets; // true if [expr], false if .ident union { IdentifierInfo *IdentInfo; Expr *E; } U; }; /// __builtin_offsetof(type, a.b[123][456].c) ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, TypeSourceInfo *TInfo, OffsetOfComponent *CompPtr, unsigned NumComponents, SourceLocation RParenLoc); ExprResult ActOnBuiltinOffsetOf(Scope *S, SourceLocation BuiltinLoc, SourceLocation TypeLoc, ParsedType ParsedArgTy, OffsetOfComponent *CompPtr, unsigned NumComponents, SourceLocation RParenLoc); // __builtin_choose_expr(constExpr, expr1, expr2) ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr, SourceLocation RPLoc); // __builtin_va_arg(expr, type) ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty, SourceLocation RPLoc); ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E, TypeSourceInfo *TInfo, SourceLocation RPLoc); // __null ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc); bool CheckCaseExpression(Expr *E); /// \brief Describes the result of an "if-exists" condition check. enum IfExistsResult { /// \brief The symbol exists. IER_Exists, /// \brief The symbol does not exist. IER_DoesNotExist, /// \brief The name is a dependent name, so the results will differ /// from one instantiation to the next. IER_Dependent, /// \brief An error occurred. IER_Error }; IfExistsResult CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS, const DeclarationNameInfo &TargetNameInfo); IfExistsResult CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name); StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested); StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name, Stmt *Nested); //===------------------------- "Block" Extension ------------------------===// /// ActOnBlockStart - This callback is invoked when a block literal is /// started. void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockArguments - This callback allows processing of block arguments. /// If there are no arguments, this is still invoked. void ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope); /// ActOnBlockError - If there is an error parsing a block, this callback /// is invoked to pop the information about the block from the action impl. void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockStmtExpr - This is called when the body of a block statement /// literal was successfully completed. ^(int x){...} ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body, Scope *CurScope); //===---------------------------- OpenCL Features -----------------------===// /// __builtin_astype(...) ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, SourceLocation BuiltinLoc, SourceLocation RParenLoc); //===---------------------------- C++ Features --------------------------===// // Act on C++ namespaces Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc, SourceLocation NamespaceLoc, SourceLocation IdentLoc, IdentifierInfo *Ident, SourceLocation LBrace, AttributeList *AttrList); void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace); NamespaceDecl *getStdNamespace() const; NamespaceDecl *getOrCreateStdNamespace(); CXXRecordDecl *getStdBadAlloc() const; /// \brief Tests whether Ty is an instance of std::initializer_list and, if /// it is and Element is not NULL, assigns the element type to Element. bool isStdInitializerList(QualType Ty, QualType *Element); /// \brief Looks for the std::initializer_list template and instantiates it /// with Element, or emits an error if it's not found. /// /// \returns The instantiated template, or null on error. QualType BuildStdInitializerList(QualType Element, SourceLocation Loc); /// \brief Determine whether Ctor is an initializer-list constructor, as /// defined in [dcl.init.list]p2. bool isInitListConstructor(const CXXConstructorDecl *Ctor); Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc, SourceLocation NamespcLoc, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *NamespcName, AttributeList *AttrList); void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir); Decl *ActOnNamespaceAliasDef(Scope *CurScope, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *Ident); void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow); bool CheckUsingShadowDecl(UsingDecl *UD, NamedDecl *Target, const LookupResult &PreviousDecls); UsingShadowDecl *BuildUsingShadowDecl(Scope *S, UsingDecl *UD, NamedDecl *Target); bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc, bool isTypeName, const CXXScopeSpec &SS, SourceLocation NameLoc, const LookupResult &Previous); bool CheckUsingDeclQualifier(SourceLocation UsingLoc, const CXXScopeSpec &SS, SourceLocation NameLoc); NamedDecl *BuildUsingDeclaration(Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, AttributeList *AttrList, bool IsInstantiation, bool IsTypeName, SourceLocation TypenameLoc); bool CheckInheritingConstructorUsingDecl(UsingDecl *UD); Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS, bool HasUsingKeyword, SourceLocation UsingLoc, CXXScopeSpec &SS, UnqualifiedId &Name, AttributeList *AttrList, bool IsTypeName, SourceLocation TypenameLoc); Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS, MultiTemplateParamsArg TemplateParams, SourceLocation UsingLoc, UnqualifiedId &Name, TypeResult Type); /// InitializeVarWithConstructor - Creates an CXXConstructExpr /// and sets it as the initializer for the the passed in VarDecl. bool InitializeVarWithConstructor(VarDecl *VD, CXXConstructorDecl *Constructor, MultiExprArg Exprs, bool HadMultipleCandidates); /// BuildCXXConstructExpr - Creates a complete call to a constructor, /// including handling of its default argument expressions. /// /// \param ConstructKind - a CXXConstructExpr::ConstructionKind ExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, CXXConstructorDecl *Constructor, MultiExprArg Exprs, bool HadMultipleCandidates, bool RequiresZeroInit, unsigned ConstructKind, SourceRange ParenRange); // FIXME: Can re remove this and have the above BuildCXXConstructExpr check if // the constructor can be elidable? ExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg Exprs, bool HadMultipleCandidates, bool RequiresZeroInit, unsigned ConstructKind, SourceRange ParenRange); /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating /// the default expr if needed. ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param); /// FinalizeVarWithDestructor - Prepare for calling destructor on the /// constructed variable. void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType); /// \brief Helper class that collects exception specifications for /// implicitly-declared special member functions. class ImplicitExceptionSpecification { // Pointer to allow copying Sema *Self; // We order exception specifications thus: // noexcept is the most restrictive, but is only used in C++0x. // throw() comes next. // Then a throw(collected exceptions) // Finally no specification. // throw(...) is used instead if any called function uses it. // // If this exception specification cannot be known yet (for instance, // because this is the exception specification for a defaulted default // constructor and we haven't finished parsing the deferred parts of the // class yet), the C++0x standard does not specify how to behave. We // record this as an 'unknown' exception specification, which overrules // any other specification (even 'none', to keep this rule simple). ExceptionSpecificationType ComputedEST; llvm::SmallPtrSet ExceptionsSeen; SmallVector Exceptions; void ClearExceptions() { ExceptionsSeen.clear(); Exceptions.clear(); } public: explicit ImplicitExceptionSpecification(Sema &Self) : Self(&Self), ComputedEST(EST_BasicNoexcept) { if (!Self.Context.getLangOpts().CPlusPlus0x) ComputedEST = EST_DynamicNone; } /// \brief Get the computed exception specification type. ExceptionSpecificationType getExceptionSpecType() const { assert(ComputedEST != EST_ComputedNoexcept && "noexcept(expr) should not be a possible result"); return ComputedEST; } /// \brief The number of exceptions in the exception specification. unsigned size() const { return Exceptions.size(); } /// \brief The set of exceptions in the exception specification. const QualType *data() const { return Exceptions.data(); } /// \brief Integrate another called method into the collected data. void CalledDecl(SourceLocation CallLoc, CXXMethodDecl *Method); /// \brief Integrate an invoked expression into the collected data. void CalledExpr(Expr *E); /// \brief Specify that the exception specification can't be detemined yet. void SetDelayed() { ClearExceptions(); ComputedEST = EST_Delayed; } FunctionProtoType::ExtProtoInfo getEPI() const { FunctionProtoType::ExtProtoInfo EPI; EPI.ExceptionSpecType = getExceptionSpecType(); EPI.NumExceptions = size(); EPI.Exceptions = data(); return EPI; } }; /// \brief Determine what sort of exception specification a defaulted /// copy constructor of a class will have. ImplicitExceptionSpecification ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl); /// \brief Determine what sort of exception specification a defaulted /// default constructor of a class will have, and whether the parameter /// will be const. std::pair ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl); /// \brief Determine what sort of exception specification a defautled /// copy assignment operator of a class will have, and whether the /// parameter will be const. std::pair ComputeDefaultedCopyAssignmentExceptionSpecAndConst(CXXRecordDecl *ClassDecl); /// \brief Determine what sort of exception specification a defaulted move /// constructor of a class will have. ImplicitExceptionSpecification ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl); /// \brief Determine what sort of exception specification a defaulted move /// assignment operator of a class will have. ImplicitExceptionSpecification ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl); /// \brief Determine what sort of exception specification a defaulted /// destructor of a class will have. ImplicitExceptionSpecification ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl); /// \brief Check the given exception-specification and update the /// extended prototype information with the results. void checkExceptionSpecification(ExceptionSpecificationType EST, ArrayRef DynamicExceptions, ArrayRef DynamicExceptionRanges, Expr *NoexceptExpr, llvm::SmallVectorImpl &Exceptions, FunctionProtoType::ExtProtoInfo &EPI); /// \brief Determine if a special member function should have a deleted /// definition when it is defaulted. bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, bool Diagnose = false); /// \brief Declare the implicit default constructor for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// default constructor will be added. /// /// \returns The implicitly-declared default constructor. CXXConstructorDecl *DeclareImplicitDefaultConstructor( CXXRecordDecl *ClassDecl); /// DefineImplicitDefaultConstructor - Checks for feasibility of /// defining this constructor as the default constructor. void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// \brief Declare the implicit destructor for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// destructor will be added. /// /// \returns The implicitly-declared destructor. CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl); /// DefineImplicitDestructor - Checks for feasibility of /// defining this destructor as the default destructor. void DefineImplicitDestructor(SourceLocation CurrentLocation, CXXDestructorDecl *Destructor); /// \brief Build an exception spec for destructors that don't have one. /// /// C++11 says that user-defined destructors with no exception spec get one /// that looks as if the destructor was implicitly declared. void AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl, CXXDestructorDecl *Destructor, bool WasDelayed = false); /// \brief Declare all inherited constructors for the given class. /// /// \param ClassDecl The class declaration into which the inherited /// constructors will be added. void DeclareInheritedConstructors(CXXRecordDecl *ClassDecl); /// \brief Declare the implicit copy constructor for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// copy constructor will be added. /// /// \returns The implicitly-declared copy constructor. CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl); /// DefineImplicitCopyConstructor - Checks for feasibility of /// defining this constructor as the copy constructor. void DefineImplicitCopyConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// \brief Declare the implicit move constructor for the given class. /// /// \param ClassDecl The Class declaration into which the implicit /// move constructor will be added. /// /// \returns The implicitly-declared move constructor, or NULL if it wasn't /// declared. CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl); /// DefineImplicitMoveConstructor - Checks for feasibility of /// defining this constructor as the move constructor. void DefineImplicitMoveConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// \brief Declare the implicit copy assignment operator for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// copy assignment operator will be added. /// /// \returns The implicitly-declared copy assignment operator. CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl); /// \brief Defines an implicitly-declared copy assignment operator. void DefineImplicitCopyAssignment(SourceLocation CurrentLocation, CXXMethodDecl *MethodDecl); /// \brief Declare the implicit move assignment operator for the given class. /// /// \param ClassDecl The Class declaration into which the implicit /// move assignment operator will be added. /// /// \returns The implicitly-declared move assignment operator, or NULL if it /// wasn't declared. CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl); /// \brief Defines an implicitly-declared move assignment operator. void DefineImplicitMoveAssignment(SourceLocation CurrentLocation, CXXMethodDecl *MethodDecl); /// \brief Force the declaration of any implicitly-declared members of this /// class. void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class); /// \brief Determine whether the given function is an implicitly-deleted /// special member function. bool isImplicitlyDeleted(FunctionDecl *FD); /// \brief Check whether 'this' shows up in the type of a static member /// function after the (naturally empty) cv-qualifier-seq would be. /// /// \returns true if an error occurred. bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method); /// \brief Whether this' shows up in the exception specification of a static /// member function. bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method); /// \brief Check whether 'this' shows up in the attributes of the given /// static member function. /// /// \returns true if an error occurred. bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method); /// MaybeBindToTemporary - If the passed in expression has a record type with /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise /// it simply returns the passed in expression. ExprResult MaybeBindToTemporary(Expr *E); bool CompleteConstructorCall(CXXConstructorDecl *Constructor, MultiExprArg ArgsPtr, SourceLocation Loc, ASTOwningVector &ConvertedArgs, bool AllowExplicit = false); ParsedType getDestructorName(SourceLocation TildeLoc, IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec &SS, ParsedType ObjectType, bool EnteringContext); ParsedType getDestructorType(const DeclSpec& DS, ParsedType ObjectType); // Checks that reinterpret casts don't have undefined behavior. void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType, bool IsDereference, SourceRange Range); /// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's. ExprResult ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, SourceLocation LAngleBracketLoc, Declarator &D, SourceLocation RAngleBracketLoc, SourceLocation LParenLoc, Expr *E, SourceLocation RParenLoc); ExprResult BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, TypeSourceInfo *Ty, Expr *E, SourceRange AngleBrackets, SourceRange Parens); ExprResult BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc); ExprResult BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc); /// ActOnCXXTypeid - Parse typeid( something ). ExprResult ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc); ExprResult BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc); ExprResult BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc); /// ActOnCXXUuidof - Parse __uuidof( something ). ExprResult ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc); //// ActOnCXXThis - Parse 'this' pointer. ExprResult ActOnCXXThis(SourceLocation loc); /// \brief Try to retrieve the type of the 'this' pointer. /// /// \param Capture If true, capture 'this' in this context. /// /// \returns The type of 'this', if possible. Otherwise, returns a NULL type. QualType getCurrentThisType(); /// \brief When non-NULL, the C++ 'this' expression is allowed despite the /// current context not being a non-static member function. In such cases, /// this provides the type used for 'this'. QualType CXXThisTypeOverride; /// \brief RAII object used to temporarily allow the C++ 'this' expression /// to be used, with the given qualifiers on the current class type. class CXXThisScopeRAII { Sema &S; QualType OldCXXThisTypeOverride; bool Enabled; public: /// \brief Introduce a new scope where 'this' may be allowed (when enabled), /// using the given declaration (which is either a class template or a /// class) along with the given qualifiers. /// along with the qualifiers placed on '*this'. CXXThisScopeRAII(Sema &S, Decl *ContextDecl, unsigned CXXThisTypeQuals, bool Enabled = true); ~CXXThisScopeRAII(); }; /// \brief Make sure the value of 'this' is actually available in the current /// context, if it is a potentially evaluated context. /// /// \param Loc The location at which the capture of 'this' occurs. /// /// \param Explicit Whether 'this' is explicitly captured in a lambda /// capture list. void CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false); /// \brief Determine whether the given type is the type of *this that is used /// outside of the body of a member function for a type that is currently /// being defined. bool isThisOutsideMemberFunctionBody(QualType BaseType); /// ActOnCXXBoolLiteral - Parse {true,false} literals. ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals. ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc); //// ActOnCXXThrow - Parse throw expressions. ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr); ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, bool IsThrownVarInScope); ExprResult CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E, bool IsThrownVarInScope); /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep, SourceLocation LParenLoc, MultiExprArg Exprs, SourceLocation RParenLoc); ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type, SourceLocation LParenLoc, MultiExprArg Exprs, SourceLocation RParenLoc); /// ActOnCXXNew - Parsed a C++ 'new' expression. ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, Declarator &D, Expr *Initializer); ExprResult BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, QualType AllocType, TypeSourceInfo *AllocTypeInfo, Expr *ArraySize, SourceRange DirectInitRange, Expr *Initializer, bool TypeMayContainAuto = true); bool CheckAllocatedType(QualType AllocType, SourceLocation Loc, SourceRange R); bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, bool UseGlobal, QualType AllocType, bool IsArray, Expr **PlaceArgs, unsigned NumPlaceArgs, FunctionDecl *&OperatorNew, FunctionDecl *&OperatorDelete); bool FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, DeclarationName Name, Expr** Args, unsigned NumArgs, DeclContext *Ctx, bool AllowMissing, FunctionDecl *&Operator, bool Diagnose = true); void DeclareGlobalNewDelete(); void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return, QualType Argument, bool addMallocAttr = false); bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, DeclarationName Name, FunctionDecl* &Operator, bool Diagnose = true); /// ActOnCXXDelete - Parsed a C++ 'delete' expression ExprResult ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, bool ArrayForm, Expr *Operand); DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D); ExprResult CheckConditionVariable(VarDecl *ConditionVar, SourceLocation StmtLoc, bool ConvertToBoolean); ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen, Expr *Operand, SourceLocation RParen); ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, SourceLocation RParen); /// ActOnUnaryTypeTrait - Parsed one of the unary type trait support /// pseudo-functions. ExprResult ActOnUnaryTypeTrait(UnaryTypeTrait OTT, SourceLocation KWLoc, ParsedType Ty, SourceLocation RParen); ExprResult BuildUnaryTypeTrait(UnaryTypeTrait OTT, SourceLocation KWLoc, TypeSourceInfo *T, SourceLocation RParen); /// ActOnBinaryTypeTrait - Parsed one of the bianry type trait support /// pseudo-functions. ExprResult ActOnBinaryTypeTrait(BinaryTypeTrait OTT, SourceLocation KWLoc, ParsedType LhsTy, ParsedType RhsTy, SourceLocation RParen); ExprResult BuildBinaryTypeTrait(BinaryTypeTrait BTT, SourceLocation KWLoc, TypeSourceInfo *LhsT, TypeSourceInfo *RhsT, SourceLocation RParen); /// \brief Parsed one of the type trait support pseudo-functions. ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, ArrayRef Args, SourceLocation RParenLoc); ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, ArrayRef Args, SourceLocation RParenLoc); /// ActOnArrayTypeTrait - Parsed one of the bianry type trait support /// pseudo-functions. ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, ParsedType LhsTy, Expr *DimExpr, SourceLocation RParen); ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, TypeSourceInfo *TSInfo, Expr *DimExpr, SourceLocation RParen); /// ActOnExpressionTrait - Parsed one of the unary type trait support /// pseudo-functions. ExprResult ActOnExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc, Expr *Queried, SourceLocation RParen); ExprResult BuildExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc, Expr *Queried, SourceLocation RParen); ExprResult ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, ParsedType &ObjectType, bool &MayBePseudoDestructor); ExprResult DiagnoseDtorReference(SourceLocation NameLoc, Expr *MemExpr); ExprResult BuildPseudoDestructorExpr(Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, const CXXScopeSpec &SS, TypeSourceInfo *ScopeType, SourceLocation CCLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage DestroyedType, bool HasTrailingLParen); ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, UnqualifiedId &FirstTypeName, SourceLocation CCLoc, SourceLocation TildeLoc, UnqualifiedId &SecondTypeName, bool HasTrailingLParen); ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, SourceLocation TildeLoc, const DeclSpec& DS, bool HasTrailingLParen); /// MaybeCreateExprWithCleanups - If the current full-expression /// requires any cleanups, surround it with a ExprWithCleanups node. /// Otherwise, just returns the passed-in expression. Expr *MaybeCreateExprWithCleanups(Expr *SubExpr); Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt); ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr); ExprResult ActOnFinishFullExpr(Expr *Expr); StmtResult ActOnFinishFullStmt(Stmt *Stmt); // Marks SS invalid if it represents an incomplete type. bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC); DeclContext *computeDeclContext(QualType T); DeclContext *computeDeclContext(const CXXScopeSpec &SS, bool EnteringContext = false); bool isDependentScopeSpecifier(const CXXScopeSpec &SS); CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS); bool isUnknownSpecialization(const CXXScopeSpec &SS); /// \brief The parser has parsed a global nested-name-specifier '::'. /// /// \param S The scope in which this nested-name-specifier occurs. /// /// \param CCLoc The location of the '::'. /// /// \param SS The nested-name-specifier, which will be updated in-place /// to reflect the parsed nested-name-specifier. /// /// \returns true if an error occurred, false otherwise. bool ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc, CXXScopeSpec &SS); bool isAcceptableNestedNameSpecifier(NamedDecl *SD); NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS); bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, SourceLocation IdLoc, IdentifierInfo &II, ParsedType ObjectType); bool BuildCXXNestedNameSpecifier(Scope *S, IdentifierInfo &Identifier, SourceLocation IdentifierLoc, SourceLocation CCLoc, QualType ObjectType, bool EnteringContext, CXXScopeSpec &SS, NamedDecl *ScopeLookupResult, bool ErrorRecoveryLookup); /// \brief The parser has parsed a nested-name-specifier 'identifier::'. /// /// \param S The scope in which this nested-name-specifier occurs. /// /// \param Identifier The identifier preceding the '::'. /// /// \param IdentifierLoc The location of the identifier. /// /// \param CCLoc The location of the '::'. /// /// \param ObjectType The type of the object, if we're parsing /// nested-name-specifier in a member access expression. /// /// \param EnteringContext Whether we're entering the context nominated by /// this nested-name-specifier. /// /// \param SS The nested-name-specifier, which is both an input /// parameter (the nested-name-specifier before this type) and an /// output parameter (containing the full nested-name-specifier, /// including this new type). /// /// \returns true if an error occurred, false otherwise. bool ActOnCXXNestedNameSpecifier(Scope *S, IdentifierInfo &Identifier, SourceLocation IdentifierLoc, SourceLocation CCLoc, ParsedType ObjectType, bool EnteringContext, CXXScopeSpec &SS); ExprResult ActOnDecltypeExpression(Expr *E); bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS, const DeclSpec &DS, SourceLocation ColonColonLoc); bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS, IdentifierInfo &Identifier, SourceLocation IdentifierLoc, SourceLocation ColonLoc, ParsedType ObjectType, bool EnteringContext); /// \brief The parser has parsed a nested-name-specifier /// 'template[opt] template-name < template-args >::'. /// /// \param S The scope in which this nested-name-specifier occurs. /// /// \param SS The nested-name-specifier, which is both an input /// parameter (the nested-name-specifier before this type) and an /// output parameter (containing the full nested-name-specifier, /// including this new type). /// /// \param TemplateKWLoc the location of the 'template' keyword, if any. /// \param TemplateName The template name. /// \param TemplateNameLoc The location of the template name. /// \param LAngleLoc The location of the opening angle bracket ('<'). /// \param TemplateArgs The template arguments. /// \param RAngleLoc The location of the closing angle bracket ('>'). /// \param CCLoc The location of the '::'. /// /// \param EnteringContext Whether we're entering the context of the /// nested-name-specifier. /// /// /// \returns true if an error occurred, false otherwise. bool ActOnCXXNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, SourceLocation CCLoc, bool EnteringContext); /// \brief Given a C++ nested-name-specifier, produce an annotation value /// that the parser can use later to reconstruct the given /// nested-name-specifier. /// /// \param SS A nested-name-specifier. /// /// \returns A pointer containing all of the information in the /// nested-name-specifier \p SS. void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS); /// \brief Given an annotation pointer for a nested-name-specifier, restore /// the nested-name-specifier structure. /// /// \param Annotation The annotation pointer, produced by /// \c SaveNestedNameSpecifierAnnotation(). /// /// \param AnnotationRange The source range corresponding to the annotation. /// /// \param SS The nested-name-specifier that will be updated with the contents /// of the annotation pointer. void RestoreNestedNameSpecifierAnnotation(void *Annotation, SourceRange AnnotationRange, CXXScopeSpec &SS); bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS); /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global /// scope or nested-name-specifier) is parsed, part of a declarator-id. /// After this method is called, according to [C++ 3.4.3p3], names should be /// looked up in the declarator-id's scope, until the declarator is parsed and /// ActOnCXXExitDeclaratorScope is called. /// The 'SS' should be a non-empty valid CXXScopeSpec. bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS); /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. /// Used to indicate that names should revert to being looked up in the /// defining scope. void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS); /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an /// initializer for the declaration 'Dcl'. /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a /// static data member of class X, names should be looked up in the scope of /// class X. void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl); /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an /// initializer for the declaration 'Dcl'. void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl); /// \brief Create a new lambda closure type. CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange, bool KnownDependent = false); /// \brief Start the definition of a lambda expression. CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class, SourceRange IntroducerRange, TypeSourceInfo *MethodType, SourceLocation EndLoc, llvm::ArrayRef Params, llvm::Optional ManglingNumber = llvm::Optional(), Decl *ContextDecl = 0); /// \brief Introduce the scope for a lambda expression. sema::LambdaScopeInfo *enterLambdaScope(CXXMethodDecl *CallOperator, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, bool ExplicitParams, bool ExplicitResultType, bool Mutable); /// \brief Note that we have finished the explicit captures for the /// given lambda. void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI); /// \brief Introduce the lambda parameters into scope. void addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope); /// ActOnStartOfLambdaDefinition - This is called just before we start /// parsing the body of a lambda; it analyzes the explicit captures and /// arguments, and sets up various data-structures for the body of the /// lambda. void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, Declarator &ParamInfo, Scope *CurScope); /// ActOnLambdaError - If there is an error parsing a lambda, this callback /// is invoked to pop the information about the lambda. void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, bool IsInstantiation = false); /// ActOnLambdaExpr - This is called when the body of a lambda expression /// was successfully completed. ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, Scope *CurScope, bool IsInstantiation = false); /// \brief Define the "body" of the conversion from a lambda object to a /// function pointer. /// /// This routine doesn't actually define a sensible body; rather, it fills /// in the initialization expression needed to copy the lambda object into /// the block, and IR generation actually generates the real body of the /// block pointer conversion. void DefineImplicitLambdaToFunctionPointerConversion( SourceLocation CurrentLoc, CXXConversionDecl *Conv); /// \brief Define the "body" of the conversion from a lambda object to a /// block pointer. /// /// This routine doesn't actually define a sensible body; rather, it fills /// in the initialization expression needed to copy the lambda object into /// the block, and IR generation actually generates the real body of the /// block pointer conversion. void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc, CXXConversionDecl *Conv); ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation, SourceLocation ConvLocation, CXXConversionDecl *Conv, Expr *Src); // ParseObjCStringLiteral - Parse Objective-C string literals. ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs, Expr **Strings, unsigned NumStrings); ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S); /// BuildObjCNumericLiteral - builds an ObjCNumericLiteral AST node for the /// numeric literal expression. Type of the expression will be "NSNumber *" /// or "id" if NSNumber is unavailable. ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number); ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc, bool Value); ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements); ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, Expr *IndexExpr, ObjCMethodDecl *getterMethod, ObjCMethodDecl *setterMethod); ExprResult BuildObjCDictionaryLiteral(SourceRange SR, ObjCDictionaryElement *Elements, unsigned NumElements); ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc, TypeSourceInfo *EncodedTypeInfo, SourceLocation RParenLoc); ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl, CXXConversionDecl *Method, bool HadMultipleCandidates); ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc, SourceLocation EncodeLoc, SourceLocation LParenLoc, ParsedType Ty, SourceLocation RParenLoc); // ParseObjCSelectorExpression - Build selector expression for @selector ExprResult ParseObjCSelectorExpression(Selector Sel, SourceLocation AtLoc, SourceLocation SelLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); // ParseObjCProtocolExpression - Build protocol expression for @protocol ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName, SourceLocation AtLoc, SourceLocation ProtoLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); //===--------------------------------------------------------------------===// // C++ Declarations // Decl *ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, SourceLocation LangLoc, StringRef Lang, SourceLocation LBraceLoc); Decl *ActOnFinishLinkageSpecification(Scope *S, Decl *LinkageSpec, SourceLocation RBraceLoc); //===--------------------------------------------------------------------===// // C++ Classes // bool isCurrentClassName(const IdentifierInfo &II, Scope *S, const CXXScopeSpec *SS = 0); bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, SourceLocation ColonLoc, AttributeList *Attrs = 0); Decl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, MultiTemplateParamsArg TemplateParameterLists, Expr *BitfieldWidth, const VirtSpecifiers &VS, bool HasDeferredInit); void ActOnCXXInClassMemberInitializer(Decl *VarDecl, SourceLocation EqualLoc, Expr *Init); MemInitResult ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, SourceLocation LParenLoc, Expr **Args, unsigned NumArgs, SourceLocation RParenLoc, SourceLocation EllipsisLoc); MemInitResult ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, Expr *InitList, SourceLocation EllipsisLoc); MemInitResult BuildMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, Expr *Init, SourceLocation EllipsisLoc); MemInitResult BuildMemberInitializer(ValueDecl *Member, Expr *Init, SourceLocation IdLoc); MemInitResult BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, Expr *Init, CXXRecordDecl *ClassDecl, SourceLocation EllipsisLoc); MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, CXXRecordDecl *ClassDecl); bool SetDelegatingInitializer(CXXConstructorDecl *Constructor, CXXCtorInitializer *Initializer); bool SetCtorInitializers(CXXConstructorDecl *Constructor, CXXCtorInitializer **Initializers, unsigned NumInitializers, bool AnyErrors); void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation); /// MarkBaseAndMemberDestructorsReferenced - Given a record decl, /// mark all the non-trivial destructors of its members and bases as /// referenced. void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc, CXXRecordDecl *Record); /// \brief The list of classes whose vtables have been used within /// this translation unit, and the source locations at which the /// first use occurred. typedef std::pair VTableUse; /// \brief The list of vtables that are required but have not yet been /// materialized. SmallVector VTableUses; /// \brief The set of classes whose vtables have been used within /// this translation unit, and a bit that will be true if the vtable is /// required to be emitted (otherwise, it should be emitted only if needed /// by code generation). llvm::DenseMap VTablesUsed; /// \brief Load any externally-stored vtable uses. void LoadExternalVTableUses(); typedef LazyVector DynamicClassesType; /// \brief A list of all of the dynamic classes in this translation /// unit. DynamicClassesType DynamicClasses; /// \brief Note that the vtable for the given class was used at the /// given location. void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, bool DefinitionRequired = false); /// MarkVirtualMembersReferenced - Will mark all members of the given /// CXXRecordDecl referenced. void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD); /// \brief Define all of the vtables that have been used in this /// translation unit and reference any virtual members used by those /// vtables. /// /// \returns true if any work was done, false otherwise. bool DefineUsedVTables(); void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl); void ActOnMemInitializers(Decl *ConstructorDecl, SourceLocation ColonLoc, CXXCtorInitializer **MemInits, unsigned NumMemInits, bool AnyErrors); void CheckCompletedCXXClass(CXXRecordDecl *Record); void ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, SourceLocation RBrac, AttributeList *AttrList); void ActOnFinishCXXMemberDecls(); void ActOnReenterTemplateScope(Scope *S, Decl *Template); void ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D); void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record); void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method); void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param); void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record); void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method); void ActOnFinishDelayedMemberInitializers(Decl *Record); void MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag = true); bool IsInsideALocalClassWithinATemplateFunction(); Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, Expr *AssertExpr, Expr *AssertMessageExpr, SourceLocation RParenLoc); FriendDecl *CheckFriendTypeDecl(SourceLocation Loc, SourceLocation FriendLoc, TypeSourceInfo *TSInfo); Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, MultiTemplateParamsArg TemplateParams); Decl *ActOnFriendFunctionDecl(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParams); QualType CheckConstructorDeclarator(Declarator &D, QualType R, StorageClass& SC); void CheckConstructor(CXXConstructorDecl *Constructor); QualType CheckDestructorDeclarator(Declarator &D, QualType R, StorageClass& SC); bool CheckDestructor(CXXDestructorDecl *Destructor); void CheckConversionDeclarator(Declarator &D, QualType &R, StorageClass& SC); Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion); void CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record); void CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *Ctor); void CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *Ctor); void CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *Method); void CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *Ctor); void CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *Method); void CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *Dtor); //===--------------------------------------------------------------------===// // C++ Derived Classes // /// ActOnBaseSpecifier - Parsed a base specifier CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, TypeSourceInfo *TInfo, SourceLocation EllipsisLoc); BaseResult ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, ParsedType basetype, SourceLocation BaseLoc, SourceLocation EllipsisLoc); bool AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, unsigned NumBases); void ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases, unsigned NumBases); bool IsDerivedFrom(QualType Derived, QualType Base); bool IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths); // FIXME: I don't like this name. void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath); bool BasePathInvolvesVirtualBase(const CXXCastPath &BasePath); bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, SourceLocation Loc, SourceRange Range, CXXCastPath *BasePath = 0, bool IgnoreAccess = false); bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, unsigned InaccessibleBaseID, unsigned AmbigiousBaseConvID, SourceLocation Loc, SourceRange Range, DeclarationName Name, CXXCastPath *BasePath); std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths); /// CheckOverridingFunctionReturnType - Checks whether the return types are /// covariant, according to C++ [class.virtual]p5. bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New, const CXXMethodDecl *Old); /// CheckOverridingFunctionExceptionSpec - Checks whether the exception /// spec is a subset of base spec. bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, const CXXMethodDecl *Old); bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange); /// CheckOverrideControl - Check C++0x override control semantics. void CheckOverrideControl(const Decl *D); /// CheckForFunctionMarkedFinal - Checks whether a virtual member function /// overrides a virtual member function marked 'final', according to /// C++0x [class.virtual]p3. bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, const CXXMethodDecl *Old); //===--------------------------------------------------------------------===// // C++ Access Control // enum AccessResult { AR_accessible, AR_inaccessible, AR_dependent, AR_delayed }; bool SetMemberAccessSpecifier(NamedDecl *MemberDecl, NamedDecl *PrevMemberDecl, AccessSpecifier LexicalAS); AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E, DeclAccessPair FoundDecl); AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E, DeclAccessPair FoundDecl); AccessResult CheckAllocationAccess(SourceLocation OperatorLoc, SourceRange PlacementRange, CXXRecordDecl *NamingClass, DeclAccessPair FoundDecl, bool Diagnose = true); AccessResult CheckConstructorAccess(SourceLocation Loc, CXXConstructorDecl *D, const InitializedEntity &Entity, AccessSpecifier Access, bool IsCopyBindingRefToTemp = false); AccessResult CheckConstructorAccess(SourceLocation Loc, CXXConstructorDecl *D, const InitializedEntity &Entity, AccessSpecifier Access, const PartialDiagnostic &PDiag); AccessResult CheckDestructorAccess(SourceLocation Loc, CXXDestructorDecl *Dtor, const PartialDiagnostic &PDiag, QualType objectType = QualType()); AccessResult CheckDirectMemberAccess(SourceLocation Loc, NamedDecl *D, const PartialDiagnostic &PDiag); AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr, Expr *ArgExpr, DeclAccessPair FoundDecl); AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr, DeclAccessPair FoundDecl); AccessResult CheckBaseClassAccess(SourceLocation AccessLoc, QualType Base, QualType Derived, const CXXBasePath &Path, unsigned DiagID, bool ForceCheck = false, bool ForceUnprivileged = false); void CheckLookupAccess(const LookupResult &R); bool IsSimplyAccessible(NamedDecl *decl, DeclContext *Ctx); bool isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl, AccessSpecifier access, QualType objectType); void HandleDependentAccessCheck(const DependentDiagnostic &DD, const MultiLevelTemplateArgumentList &TemplateArgs); void PerformDependentDiagnostics(const DeclContext *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx); /// A flag to suppress access checking. bool SuppressAccessChecking; /// \brief When true, access checking violations are treated as SFINAE /// failures rather than hard errors. bool AccessCheckingSFINAE; /// \brief RAII object used to temporarily suppress access checking. class SuppressAccessChecksRAII { Sema &S; bool SuppressingAccess; public: SuppressAccessChecksRAII(Sema &S, bool Suppress) : S(S), SuppressingAccess(Suppress) { if (Suppress) S.ActOnStartSuppressingAccessChecks(); } ~SuppressAccessChecksRAII() { done(); } void done() { if (!SuppressingAccess) return; S.ActOnStopSuppressingAccessChecks(); SuppressingAccess = false; } }; void ActOnStartSuppressingAccessChecks(); void ActOnStopSuppressingAccessChecks(); enum AbstractDiagSelID { AbstractNone = -1, AbstractReturnType, AbstractParamType, AbstractVariableType, AbstractFieldType, AbstractArrayType }; bool RequireNonAbstractType(SourceLocation Loc, QualType T, const PartialDiagnostic &PD); void DiagnoseAbstractType(const CXXRecordDecl *RD); bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID, AbstractDiagSelID SelID = AbstractNone); //===--------------------------------------------------------------------===// // C++ Overloaded Operators [C++ 13.5] // bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl); bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl); //===--------------------------------------------------------------------===// // C++ Templates [C++ 14] // void FilterAcceptableTemplateNames(LookupResult &R, bool AllowFunctionTemplates = true); bool hasAnyAcceptableTemplateNames(LookupResult &R, bool AllowFunctionTemplates = true); void LookupTemplateName(LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType, bool EnteringContext, bool &MemberOfUnknownSpecialization); TemplateNameKind isTemplateName(Scope *S, CXXScopeSpec &SS, bool hasTemplateKeyword, UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext, TemplateTy &Template, bool &MemberOfUnknownSpecialization); bool DiagnoseUnknownTemplateName(const IdentifierInfo &II, SourceLocation IILoc, Scope *S, const CXXScopeSpec *SS, TemplateTy &SuggestedTemplate, TemplateNameKind &SuggestedKind); void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl); TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl); Decl *ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, SourceLocation EllipsisLoc, SourceLocation KeyLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position, SourceLocation EqualLoc, ParsedType DefaultArg); QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc); Decl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, unsigned Depth, unsigned Position, SourceLocation EqualLoc, Expr *DefaultArg); Decl *ActOnTemplateTemplateParameter(Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params, SourceLocation EllipsisLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position, SourceLocation EqualLoc, ParsedTemplateArgument DefaultArg); TemplateParameterList * ActOnTemplateParameterList(unsigned Depth, SourceLocation ExportLoc, SourceLocation TemplateLoc, SourceLocation LAngleLoc, Decl **Params, unsigned NumParams, SourceLocation RAngleLoc); /// \brief The context in which we are checking a template parameter /// list. enum TemplateParamListContext { TPC_ClassTemplate, TPC_FunctionTemplate, TPC_ClassTemplateMember, TPC_FriendFunctionTemplate, TPC_FriendFunctionTemplateDefinition, TPC_TypeAliasTemplate }; bool CheckTemplateParameterList(TemplateParameterList *NewParams, TemplateParameterList *OldParams, TemplateParamListContext TPC); TemplateParameterList * MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, TemplateParameterList **ParamLists, unsigned NumParamLists, bool IsFriend, bool &IsExplicitSpecialization, bool &Invalid); DeclResult CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, AttributeList *Attr, TemplateParameterList *TemplateParams, AccessSpecifier AS, SourceLocation ModulePrivateLoc, unsigned NumOuterTemplateParamLists, TemplateParameterList **OuterTemplateParamLists); void translateTemplateArguments(const ASTTemplateArgsPtr &In, TemplateArgumentListInfo &Out); void NoteAllFoundTemplates(TemplateName Name); QualType CheckTemplateIdType(TemplateName Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &TemplateArgs); TypeResult ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy Template, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, bool IsCtorOrDtorName = false); /// \brief Parsed an elaborated-type-specifier that refers to a template-id, /// such as \c class T::template apply. /// /// \param TUK TypeResult ActOnTagTemplateIdType(TagUseKind TUK, TypeSpecifierType TagSpec, SourceLocation TagLoc, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy TemplateD, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc); ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, bool RequiresADL, const TemplateArgumentListInfo *TemplateArgs); ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); TemplateNameKind ActOnDependentTemplateName(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext, TemplateTy &Template); DeclResult ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, TemplateTy Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, AttributeList *Attr, MultiTemplateParamsArg TemplateParameterLists); Decl *ActOnTemplateDeclarator(Scope *S, MultiTemplateParamsArg TemplateParameterLists, Declarator &D); Decl *ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, MultiTemplateParamsArg TemplateParameterLists, Declarator &D); bool CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, TemplateSpecializationKind NewTSK, NamedDecl *PrevDecl, TemplateSpecializationKind PrevTSK, SourceLocation PrevPtOfInstantiation, bool &SuppressNew); bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, const TemplateArgumentListInfo &ExplicitTemplateArgs, LookupResult &Previous); bool CheckFunctionTemplateSpecialization(FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, LookupResult &Previous); bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous); DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, TemplateTy Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, AttributeList *Attr); DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, unsigned TagSpec, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, AttributeList *Attr); DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, Declarator &D); TemplateArgumentLoc SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, SourceLocation TemplateLoc, SourceLocation RAngleLoc, Decl *Param, SmallVectorImpl &Converted); /// \brief Specifies the context in which a particular template /// argument is being checked. enum CheckTemplateArgumentKind { /// \brief The template argument was specified in the code or was /// instantiated with some deduced template arguments. CTAK_Specified, /// \brief The template argument was deduced via template argument /// deduction. CTAK_Deduced, /// \brief The template argument was deduced from an array bound /// via template argument deduction. CTAK_DeducedFromArrayBound }; bool CheckTemplateArgument(NamedDecl *Param, const TemplateArgumentLoc &Arg, NamedDecl *Template, SourceLocation TemplateLoc, SourceLocation RAngleLoc, unsigned ArgumentPackIndex, SmallVectorImpl &Converted, CheckTemplateArgumentKind CTAK = CTAK_Specified); /// \brief Check that the given template arguments can be be provided to /// the given template, converting the arguments along the way. /// /// \param Template The template to which the template arguments are being /// provided. /// /// \param TemplateLoc The location of the template name in the source. /// /// \param TemplateArgs The list of template arguments. If the template is /// a template template parameter, this function may extend the set of /// template arguments to also include substituted, defaulted template /// arguments. /// /// \param PartialTemplateArgs True if the list of template arguments is /// intentionally partial, e.g., because we're checking just the initial /// set of template arguments. /// /// \param Converted Will receive the converted, canonicalized template /// arguments. /// /// /// \param ExpansionIntoFixedList If non-NULL, will be set true to indicate /// when the template arguments contain a pack expansion that is being /// expanded into a fixed parameter list. /// /// \returns True if an error occurred, false otherwise. bool CheckTemplateArgumentList(TemplateDecl *Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, SmallVectorImpl &Converted, bool *ExpansionIntoFixedList = 0); bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, const TemplateArgumentLoc &Arg, SmallVectorImpl &Converted); bool CheckTemplateArgument(TemplateTypeParmDecl *Param, TypeSourceInfo *Arg); ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param, QualType InstantiatedParamType, Expr *Arg, TemplateArgument &Converted, CheckTemplateArgumentKind CTAK = CTAK_Specified); bool CheckTemplateArgument(TemplateTemplateParmDecl *Param, const TemplateArgumentLoc &Arg); ExprResult BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc); ExprResult BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, SourceLocation Loc); /// \brief Enumeration describing how template parameter lists are compared /// for equality. enum TemplateParameterListEqualKind { /// \brief We are matching the template parameter lists of two templates /// that might be redeclarations. /// /// \code /// template struct X; /// template struct X; /// \endcode TPL_TemplateMatch, /// \brief We are matching the template parameter lists of two template /// template parameters as part of matching the template parameter lists /// of two templates that might be redeclarations. /// /// \code /// template class TT> struct X; /// template class Other> struct X; /// \endcode TPL_TemplateTemplateParmMatch, /// \brief We are matching the template parameter lists of a template /// template argument against the template parameter lists of a template /// template parameter. /// /// \code /// template class Metafun> struct X; /// template struct integer_c; /// X xic; /// \endcode TPL_TemplateTemplateArgumentMatch }; bool TemplateParameterListsAreEqual(TemplateParameterList *New, TemplateParameterList *Old, bool Complain, TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc = SourceLocation()); bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams); /// \brief Called when the parser has parsed a C++ typename /// specifier, e.g., "typename T::type". /// /// \param S The scope in which this typename type occurs. /// \param TypenameLoc the location of the 'typename' keyword /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). /// \param II the identifier we're retrieving (e.g., 'type' in the example). /// \param IdLoc the location of the identifier. TypeResult ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, const CXXScopeSpec &SS, const IdentifierInfo &II, SourceLocation IdLoc); /// \brief Called when the parser has parsed a C++ typename /// specifier that ends in a template-id, e.g., /// "typename MetaFun::template apply". /// /// \param S The scope in which this typename type occurs. /// \param TypenameLoc the location of the 'typename' keyword /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). /// \param TemplateLoc the location of the 'template' keyword, if any. /// \param TemplateName The template name. /// \param TemplateNameLoc The location of the template name. /// \param LAngleLoc The location of the opening angle bracket ('<'). /// \param TemplateArgs The template arguments. /// \param RAngleLoc The location of the closing angle bracket ('>'). TypeResult ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, const CXXScopeSpec &SS, SourceLocation TemplateLoc, TemplateTy Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc); QualType CheckTypenameType(ElaboratedTypeKeyword Keyword, SourceLocation KeywordLoc, NestedNameSpecifierLoc QualifierLoc, const IdentifierInfo &II, SourceLocation IILoc); TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, SourceLocation Loc, DeclarationName Name); bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS); ExprResult RebuildExprInCurrentInstantiation(Expr *E); bool RebuildTemplateParamsInCurrentInstantiation( TemplateParameterList *Params); std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args); std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgument *Args, unsigned NumArgs); //===--------------------------------------------------------------------===// // C++ Variadic Templates (C++0x [temp.variadic]) //===--------------------------------------------------------------------===// /// \brief The context in which an unexpanded parameter pack is /// being diagnosed. /// /// Note that the values of this enumeration line up with the first /// argument to the \c err_unexpanded_parameter_pack diagnostic. enum UnexpandedParameterPackContext { /// \brief An arbitrary expression. UPPC_Expression = 0, /// \brief The base type of a class type. UPPC_BaseType, /// \brief The type of an arbitrary declaration. UPPC_DeclarationType, /// \brief The type of a data member. UPPC_DataMemberType, /// \brief The size of a bit-field. UPPC_BitFieldWidth, /// \brief The expression in a static assertion. UPPC_StaticAssertExpression, /// \brief The fixed underlying type of an enumeration. UPPC_FixedUnderlyingType, /// \brief The enumerator value. UPPC_EnumeratorValue, /// \brief A using declaration. UPPC_UsingDeclaration, /// \brief A friend declaration. UPPC_FriendDeclaration, /// \brief A declaration qualifier. UPPC_DeclarationQualifier, /// \brief An initializer. UPPC_Initializer, /// \brief A default argument. UPPC_DefaultArgument, /// \brief The type of a non-type template parameter. UPPC_NonTypeTemplateParameterType, /// \brief The type of an exception. UPPC_ExceptionType, /// \brief Partial specialization. UPPC_PartialSpecialization, /// \brief Microsoft __if_exists. UPPC_IfExists, /// \brief Microsoft __if_not_exists. UPPC_IfNotExists }; /// \brief Diagnose unexpanded parameter packs. /// /// \param Loc The location at which we should emit the diagnostic. /// /// \param UPPC The context in which we are diagnosing unexpanded /// parameter packs. /// /// \param Unexpanded the set of unexpanded parameter packs. void DiagnoseUnexpandedParameterPacks(SourceLocation Loc, UnexpandedParameterPackContext UPPC, ArrayRef Unexpanded); /// \brief If the given type contains an unexpanded parameter pack, /// diagnose the error. /// /// \param Loc The source location where a diagnostc should be emitted. /// /// \param T The type that is being checked for unexpanded parameter /// packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T, UnexpandedParameterPackContext UPPC); /// \brief If the given expression contains an unexpanded parameter /// pack, diagnose the error. /// /// \param E The expression that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(Expr *E, UnexpandedParameterPackContext UPPC = UPPC_Expression); /// \brief If the given nested-name-specifier contains an unexpanded /// parameter pack, diagnose the error. /// /// \param SS The nested-name-specifier that is being checked for /// unexpanded parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS, UnexpandedParameterPackContext UPPC); /// \brief If the given name contains an unexpanded parameter pack, /// diagnose the error. /// /// \param NameInfo The name (with source location information) that /// is being checked for unexpanded parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo, UnexpandedParameterPackContext UPPC); /// \brief If the given template name contains an unexpanded parameter pack, /// diagnose the error. /// /// \param Loc The location of the template name. /// /// \param Template The template name that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TemplateName Template, UnexpandedParameterPackContext UPPC); /// \brief If the given template argument contains an unexpanded parameter /// pack, diagnose the error. /// /// \param Arg The template argument that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg, UnexpandedParameterPackContext UPPC); /// \brief Collect the set of unexpanded parameter packs within the given /// template argument. /// /// \param Arg The template argument that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(TemplateArgument Arg, SmallVectorImpl &Unexpanded); /// \brief Collect the set of unexpanded parameter packs within the given /// template argument. /// /// \param Arg The template argument that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg, SmallVectorImpl &Unexpanded); /// \brief Collect the set of unexpanded parameter packs within the given /// type. /// /// \param T The type that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(QualType T, SmallVectorImpl &Unexpanded); /// \brief Collect the set of unexpanded parameter packs within the given /// type. /// /// \param TL The type that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(TypeLoc TL, SmallVectorImpl &Unexpanded); /// \brief Collect the set of unexpanded parameter packs within the given /// nested-name-specifier. /// /// \param SS The nested-name-specifier that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(CXXScopeSpec &SS, SmallVectorImpl &Unexpanded); /// \brief Collect the set of unexpanded parameter packs within the given /// name. /// /// \param NameInfo The name that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo, SmallVectorImpl &Unexpanded); /// \brief Invoked when parsing a template argument followed by an /// ellipsis, which creates a pack expansion. /// /// \param Arg The template argument preceding the ellipsis, which /// may already be invalid. /// /// \param EllipsisLoc The location of the ellipsis. ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg, SourceLocation EllipsisLoc); /// \brief Invoked when parsing a type followed by an ellipsis, which /// creates a pack expansion. /// /// \param Type The type preceding the ellipsis, which will become /// the pattern of the pack expansion. /// /// \param EllipsisLoc The location of the ellipsis. TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc); /// \brief Construct a pack expansion type from the pattern of the pack /// expansion. TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern, SourceLocation EllipsisLoc, llvm::Optional NumExpansions); /// \brief Construct a pack expansion type from the pattern of the pack /// expansion. QualType CheckPackExpansion(QualType Pattern, SourceRange PatternRange, SourceLocation EllipsisLoc, llvm::Optional NumExpansions); /// \brief Invoked when parsing an expression followed by an ellipsis, which /// creates a pack expansion. /// /// \param Pattern The expression preceding the ellipsis, which will become /// the pattern of the pack expansion. /// /// \param EllipsisLoc The location of the ellipsis. ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc); /// \brief Invoked when parsing an expression followed by an ellipsis, which /// creates a pack expansion. /// /// \param Pattern The expression preceding the ellipsis, which will become /// the pattern of the pack expansion. /// /// \param EllipsisLoc The location of the ellipsis. ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc, llvm::Optional NumExpansions); /// \brief Determine whether we could expand a pack expansion with the /// given set of parameter packs into separate arguments by repeatedly /// transforming the pattern. /// /// \param EllipsisLoc The location of the ellipsis that identifies the /// pack expansion. /// /// \param PatternRange The source range that covers the entire pattern of /// the pack expansion. /// /// \param Unexpanded The set of unexpanded parameter packs within the /// pattern. /// /// \param NumUnexpanded The number of unexpanded parameter packs in /// \p Unexpanded. /// /// \param ShouldExpand Will be set to \c true if the transformer should /// expand the corresponding pack expansions into separate arguments. When /// set, \c NumExpansions must also be set. /// /// \param RetainExpansion Whether the caller should add an unexpanded /// pack expansion after all of the expanded arguments. This is used /// when extending explicitly-specified template argument packs per /// C++0x [temp.arg.explicit]p9. /// /// \param NumExpansions The number of separate arguments that will be in /// the expanded form of the corresponding pack expansion. This is both an /// input and an output parameter, which can be set by the caller if the /// number of expansions is known a priori (e.g., due to a prior substitution) /// and will be set by the callee when the number of expansions is known. /// The callee must set this value when \c ShouldExpand is \c true; it may /// set this value in other cases. /// /// \returns true if an error occurred (e.g., because the parameter packs /// are to be instantiated with arguments of different lengths), false /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions) /// must be set. bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc, SourceRange PatternRange, llvm::ArrayRef Unexpanded, const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand, bool &RetainExpansion, llvm::Optional &NumExpansions); /// \brief Determine the number of arguments in the given pack expansion /// type. /// /// This routine already assumes that the pack expansion type can be /// expanded and that the number of arguments in the expansion is /// consistent across all of the unexpanded parameter packs in its pattern. unsigned getNumArgumentsInExpansion(QualType T, const MultiLevelTemplateArgumentList &TemplateArgs); /// \brief Determine whether the given declarator contains any unexpanded /// parameter packs. /// /// This routine is used by the parser to disambiguate function declarators /// with an ellipsis prior to the ')', e.g., /// /// \code /// void f(T...); /// \endcode /// /// To determine whether we have an (unnamed) function parameter pack or /// a variadic function. /// /// \returns true if the declarator contains any unexpanded parameter packs, /// false otherwise. bool containsUnexpandedParameterPacks(Declarator &D); //===--------------------------------------------------------------------===// // C++ Template Argument Deduction (C++ [temp.deduct]) //===--------------------------------------------------------------------===// /// \brief Describes the result of template argument deduction. /// /// The TemplateDeductionResult enumeration describes the result of /// template argument deduction, as returned from /// DeduceTemplateArguments(). The separate TemplateDeductionInfo /// structure provides additional information about the results of /// template argument deduction, e.g., the deduced template argument /// list (if successful) or the specific template parameters or /// deduced arguments that were involved in the failure. enum TemplateDeductionResult { /// \brief Template argument deduction was successful. TDK_Success = 0, /// \brief Template argument deduction exceeded the maximum template /// instantiation depth (which has already been diagnosed). TDK_InstantiationDepth, /// \brief Template argument deduction did not deduce a value /// for every template parameter. TDK_Incomplete, /// \brief Template argument deduction produced inconsistent /// deduced values for the given template parameter. TDK_Inconsistent, /// \brief Template argument deduction failed due to inconsistent /// cv-qualifiers on a template parameter type that would /// otherwise be deduced, e.g., we tried to deduce T in "const T" /// but were given a non-const "X". TDK_Underqualified, /// \brief Substitution of the deduced template argument values /// resulted in an error. TDK_SubstitutionFailure, /// \brief Substitution of the deduced template argument values /// into a non-deduced context produced a type or value that /// produces a type that does not match the original template /// arguments provided. TDK_NonDeducedMismatch, /// \brief When performing template argument deduction for a function /// template, there were too many call arguments. TDK_TooManyArguments, /// \brief When performing template argument deduction for a function /// template, there were too few call arguments. TDK_TooFewArguments, /// \brief The explicitly-specified template arguments were not valid /// template arguments for the given template. TDK_InvalidExplicitArguments, /// \brief The arguments included an overloaded function name that could /// not be resolved to a suitable function. TDK_FailedOverloadResolution }; TemplateDeductionResult DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, const TemplateArgumentList &TemplateArgs, sema::TemplateDeductionInfo &Info); TemplateDeductionResult SubstituteExplicitTemplateArguments(FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo &ExplicitTemplateArgs, SmallVectorImpl &Deduced, SmallVectorImpl &ParamTypes, QualType *FunctionType, sema::TemplateDeductionInfo &Info); /// brief A function argument from which we performed template argument // deduction for a call. struct OriginalCallArg { OriginalCallArg(QualType OriginalParamType, unsigned ArgIdx, QualType OriginalArgType) : OriginalParamType(OriginalParamType), ArgIdx(ArgIdx), OriginalArgType(OriginalArgType) { } QualType OriginalParamType; unsigned ArgIdx; QualType OriginalArgType; }; TemplateDeductionResult FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate, SmallVectorImpl &Deduced, unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, SmallVectorImpl const *OriginalCallArgs = 0); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, llvm::ArrayRef Args, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, QualType ToType, CXXConversionDecl *&Specialization, sema::TemplateDeductionInfo &Info); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info); /// \brief Result type of DeduceAutoType. enum DeduceAutoResult { DAR_Succeeded, DAR_Failed, DAR_FailedAlreadyDiagnosed }; DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, TypeSourceInfo *&Result); void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init); FunctionTemplateDecl *getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, TemplatePartialOrderingContext TPOC, unsigned NumCallArguments); UnresolvedSetIterator getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd, TemplatePartialOrderingContext TPOC, unsigned NumCallArguments, SourceLocation Loc, const PartialDiagnostic &NoneDiag, const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, bool Complain = true, QualType TargetType = QualType()); ClassTemplatePartialSpecializationDecl * getMoreSpecializedPartialSpecialization( ClassTemplatePartialSpecializationDecl *PS1, ClassTemplatePartialSpecializationDecl *PS2, SourceLocation Loc); void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used); void MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate, llvm::SmallBitVector &Deduced) { return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced); } static void MarkDeducedTemplateParameters(ASTContext &Ctx, FunctionTemplateDecl *FunctionTemplate, llvm::SmallBitVector &Deduced); //===--------------------------------------------------------------------===// // C++ Template Instantiation // MultiLevelTemplateArgumentList getTemplateInstantiationArgs(NamedDecl *D, const TemplateArgumentList *Innermost = 0, bool RelativeToPrimary = false, const FunctionDecl *Pattern = 0); /// \brief A template instantiation that is currently in progress. struct ActiveTemplateInstantiation { /// \brief The kind of template instantiation we are performing enum InstantiationKind { /// We are instantiating a template declaration. The entity is /// the declaration we're instantiating (e.g., a CXXRecordDecl). TemplateInstantiation, /// We are instantiating a default argument for a template /// parameter. The Entity is the template, and /// TemplateArgs/NumTemplateArguments provides the template /// arguments as specified. /// FIXME: Use a TemplateArgumentList DefaultTemplateArgumentInstantiation, /// We are instantiating a default argument for a function. /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs /// provides the template arguments as specified. DefaultFunctionArgumentInstantiation, /// We are substituting explicit template arguments provided for /// a function template. The entity is a FunctionTemplateDecl. ExplicitTemplateArgumentSubstitution, /// We are substituting template argument determined as part of /// template argument deduction for either a class template /// partial specialization or a function template. The /// Entity is either a ClassTemplatePartialSpecializationDecl or /// a FunctionTemplateDecl. DeducedTemplateArgumentSubstitution, /// We are substituting prior template arguments into a new /// template parameter. The template parameter itself is either a /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl. PriorTemplateArgumentSubstitution, /// We are checking the validity of a default template argument that /// has been used when naming a template-id. DefaultTemplateArgumentChecking, /// We are instantiating the exception specification for a function /// template which was deferred until it was needed. ExceptionSpecInstantiation } Kind; /// \brief The point of instantiation within the source code. SourceLocation PointOfInstantiation; /// \brief The template (or partial specialization) in which we are /// performing the instantiation, for substitutions of prior template /// arguments. NamedDecl *Template; /// \brief The entity that is being instantiated. uintptr_t Entity; /// \brief The list of template arguments we are substituting, if they /// are not part of the entity. const TemplateArgument *TemplateArgs; /// \brief The number of template arguments in TemplateArgs. unsigned NumTemplateArgs; /// \brief The template deduction info object associated with the /// substitution or checking of explicit or deduced template arguments. sema::TemplateDeductionInfo *DeductionInfo; /// \brief The source range that covers the construct that cause /// the instantiation, e.g., the template-id that causes a class /// template instantiation. SourceRange InstantiationRange; ActiveTemplateInstantiation() : Kind(TemplateInstantiation), Template(0), Entity(0), TemplateArgs(0), NumTemplateArgs(0), DeductionInfo(0) {} /// \brief Determines whether this template is an actual instantiation /// that should be counted toward the maximum instantiation depth. bool isInstantiationRecord() const; friend bool operator==(const ActiveTemplateInstantiation &X, const ActiveTemplateInstantiation &Y) { if (X.Kind != Y.Kind) return false; if (X.Entity != Y.Entity) return false; switch (X.Kind) { case TemplateInstantiation: case ExceptionSpecInstantiation: return true; case PriorTemplateArgumentSubstitution: case DefaultTemplateArgumentChecking: if (X.Template != Y.Template) return false; // Fall through case DefaultTemplateArgumentInstantiation: case ExplicitTemplateArgumentSubstitution: case DeducedTemplateArgumentSubstitution: case DefaultFunctionArgumentInstantiation: return X.TemplateArgs == Y.TemplateArgs; } llvm_unreachable("Invalid InstantiationKind!"); } friend bool operator!=(const ActiveTemplateInstantiation &X, const ActiveTemplateInstantiation &Y) { return !(X == Y); } }; /// \brief List of active template instantiations. /// /// This vector is treated as a stack. As one template instantiation /// requires another template instantiation, additional /// instantiations are pushed onto the stack up to a /// user-configurable limit LangOptions::InstantiationDepth. SmallVector ActiveTemplateInstantiations; /// \brief Whether we are in a SFINAE context that is not associated with /// template instantiation. /// /// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside /// of a template instantiation or template argument deduction. bool InNonInstantiationSFINAEContext; /// \brief The number of ActiveTemplateInstantiation entries in /// \c ActiveTemplateInstantiations that are not actual instantiations and, /// therefore, should not be counted as part of the instantiation depth. unsigned NonInstantiationEntries; /// \brief The last template from which a template instantiation /// error or warning was produced. /// /// This value is used to suppress printing of redundant template /// instantiation backtraces when there are multiple errors in the /// same instantiation. FIXME: Does this belong in Sema? It's tough /// to implement it anywhere else. ActiveTemplateInstantiation LastTemplateInstantiationErrorContext; /// \brief The current index into pack expansion arguments that will be /// used for substitution of parameter packs. /// /// The pack expansion index will be -1 to indicate that parameter packs /// should be instantiated as themselves. Otherwise, the index specifies /// which argument within the parameter pack will be used for substitution. int ArgumentPackSubstitutionIndex; /// \brief RAII object used to change the argument pack substitution index /// within a \c Sema object. /// /// See \c ArgumentPackSubstitutionIndex for more information. class ArgumentPackSubstitutionIndexRAII { Sema &Self; int OldSubstitutionIndex; public: ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex) : Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) { Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex; } ~ArgumentPackSubstitutionIndexRAII() { Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex; } }; friend class ArgumentPackSubstitutionRAII; /// \brief The stack of calls expression undergoing template instantiation. /// /// The top of this stack is used by a fixit instantiating unresolved /// function calls to fix the AST to match the textual change it prints. SmallVector CallsUndergoingInstantiation; /// \brief For each declaration that involved template argument deduction, the /// set of diagnostics that were suppressed during that template argument /// deduction. /// /// FIXME: Serialize this structure to the AST file. llvm::DenseMap > SuppressedDiagnostics; /// \brief A stack object to be created when performing template /// instantiation. /// /// Construction of an object of type \c InstantiatingTemplate /// pushes the current instantiation onto the stack of active /// instantiations. If the size of this stack exceeds the maximum /// number of recursive template instantiations, construction /// produces an error and evaluates true. /// /// Destruction of this object will pop the named instantiation off /// the stack. struct InstantiatingTemplate { /// \brief Note that we are instantiating a class template, /// function template, or a member thereof. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, Decl *Entity, SourceRange InstantiationRange = SourceRange()); struct ExceptionSpecification {}; /// \brief Note that we are instantiating an exception specification /// of a function template. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, FunctionDecl *Entity, ExceptionSpecification, SourceRange InstantiationRange = SourceRange()); /// \brief Note that we are instantiating a default argument in a /// template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange = SourceRange()); /// \brief Note that we are instantiating a default argument in a /// template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, FunctionTemplateDecl *FunctionTemplate, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, ActiveTemplateInstantiation::InstantiationKind Kind, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// \brief Note that we are instantiating as part of template /// argument deduction for a class template partial /// specialization. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ClassTemplatePartialSpecializationDecl *PartialSpec, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ParmVarDecl *Param, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange = SourceRange()); /// \brief Note that we are substituting prior template arguments into a /// non-type or template template parameter. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, NamedDecl *Template, NonTypeTemplateParmDecl *Param, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange); InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, NamedDecl *Template, TemplateTemplateParmDecl *Param, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange); /// \brief Note that we are checking the default template argument /// against the template parameter for a given template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, NamedDecl *Param, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange); /// \brief Note that we have finished instantiating this template. void Clear(); ~InstantiatingTemplate() { Clear(); } /// \brief Determines whether we have exceeded the maximum /// recursive template instantiations. operator bool() const { return Invalid; } private: Sema &SemaRef; bool Invalid; bool SavedInNonInstantiationSFINAEContext; bool CheckInstantiationDepth(SourceLocation PointOfInstantiation, SourceRange InstantiationRange); InstantiatingTemplate(const InstantiatingTemplate&); // not implemented InstantiatingTemplate& operator=(const InstantiatingTemplate&); // not implemented }; void PrintInstantiationStack(); /// \brief Determines whether we are currently in a context where /// template argument substitution failures are not considered /// errors. /// /// \returns An empty \c llvm::Optional if we're not in a SFINAE context. /// Otherwise, contains a pointer that, if non-NULL, contains the nearest /// template-deduction context object, which can be used to capture /// diagnostics that will be suppressed. llvm::Optional isSFINAEContext() const; /// \brief RAII class used to determine whether SFINAE has /// trapped any errors that occur during template argument /// deduction.` class SFINAETrap { Sema &SemaRef; unsigned PrevSFINAEErrors; bool PrevInNonInstantiationSFINAEContext; bool PrevAccessCheckingSFINAE; public: explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false) : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors), PrevInNonInstantiationSFINAEContext( SemaRef.InNonInstantiationSFINAEContext), PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE) { if (!SemaRef.isSFINAEContext()) SemaRef.InNonInstantiationSFINAEContext = true; SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE; } ~SFINAETrap() { SemaRef.NumSFINAEErrors = PrevSFINAEErrors; SemaRef.InNonInstantiationSFINAEContext = PrevInNonInstantiationSFINAEContext; SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE; } /// \brief Determine whether any SFINAE errors have been trapped. bool hasErrorOccurred() const { return SemaRef.NumSFINAEErrors > PrevSFINAEErrors; } }; /// \brief The current instantiation scope used to store local /// variables. LocalInstantiationScope *CurrentInstantiationScope; /// \brief The number of typos corrected by CorrectTypo. unsigned TyposCorrected; typedef llvm::DenseMap UnqualifiedTyposCorrectedMap; /// \brief A cache containing the results of typo correction for unqualified /// name lookup. /// /// The string is the string that we corrected to (which may be empty, if /// there was no correction), while the boolean will be true when the /// string represents a keyword. UnqualifiedTyposCorrectedMap UnqualifiedTyposCorrected; /// \brief Worker object for performing CFG-based warnings. sema::AnalysisBasedWarnings AnalysisWarnings; /// \brief An entity for which implicit template instantiation is required. /// /// The source location associated with the declaration is the first place in /// the source code where the declaration was "used". It is not necessarily /// the point of instantiation (which will be either before or after the /// namespace-scope declaration that triggered this implicit instantiation), /// However, it is the location that diagnostics should generally refer to, /// because users will need to know what code triggered the instantiation. typedef std::pair PendingImplicitInstantiation; /// \brief The queue of implicit template instantiations that are required /// but have not yet been performed. std::deque PendingInstantiations; /// \brief The queue of implicit template instantiations that are required /// and must be performed within the current local scope. /// /// This queue is only used for member functions of local classes in /// templates, which must be instantiated in the same scope as their /// enclosing function, so that they can reference function-local /// types, static variables, enumerators, etc. std::deque PendingLocalImplicitInstantiations; void PerformPendingInstantiations(bool LocalOnly = false); TypeSourceInfo *SubstType(TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity); QualType SubstType(QualType T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity); TypeSourceInfo *SubstType(TypeLoc TL, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity); TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity, CXXRecordDecl *ThisContext, unsigned ThisTypeQuals); ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D, const MultiLevelTemplateArgumentList &TemplateArgs, int indexAdjustment, llvm::Optional NumExpansions, bool ExpectParameterPack); bool SubstParmTypes(SourceLocation Loc, ParmVarDecl **Params, unsigned NumParams, const MultiLevelTemplateArgumentList &TemplateArgs, SmallVectorImpl &ParamTypes, SmallVectorImpl *OutParams = 0); ExprResult SubstExpr(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs); /// \brief Substitute the given template arguments into a list of /// expressions, expanding pack expansions if required. /// /// \param Exprs The list of expressions to substitute into. /// /// \param NumExprs The number of expressions in \p Exprs. /// /// \param IsCall Whether this is some form of call, in which case /// default arguments will be dropped. /// /// \param TemplateArgs The set of template arguments to substitute. /// /// \param Outputs Will receive all of the substituted arguments. /// /// \returns true if an error occurred, false otherwise. bool SubstExprs(Expr **Exprs, unsigned NumExprs, bool IsCall, const MultiLevelTemplateArgumentList &TemplateArgs, SmallVectorImpl &Outputs); StmtResult SubstStmt(Stmt *S, const MultiLevelTemplateArgumentList &TemplateArgs); Decl *SubstDecl(Decl *D, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs); ExprResult SubstInitializer(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs, bool CXXDirectInit); bool SubstBaseSpecifiers(CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); bool InstantiateClass(SourceLocation PointOfInstantiation, CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK, bool Complain = true); bool InstantiateEnum(SourceLocation PointOfInstantiation, EnumDecl *Instantiation, EnumDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK); struct LateInstantiatedAttribute { const Attr *TmplAttr; LocalInstantiationScope *Scope; Decl *NewDecl; LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S, Decl *D) : TmplAttr(A), Scope(S), NewDecl(D) { } }; typedef SmallVector LateInstantiatedAttrVec; void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Pattern, Decl *Inst, LateInstantiatedAttrVec *LateAttrs = 0, LocalInstantiationScope *OuterMostScope = 0); bool InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation, ClassTemplateSpecializationDecl *ClassTemplateSpec, TemplateSpecializationKind TSK, bool Complain = true); void InstantiateClassMembers(SourceLocation PointOfInstantiation, CXXRecordDecl *Instantiation, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK); void InstantiateClassTemplateSpecializationMembers( SourceLocation PointOfInstantiation, ClassTemplateSpecializationDecl *ClassTemplateSpec, TemplateSpecializationKind TSK); NestedNameSpecifierLoc SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, const MultiLevelTemplateArgumentList &TemplateArgs); DeclarationNameInfo SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo, const MultiLevelTemplateArgumentList &TemplateArgs); TemplateName SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name, SourceLocation Loc, const MultiLevelTemplateArgumentList &TemplateArgs); bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs, TemplateArgumentListInfo &Result, const MultiLevelTemplateArgumentList &TemplateArgs); void InstantiateExceptionSpec(SourceLocation PointOfInstantiation, FunctionDecl *Function); void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, FunctionDecl *Function, bool Recursive = false, bool DefinitionRequired = false); void InstantiateStaticDataMemberDefinition( SourceLocation PointOfInstantiation, VarDecl *Var, bool Recursive = false, bool DefinitionRequired = false); void InstantiateMemInitializers(CXXConstructorDecl *New, const CXXConstructorDecl *Tmpl, const MultiLevelTemplateArgumentList &TemplateArgs); NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, const MultiLevelTemplateArgumentList &TemplateArgs); DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC, const MultiLevelTemplateArgumentList &TemplateArgs); // Objective-C declarations. enum ObjCContainerKind { OCK_None = -1, OCK_Interface = 0, OCK_Protocol, OCK_Category, OCK_ClassExtension, OCK_Implementation, OCK_CategoryImplementation }; ObjCContainerKind getObjCContainerKind() const; Decl *ActOnStartClassInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperName, SourceLocation SuperLoc, Decl * const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, AttributeList *AttrList); Decl *ActOnCompatiblityAlias( SourceLocation AtCompatibilityAliasLoc, IdentifierInfo *AliasName, SourceLocation AliasLocation, IdentifierInfo *ClassName, SourceLocation ClassLocation); bool CheckForwardProtocolDeclarationForCircularDependency( IdentifierInfo *PName, SourceLocation &PLoc, SourceLocation PrevLoc, const ObjCList &PList); Decl *ActOnStartProtocolInterface( SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc, Decl * const *ProtoRefNames, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, AttributeList *AttrList); Decl *ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CategoryName, SourceLocation CategoryLoc, Decl * const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc); Decl *ActOnStartClassImplementation( SourceLocation AtClassImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperClassname, SourceLocation SuperClassLoc); Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc); DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef Decls); DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, SourceLocation *IdentLocs, unsigned NumElts); DeclGroupPtrTy ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc, const IdentifierLocPair *IdentList, unsigned NumElts, AttributeList *attrList); void FindProtocolDeclaration(bool WarnOnDeclarations, const IdentifierLocPair *ProtocolId, unsigned NumProtocols, SmallVectorImpl &Protocols); /// Ensure attributes are consistent with type. /// \param [in, out] Attributes The attributes to check; they will /// be modified to be consistent with \arg PropertyTy. void CheckObjCPropertyAttributes(Decl *PropertyPtrTy, SourceLocation Loc, unsigned &Attributes); /// Process the specified property declaration and create decls for the /// setters and getters as needed. /// \param property The property declaration being processed /// \param DC The semantic container for the property /// \param redeclaredProperty Declaration for property if redeclared /// in class extension. /// \param lexicalDC Container for redeclaredProperty. void ProcessPropertyDecl(ObjCPropertyDecl *property, ObjCContainerDecl *DC, ObjCPropertyDecl *redeclaredProperty = 0, ObjCContainerDecl *lexicalDC = 0); void DiagnosePropertyMismatch(ObjCPropertyDecl *Property, ObjCPropertyDecl *SuperProperty, const IdentifierInfo *Name); void ComparePropertiesInBaseAndSuper(ObjCInterfaceDecl *IDecl); void CompareMethodParamsInBaseAndSuper(Decl *IDecl, ObjCMethodDecl *MethodDecl, bool IsInstance); void CompareProperties(Decl *CDecl, Decl *MergeProtocols); void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID); void MatchOneProtocolPropertiesInClass(Decl *CDecl, ObjCProtocolDecl *PDecl); Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd, Decl **allMethods = 0, unsigned allNum = 0, Decl **allProperties = 0, unsigned pNum = 0, DeclGroupPtrTy *allTUVars = 0, unsigned tuvNum = 0); Decl *ActOnProperty(Scope *S, SourceLocation AtLoc, SourceLocation LParenLoc, FieldDeclarator &FD, ObjCDeclSpec &ODS, Selector GetterSel, Selector SetterSel, bool *OverridingProperty, tok::ObjCKeywordKind MethodImplKind, DeclContext *lexicalDC = 0); Decl *ActOnPropertyImplDecl(Scope *S, SourceLocation AtLoc, SourceLocation PropertyLoc, bool ImplKind, IdentifierInfo *PropertyId, IdentifierInfo *PropertyIvar, SourceLocation PropertyIvarLoc); enum ObjCSpecialMethodKind { OSMK_None, OSMK_Alloc, OSMK_New, OSMK_Copy, OSMK_RetainingInit, OSMK_NonRetainingInit }; struct ObjCArgInfo { IdentifierInfo *Name; SourceLocation NameLoc; // The Type is null if no type was specified, and the DeclSpec is invalid // in this case. ParsedType Type; ObjCDeclSpec DeclSpec; /// ArgAttrs - Attribute list for this argument. AttributeList *ArgAttrs; }; Decl *ActOnMethodDeclaration( Scope *S, SourceLocation BeginLoc, // location of the + or -. SourceLocation EndLoc, // location of the ; or {. tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, ArrayRef SelectorLocs, Selector Sel, // optional arguments. The number of types/arguments is obtained // from the Sel.getNumArgs(). ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args AttributeList *AttrList, tok::ObjCKeywordKind MethodImplKind, bool isVariadic, bool MethodDefinition); // Helper method for ActOnClassMethod/ActOnInstanceMethod. // Will search "local" class/category implementations for a method decl. // Will also search in class's root looking for instance method. // Returns 0 if no method is found. ObjCMethodDecl *LookupPrivateClassMethod(Selector Sel, ObjCInterfaceDecl *CDecl); ObjCMethodDecl *LookupPrivateInstanceMethod(Selector Sel, ObjCInterfaceDecl *ClassDecl); ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel, const ObjCObjectPointerType *OPT, bool IsInstance); ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty, bool IsInstance); bool inferObjCARCLifetime(ValueDecl *decl); ExprResult HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, Expr *BaseExpr, SourceLocation OpLoc, DeclarationName MemberName, SourceLocation MemberLoc, SourceLocation SuperLoc, QualType SuperType, bool Super); ExprResult ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, IdentifierInfo &propertyName, SourceLocation receiverNameLoc, SourceLocation propertyNameLoc); ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc); /// \brief Describes the kind of message expression indicated by a message /// send that starts with an identifier. enum ObjCMessageKind { /// \brief The message is sent to 'super'. ObjCSuperMessage, /// \brief The message is an instance message. ObjCInstanceMessage, /// \brief The message is a class message, and the identifier is a type /// name. ObjCClassMessage }; ObjCMessageKind getObjCMessageKind(Scope *S, IdentifierInfo *Name, SourceLocation NameLoc, bool IsSuper, bool HasTrailingDot, ParsedType &ReceiverType); ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc, Selector Sel, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args); ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, QualType ReceiverType, SourceLocation SuperLoc, Selector Sel, ObjCMethodDecl *Method, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args, bool isImplicit = false); ExprResult BuildClassMessageImplicit(QualType ReceiverType, bool isSuperReceiver, SourceLocation Loc, Selector Sel, ObjCMethodDecl *Method, MultiExprArg Args); ExprResult ActOnClassMessage(Scope *S, ParsedType Receiver, Selector Sel, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args); ExprResult BuildInstanceMessage(Expr *Receiver, QualType ReceiverType, SourceLocation SuperLoc, Selector Sel, ObjCMethodDecl *Method, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args, bool isImplicit = false); ExprResult BuildInstanceMessageImplicit(Expr *Receiver, QualType ReceiverType, SourceLocation Loc, Selector Sel, ObjCMethodDecl *Method, MultiExprArg Args); ExprResult ActOnInstanceMessage(Scope *S, Expr *Receiver, Selector Sel, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args); ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc, ObjCBridgeCastKind Kind, SourceLocation BridgeKeywordLoc, TypeSourceInfo *TSInfo, Expr *SubExpr); ExprResult ActOnObjCBridgedCast(Scope *S, SourceLocation LParenLoc, ObjCBridgeCastKind Kind, SourceLocation BridgeKeywordLoc, ParsedType Type, SourceLocation RParenLoc, Expr *SubExpr); bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall); /// \brief Check whether the given new method is a valid override of the /// given overridden method, and set any properties that should be inherited. void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, const ObjCMethodDecl *Overridden, bool IsImplementation); /// \brief Check whether the given method overrides any methods in its class, /// calling \c CheckObjCMethodOverride for each overridden method. bool CheckObjCMethodOverrides(ObjCMethodDecl *NewMethod, DeclContext *DC); enum PragmaOptionsAlignKind { POAK_Native, // #pragma options align=native POAK_Natural, // #pragma options align=natural POAK_Packed, // #pragma options align=packed POAK_Power, // #pragma options align=power POAK_Mac68k, // #pragma options align=mac68k POAK_Reset // #pragma options align=reset }; /// ActOnPragmaOptionsAlign - Called on well formed #pragma options align. void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind, SourceLocation PragmaLoc, SourceLocation KindLoc); enum PragmaPackKind { PPK_Default, // #pragma pack([n]) PPK_Show, // #pragma pack(show), only supported by MSVC. PPK_Push, // #pragma pack(push, [identifier], [n]) PPK_Pop // #pragma pack(pop, [identifier], [n]) }; enum PragmaMSStructKind { PMSST_OFF, // #pragms ms_struct off PMSST_ON // #pragms ms_struct on }; /// ActOnPragmaPack - Called on well formed #pragma pack(...). void ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name, Expr *Alignment, SourceLocation PragmaLoc, SourceLocation LParenLoc, SourceLocation RParenLoc); /// ActOnPragmaMSStruct - Called on well formed #pragms ms_struct [on|off]. void ActOnPragmaMSStruct(PragmaMSStructKind Kind); /// ActOnPragmaUnused - Called on well-formed '#pragma unused'. void ActOnPragmaUnused(const Token &Identifier, Scope *curScope, SourceLocation PragmaLoc); /// ActOnPragmaVisibility - Called on well formed #pragma GCC visibility... . void ActOnPragmaVisibility(const IdentifierInfo* VisType, SourceLocation PragmaLoc); NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, SourceLocation Loc); void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W); /// ActOnPragmaWeakID - Called on well formed #pragma weak ident. void ActOnPragmaWeakID(IdentifierInfo* WeakName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc); /// ActOnPragmaRedefineExtname - Called on well formed /// #pragma redefine_extname oldname newname. void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName, IdentifierInfo* AliasName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc, SourceLocation AliasNameLoc); /// ActOnPragmaWeakAlias - Called on well formed #pragma weak ident = ident. void ActOnPragmaWeakAlias(IdentifierInfo* WeakName, IdentifierInfo* AliasName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc, SourceLocation AliasNameLoc); /// ActOnPragmaFPContract - Called on well formed /// #pragma {STDC,OPENCL} FP_CONTRACT void ActOnPragmaFPContract(tok::OnOffSwitch OOS); /// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to /// a the record decl, to handle '#pragma pack' and '#pragma options align'. void AddAlignmentAttributesForRecord(RecordDecl *RD); /// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record. void AddMsStructLayoutForRecord(RecordDecl *RD); /// FreePackedContext - Deallocate and null out PackContext. void FreePackedContext(); /// PushNamespaceVisibilityAttr - Note that we've entered a /// namespace with a visibility attribute. void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr, SourceLocation Loc); /// AddPushedVisibilityAttribute - If '#pragma GCC visibility' was used, /// add an appropriate visibility attribute. void AddPushedVisibilityAttribute(Decl *RD); /// PopPragmaVisibility - Pop the top element of the visibility stack; used /// for '#pragma GCC visibility' and visibility attributes on namespaces. void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc); /// FreeVisContext - Deallocate and null out VisContext. void FreeVisContext(); /// AddCFAuditedAttribute - Check whether we're currently within /// '#pragma clang arc_cf_code_audited' and, if so, consider adding /// the appropriate attribute. void AddCFAuditedAttribute(Decl *D); /// AddAlignedAttr - Adds an aligned attribute to a particular declaration. void AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E); void AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *T); /// \brief The kind of conversion being performed. enum CheckedConversionKind { /// \brief An implicit conversion. CCK_ImplicitConversion, /// \brief A C-style cast. CCK_CStyleCast, /// \brief A functional-style cast. CCK_FunctionalCast, /// \brief A cast other than a C-style cast. CCK_OtherCast }; /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit /// cast. If there is already an implicit cast, merge into the existing one. /// If isLvalue, the result of the cast is an lvalue. ExprResult ImpCastExprToType(Expr *E, QualType Type, CastKind CK, ExprValueKind VK = VK_RValue, const CXXCastPath *BasePath = 0, CheckedConversionKind CCK = CCK_ImplicitConversion); /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding /// to the conversion from scalar type ScalarTy to the Boolean type. static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy); /// IgnoredValueConversions - Given that an expression's result is /// syntactically ignored, perform any conversions that are /// required. ExprResult IgnoredValueConversions(Expr *E); // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts // functions and arrays to their respective pointers (C99 6.3.2.1). ExprResult UsualUnaryConversions(Expr *E); // DefaultFunctionArrayConversion - converts functions and arrays // to their respective pointers (C99 6.3.2.1). ExprResult DefaultFunctionArrayConversion(Expr *E); // DefaultFunctionArrayLvalueConversion - converts functions and // arrays to their respective pointers and performs the // lvalue-to-rvalue conversion. ExprResult DefaultFunctionArrayLvalueConversion(Expr *E); // DefaultLvalueConversion - performs lvalue-to-rvalue conversion on // the operand. This is DefaultFunctionArrayLvalueConversion, // except that it assumes the operand isn't of function or array // type. ExprResult DefaultLvalueConversion(Expr *E); // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that // do not have a prototype. Integer promotions are performed on each // argument, and arguments that have type float are promoted to double. ExprResult DefaultArgumentPromotion(Expr *E); // Used for emitting the right warning by DefaultVariadicArgumentPromotion enum VariadicCallType { VariadicFunction, VariadicBlock, VariadicMethod, VariadicConstructor, VariadicDoesNotApply }; /// GatherArgumentsForCall - Collector argument expressions for various /// form of call prototypes. bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, const FunctionProtoType *Proto, unsigned FirstProtoArg, Expr **Args, unsigned NumArgs, SmallVector &AllArgs, VariadicCallType CallType = VariadicDoesNotApply, bool AllowExplicit = false); // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but // will warn if the resulting type is not a POD type. ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, FunctionDecl *FDecl); // UsualArithmeticConversions - performs the UsualUnaryConversions on it's // operands and then handles various conversions that are common to binary // operators (C99 6.3.1.8). If both operands aren't arithmetic, this // routine returns the first non-arithmetic type found. The client is // responsible for emitting appropriate error diagnostics. QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, bool IsCompAssign = false); /// AssignConvertType - All of the 'assignment' semantic checks return this /// enum to indicate whether the assignment was allowed. These checks are /// done for simple assignments, as well as initialization, return from /// function, argument passing, etc. The query is phrased in terms of a /// source and destination type. enum AssignConvertType { /// Compatible - the types are compatible according to the standard. Compatible, /// PointerToInt - The assignment converts a pointer to an int, which we /// accept as an extension. PointerToInt, /// IntToPointer - The assignment converts an int to a pointer, which we /// accept as an extension. IntToPointer, /// FunctionVoidPointer - The assignment is between a function pointer and /// void*, which the standard doesn't allow, but we accept as an extension. FunctionVoidPointer, /// IncompatiblePointer - The assignment is between two pointers types that /// are not compatible, but we accept them as an extension. IncompatiblePointer, /// IncompatiblePointer - The assignment is between two pointers types which /// point to integers which have a different sign, but are otherwise /// identical. This is a subset of the above, but broken out because it's by /// far the most common case of incompatible pointers. IncompatiblePointerSign, /// CompatiblePointerDiscardsQualifiers - The assignment discards /// c/v/r qualifiers, which we accept as an extension. CompatiblePointerDiscardsQualifiers, /// IncompatiblePointerDiscardsQualifiers - The assignment /// discards qualifiers that we don't permit to be discarded, /// like address spaces. IncompatiblePointerDiscardsQualifiers, /// IncompatibleNestedPointerQualifiers - The assignment is between two /// nested pointer types, and the qualifiers other than the first two /// levels differ e.g. char ** -> const char **, but we accept them as an /// extension. IncompatibleNestedPointerQualifiers, /// IncompatibleVectors - The assignment is between two vector types that /// have the same size, which we accept as an extension. IncompatibleVectors, /// IntToBlockPointer - The assignment converts an int to a block /// pointer. We disallow this. IntToBlockPointer, /// IncompatibleBlockPointer - The assignment is between two block /// pointers types that are not compatible. IncompatibleBlockPointer, /// IncompatibleObjCQualifiedId - The assignment is between a qualified /// id type and something else (that is incompatible with it). For example, /// "id " = "Foo *", where "Foo *" doesn't implement the XXX protocol. IncompatibleObjCQualifiedId, /// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an /// object with __weak qualifier. IncompatibleObjCWeakRef, /// Incompatible - We reject this conversion outright, it is invalid to /// represent it in the AST. Incompatible }; /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the /// assignment conversion type specified by ConvTy. This returns true if the /// conversion was invalid or false if the conversion was accepted. bool DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, AssignmentAction Action, bool *Complained = 0); /// CheckAssignmentConstraints - Perform type checking for assignment, /// argument passing, variable initialization, and function return values. /// C99 6.5.16. AssignConvertType CheckAssignmentConstraints(SourceLocation Loc, QualType LHSType, QualType RHSType); /// Check assignment constraints and prepare for a conversion of the /// RHS to the LHS type. AssignConvertType CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS, CastKind &Kind); // CheckSingleAssignmentConstraints - Currently used by // CheckAssignmentOperands, and ActOnReturnStmt. Prior to type checking, // this routine performs the default function/array converions. AssignConvertType CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS, bool Diagnose = true); // \brief If the lhs type is a transparent union, check whether we // can initialize the transparent union with the given expression. AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &RHS); bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType); bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, AssignmentAction Action, bool AllowExplicit = false); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, AssignmentAction Action, bool AllowExplicit, ImplicitConversionSequence& ICS); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, const ImplicitConversionSequence& ICS, AssignmentAction Action, CheckedConversionKind CCK = CCK_ImplicitConversion); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, const StandardConversionSequence& SCS, AssignmentAction Action, CheckedConversionKind CCK); /// the following "Check" methods will return a valid/converted QualType /// or a null QualType (indicating an error diagnostic was issued). /// type checking binary operators (subroutines of CreateBuiltinBinOp). QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS, ExprResult &RHS); QualType CheckPointerToMemberOperands( // C++ 5.5 ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, SourceLocation OpLoc, bool isIndirect); QualType CheckMultiplyDivideOperands( // C99 6.5.5 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign, bool IsDivide); QualType CheckRemainderOperands( // C99 6.5.5 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign = false); QualType CheckAdditionOperands( // C99 6.5.6 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc, QualType* CompLHSTy = 0); QualType CheckSubtractionOperands( // C99 6.5.6 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, QualType* CompLHSTy = 0); QualType CheckShiftOperands( // C99 6.5.7 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc, bool IsCompAssign = false); QualType CheckCompareOperands( // C99 6.5.8/9 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned OpaqueOpc, bool isRelational); QualType CheckBitwiseOperands( // C99 6.5.[10...12] ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign = false); QualType CheckLogicalOperands( // C99 6.5.[13,14] ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc); // CheckAssignmentOperands is used for both simple and compound assignment. // For simple assignment, pass both expressions and a null converted type. // For compound assignment, pass both expressions and the converted type. QualType CheckAssignmentOperands( // C99 6.5.16.[1,2] Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType); ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opcode, Expr *Op); ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opcode, Expr *LHS, Expr *RHS); ExprResult checkPseudoObjectRValue(Expr *E); Expr *recreateSyntacticForm(PseudoObjectExpr *E); QualType CheckConditionalOperands( // C99 6.5.15 ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc); QualType CXXCheckConditionalOperands( // C++ 5.16 ExprResult &cond, ExprResult &lhs, ExprResult &rhs, ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc); QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2, bool *NonStandardCompositeType = 0); QualType FindCompositePointerType(SourceLocation Loc, ExprResult &E1, ExprResult &E2, bool *NonStandardCompositeType = 0) { Expr *E1Tmp = E1.take(), *E2Tmp = E2.take(); QualType Composite = FindCompositePointerType(Loc, E1Tmp, E2Tmp, NonStandardCompositeType); E1 = Owned(E1Tmp); E2 = Owned(E2Tmp); return Composite; } QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, SourceLocation QuestionLoc); bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, SourceLocation QuestionLoc); /// type checking for vector binary operators. QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign); QualType GetSignedVectorType(QualType V); QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool isRelational); QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc); /// type checking declaration initializers (C99 6.7.8) bool CheckForConstantInitializer(Expr *e, QualType t); // type checking C++ declaration initializers (C++ [dcl.init]). /// ReferenceCompareResult - Expresses the result of comparing two /// types (cv1 T1 and cv2 T2) to determine their compatibility for the /// purposes of initialization by reference (C++ [dcl.init.ref]p4). enum ReferenceCompareResult { /// Ref_Incompatible - The two types are incompatible, so direct /// reference binding is not possible. Ref_Incompatible = 0, /// Ref_Related - The two types are reference-related, which means /// that their unqualified forms (T1 and T2) are either the same /// or T1 is a base class of T2. Ref_Related, /// Ref_Compatible_With_Added_Qualification - The two types are /// reference-compatible with added qualification, meaning that /// they are reference-compatible and the qualifiers on T1 (cv1) /// are greater than the qualifiers on T2 (cv2). Ref_Compatible_With_Added_Qualification, /// Ref_Compatible - The two types are reference-compatible and /// have equivalent qualifiers (cv1 == cv2). Ref_Compatible }; ReferenceCompareResult CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2, bool &DerivedToBase, bool &ObjCConversion, bool &ObjCLifetimeConversion); ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType, Expr *CastExpr, CastKind &CastKind, ExprValueKind &VK, CXXCastPath &Path); /// \brief Force an expression with unknown-type to an expression of the /// given type. ExprResult forceUnknownAnyToType(Expr *E, QualType ToType); // CheckVectorCast - check type constraints for vectors. // Since vectors are an extension, there are no C standard reference for this. // We allow casting between vectors and integer datatypes of the same size. // returns true if the cast is invalid bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, CastKind &Kind); // CheckExtVectorCast - check type constraints for extended vectors. // Since vectors are an extension, there are no C standard reference for this. // We allow casting between vectors and integer datatypes of the same size, // or vectors and the element type of that vector. // returns the cast expr ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr, CastKind &Kind); ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, SourceLocation LParenLoc, Expr *CastExpr, SourceLocation RParenLoc); enum ARCConversionResult { ACR_okay, ACR_unbridged }; /// \brief Checks for invalid conversions and casts between /// retainable pointers and other pointer kinds. ARCConversionResult CheckObjCARCConversion(SourceRange castRange, QualType castType, Expr *&op, CheckedConversionKind CCK); Expr *stripARCUnbridgedCast(Expr *e); void diagnoseARCUnbridgedCast(Expr *e); bool CheckObjCARCUnavailableWeakConversion(QualType castType, QualType ExprType); /// checkRetainCycles - Check whether an Objective-C message send /// might create an obvious retain cycle. void checkRetainCycles(ObjCMessageExpr *msg); void checkRetainCycles(Expr *receiver, Expr *argument); /// checkUnsafeAssigns - Check whether +1 expr is being assigned /// to weak/__unsafe_unretained type. bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS); /// checkUnsafeExprAssigns - Check whether +1 expr is being assigned /// to weak/__unsafe_unretained expression. void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS); /// CheckMessageArgumentTypes - Check types in an Obj-C message send. /// \param Method - May be null. /// \param [out] ReturnType - The return type of the send. /// \return true iff there were any incompatible types. bool CheckMessageArgumentTypes(QualType ReceiverType, Expr **Args, unsigned NumArgs, Selector Sel, ObjCMethodDecl *Method, bool isClassMessage, bool isSuperMessage, SourceLocation lbrac, SourceLocation rbrac, QualType &ReturnType, ExprValueKind &VK); /// \brief Determine the result of a message send expression based on /// the type of the receiver, the method expected to receive the message, /// and the form of the message send. QualType getMessageSendResultType(QualType ReceiverType, ObjCMethodDecl *Method, bool isClassMessage, bool isSuperMessage); /// \brief If the given expression involves a message send to a method /// with a related result type, emit a note describing what happened. void EmitRelatedResultTypeNote(const Expr *E); /// CheckBooleanCondition - Diagnose problems involving the use of /// the given expression as a boolean condition (e.g. in an if /// statement). Also performs the standard function and array /// decays, possibly changing the input variable. /// /// \param Loc - A location associated with the condition, e.g. the /// 'if' keyword. /// \return true iff there were any errors ExprResult CheckBooleanCondition(Expr *E, SourceLocation Loc); ExprResult ActOnBooleanCondition(Scope *S, SourceLocation Loc, Expr *SubExpr); /// DiagnoseAssignmentAsCondition - Given that an expression is /// being used as a boolean condition, warn if it's an assignment. void DiagnoseAssignmentAsCondition(Expr *E); /// \brief Redundant parentheses over an equality comparison can indicate /// that the user intended an assignment used as condition. void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE); /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid. ExprResult CheckCXXBooleanCondition(Expr *CondExpr); /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have /// the specified width and sign. If an overflow occurs, detect it and emit /// the specified diagnostic. void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal, unsigned NewWidth, bool NewSign, SourceLocation Loc, unsigned DiagID); /// Checks that the Objective-C declaration is declared in the global scope. /// Emits an error and marks the declaration as invalid if it's not declared /// in the global scope. bool CheckObjCDeclScope(Decl *D); /// VerifyIntegerConstantExpression - Verifies that an expression is an ICE, /// and reports the appropriate diagnostics. Returns false on success. /// Can optionally return the value of the expression. ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, const PartialDiagnostic &Diag, bool AllowFold, const PartialDiagnostic &FoldDiag); ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, const PartialDiagnostic &Diag, bool AllowFold = true) { return VerifyIntegerConstantExpression(E, Result, Diag, AllowFold, PDiag(0)); } ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result = 0); /// VerifyBitField - verifies that a bit field expression is an ICE and has /// the correct width, and that the field type is valid. /// Returns false on success. /// Can optionally return whether the bit-field is of width 0 ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, QualType FieldTy, Expr *BitWidth, bool *ZeroWidth = 0); enum CUDAFunctionTarget { CFT_Device, CFT_Global, CFT_Host, CFT_HostDevice }; CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D); bool CheckCUDATarget(CUDAFunctionTarget CallerTarget, CUDAFunctionTarget CalleeTarget); bool CheckCUDATarget(const FunctionDecl *Caller, const FunctionDecl *Callee) { return CheckCUDATarget(IdentifyCUDATarget(Caller), IdentifyCUDATarget(Callee)); } /// \name Code completion //@{ /// \brief Describes the context in which code completion occurs. enum ParserCompletionContext { /// \brief Code completion occurs at top-level or namespace context. PCC_Namespace, /// \brief Code completion occurs within a class, struct, or union. PCC_Class, /// \brief Code completion occurs within an Objective-C interface, protocol, /// or category. PCC_ObjCInterface, /// \brief Code completion occurs within an Objective-C implementation or /// category implementation PCC_ObjCImplementation, /// \brief Code completion occurs within the list of instance variables /// in an Objective-C interface, protocol, category, or implementation. PCC_ObjCInstanceVariableList, /// \brief Code completion occurs following one or more template /// headers. PCC_Template, /// \brief Code completion occurs following one or more template /// headers within a class. PCC_MemberTemplate, /// \brief Code completion occurs within an expression. PCC_Expression, /// \brief Code completion occurs within a statement, which may /// also be an expression or a declaration. PCC_Statement, /// \brief Code completion occurs at the beginning of the /// initialization statement (or expression) in a for loop. PCC_ForInit, /// \brief Code completion occurs within the condition of an if, /// while, switch, or for statement. PCC_Condition, /// \brief Code completion occurs within the body of a function on a /// recovery path, where we do not have a specific handle on our position /// in the grammar. PCC_RecoveryInFunction, /// \brief Code completion occurs where only a type is permitted. PCC_Type, /// \brief Code completion occurs in a parenthesized expression, which /// might also be a type cast. PCC_ParenthesizedExpression, /// \brief Code completion occurs within a sequence of declaration /// specifiers within a function, method, or block. PCC_LocalDeclarationSpecifiers }; void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path); void CodeCompleteOrdinaryName(Scope *S, ParserCompletionContext CompletionContext); void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS, bool AllowNonIdentifiers, bool AllowNestedNameSpecifiers); struct CodeCompleteExpressionData; void CodeCompleteExpression(Scope *S, const CodeCompleteExpressionData &Data); void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, SourceLocation OpLoc, bool IsArrow); void CodeCompletePostfixExpression(Scope *S, ExprResult LHS); void CodeCompleteTag(Scope *S, unsigned TagSpec); void CodeCompleteTypeQualifiers(DeclSpec &DS); void CodeCompleteCase(Scope *S); void CodeCompleteCall(Scope *S, Expr *Fn, llvm::ArrayRef Args); void CodeCompleteInitializer(Scope *S, Decl *D); void CodeCompleteReturn(Scope *S); void CodeCompleteAfterIf(Scope *S); void CodeCompleteAssignmentRHS(Scope *S, Expr *LHS); void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext); void CodeCompleteUsing(Scope *S); void CodeCompleteUsingDirective(Scope *S); void CodeCompleteNamespaceDecl(Scope *S); void CodeCompleteNamespaceAliasDecl(Scope *S); void CodeCompleteOperatorName(Scope *S); void CodeCompleteConstructorInitializer(Decl *Constructor, CXXCtorInitializer** Initializers, unsigned NumInitializers); void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro, bool AfterAmpersand); void CodeCompleteObjCAtDirective(Scope *S); void CodeCompleteObjCAtVisibility(Scope *S); void CodeCompleteObjCAtStatement(Scope *S); void CodeCompleteObjCAtExpression(Scope *S); void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS); void CodeCompleteObjCPropertyGetter(Scope *S); void CodeCompleteObjCPropertySetter(Scope *S); void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS, bool IsParameter); void CodeCompleteObjCMessageReceiver(Scope *S); void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc, IdentifierInfo **SelIdents, unsigned NumSelIdents, bool AtArgumentExpression); void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver, IdentifierInfo **SelIdents, unsigned NumSelIdents, bool AtArgumentExpression, bool IsSuper = false); void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver, IdentifierInfo **SelIdents, unsigned NumSelIdents, bool AtArgumentExpression, ObjCInterfaceDecl *Super = 0); void CodeCompleteObjCForCollection(Scope *S, DeclGroupPtrTy IterationVar); void CodeCompleteObjCSelector(Scope *S, IdentifierInfo **SelIdents, unsigned NumSelIdents); void CodeCompleteObjCProtocolReferences(IdentifierLocPair *Protocols, unsigned NumProtocols); void CodeCompleteObjCProtocolDecl(Scope *S); void CodeCompleteObjCInterfaceDecl(Scope *S); void CodeCompleteObjCSuperclass(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc); void CodeCompleteObjCImplementationDecl(Scope *S); void CodeCompleteObjCInterfaceCategory(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc); void CodeCompleteObjCImplementationCategory(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc); void CodeCompleteObjCPropertyDefinition(Scope *S); void CodeCompleteObjCPropertySynthesizeIvar(Scope *S, IdentifierInfo *PropertyName); void CodeCompleteObjCMethodDecl(Scope *S, bool IsInstanceMethod, ParsedType ReturnType); void CodeCompleteObjCMethodDeclSelector(Scope *S, bool IsInstanceMethod, bool AtParameterName, ParsedType ReturnType, IdentifierInfo **SelIdents, unsigned NumSelIdents); void CodeCompletePreprocessorDirective(bool InConditional); void CodeCompleteInPreprocessorConditionalExclusion(Scope *S); void CodeCompletePreprocessorMacroName(bool IsDefinition); void CodeCompletePreprocessorExpression(); void CodeCompletePreprocessorMacroArgument(Scope *S, IdentifierInfo *Macro, MacroInfo *MacroInfo, unsigned Argument); void CodeCompleteNaturalLanguage(); void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator, CodeCompletionTUInfo &CCTUInfo, SmallVectorImpl &Results); //@} //===--------------------------------------------------------------------===// // Extra semantic analysis beyond the C type system public: SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL, unsigned ByteNo) const; private: void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, const ArraySubscriptExpr *ASE=0, bool AllowOnePastEnd=true, bool IndexNegated=false); void CheckArrayAccess(const Expr *E); bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall); bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc, Expr **Args, unsigned NumArgs); bool CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall); bool CheckObjCString(Expr *Arg); ExprResult CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool SemaBuiltinVAStart(CallExpr *TheCall); bool SemaBuiltinUnorderedCompare(CallExpr *TheCall); bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs); public: // Used by C++ template instantiation. ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall); private: bool SemaBuiltinPrefetch(CallExpr *TheCall); bool SemaBuiltinObjectSize(CallExpr *TheCall); bool SemaBuiltinLongjmp(CallExpr *TheCall); ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult); ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op); bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, llvm::APSInt &Result); enum FormatStringType { FST_Scanf, FST_Printf, FST_NSString, FST_Strftime, FST_Strfmon, FST_Kprintf, FST_Unknown }; static FormatStringType GetFormatStringType(const FormatAttr *Format); bool SemaCheckStringLiteral(const Expr *E, Expr **Args, unsigned NumArgs, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg, FormatStringType Type, bool inFunctionCall = true); void CheckFormatString(const StringLiteral *FExpr, const Expr *OrigFormatExpr, Expr **Args, unsigned NumArgs, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg, FormatStringType Type, bool inFunctionCall); void CheckFormatArguments(const FormatAttr *Format, CallExpr *TheCall); void CheckFormatArguments(const FormatAttr *Format, Expr **Args, unsigned NumArgs, bool IsCXXMember, SourceLocation Loc, SourceRange Range); void CheckFormatArguments(Expr **Args, unsigned NumArgs, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg, FormatStringType Type, SourceLocation Loc, SourceRange range); void CheckNonNullArguments(const NonNullAttr *NonNull, const Expr * const *ExprArgs, SourceLocation CallSiteLoc); void CheckMemaccessArguments(const CallExpr *Call, unsigned BId, IdentifierInfo *FnName); void CheckStrlcpycatArguments(const CallExpr *Call, IdentifierInfo *FnName); void CheckStrncatArguments(const CallExpr *Call, IdentifierInfo *FnName); void CheckReturnStackAddr(Expr *RetValExp, QualType lhsType, SourceLocation ReturnLoc); void CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr* RHS); void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation()); void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field, Expr *Init); /// \brief The parser's current scope. /// /// The parser maintains this state here. Scope *CurScope; protected: friend class Parser; friend class InitializationSequence; friend class ASTReader; friend class ASTWriter; public: /// \brief Retrieve the parser's current scope. /// /// This routine must only be used when it is certain that semantic analysis /// and the parser are in precisely the same context, which is not the case /// when, e.g., we are performing any kind of template instantiation. /// Therefore, the only safe places to use this scope are in the parser /// itself and in routines directly invoked from the parser and *never* from /// template substitution or instantiation. Scope *getCurScope() const { return CurScope; } Decl *getObjCDeclContext() const; DeclContext *getCurLexicalContext() const { return OriginalLexicalContext ? OriginalLexicalContext : CurContext; } AvailabilityResult getCurContextAvailability() const; }; /// \brief RAII object that enters a new expression evaluation context. class EnterExpressionEvaluationContext { Sema &Actions; public: EnterExpressionEvaluationContext(Sema &Actions, Sema::ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = 0, bool IsDecltype = false) : Actions(Actions) { Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl, IsDecltype); } ~EnterExpressionEvaluationContext() { Actions.PopExpressionEvaluationContext(); } }; } // end namespace clang #endif