//===- ASTStructuralEquivalence.cpp ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implement StructuralEquivalenceContext class and helper functions // for layout matching. // // The structural equivalence check could have been implemented as a parallel // BFS on a pair of graphs. That must have been the original approach at the // beginning. // Let's consider this simple BFS algorithm from the `s` source: // ``` // void bfs(Graph G, int s) // { // Queue queue = new Queue(); // marked[s] = true; // Mark the source // queue.enqueue(s); // and put it on the queue. // while (!q.isEmpty()) { // int v = queue.dequeue(); // Remove next vertex from the queue. // for (int w : G.adj(v)) // if (!marked[w]) // For every unmarked adjacent vertex, // { // marked[w] = true; // queue.enqueue(w); // } // } // } // ``` // Indeed, it has it's queue, which holds pairs of nodes, one from each graph, // this is the `DeclsToCheck` and it's pair is in `TentativeEquivalences`. // `TentativeEquivalences` also plays the role of the marking (`marked`) // functionality above, we use it to check whether we've already seen a pair of // nodes. // // We put in the elements into the queue only in the toplevel decl check // function: // ``` // static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, // Decl *D1, Decl *D2); // ``` // The `while` loop where we iterate over the children is implemented in // `Finish()`. And `Finish` is called only from the two **member** functions // which check the equivalency of two Decls or two Types. ASTImporter (and // other clients) call only these functions. // // The `static` implementation functions are called from `Finish`, these push // the children nodes to the queue via `static bool // IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, // Decl *D2)`. So far so good, this is almost like the BFS. However, if we // let a static implementation function to call `Finish` via another **member** // function that means we end up with two nested while loops each of them // working on the same queue. This is wrong and nobody can reason about it's // doing. Thus, static implementation functions must not call the **member** // functions. // // So, now `TentativeEquivalences` plays two roles. It is used to store the // second half of the decls which we want to compare, plus it plays a role in // closing the recursion. On a long term, we could refactor structural // equivalency to be more alike to the traditional BFS. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTStructuralEquivalence.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/TemplateBase.h" #include "clang/AST/TemplateName.h" #include "clang/AST/Type.h" #include "clang/Basic/ExceptionSpecificationType.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/SourceLocation.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include #include using namespace clang; static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, QualType T1, QualType T2); static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, Decl *D2); static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const TemplateArgument &Arg1, const TemplateArgument &Arg2); /// Determine structural equivalence of two expressions. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const Expr *E1, const Expr *E2) { if (!E1 || !E2) return E1 == E2; // FIXME: Actually perform a structural comparison! return true; } /// Determine whether two identifiers are equivalent. static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, const IdentifierInfo *Name2) { if (!Name1 || !Name2) return Name1 == Name2; return Name1->getName() == Name2->getName(); } /// Determine whether two nested-name-specifiers are equivalent. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, NestedNameSpecifier *NNS1, NestedNameSpecifier *NNS2) { if (NNS1->getKind() != NNS2->getKind()) return false; NestedNameSpecifier *Prefix1 = NNS1->getPrefix(), *Prefix2 = NNS2->getPrefix(); if ((bool)Prefix1 != (bool)Prefix2) return false; if (Prefix1) if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2)) return false; switch (NNS1->getKind()) { case NestedNameSpecifier::Identifier: return IsStructurallyEquivalent(NNS1->getAsIdentifier(), NNS2->getAsIdentifier()); case NestedNameSpecifier::Namespace: return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(), NNS2->getAsNamespace()); case NestedNameSpecifier::NamespaceAlias: return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(), NNS2->getAsNamespaceAlias()); case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0), QualType(NNS2->getAsType(), 0)); case NestedNameSpecifier::Global: return true; case NestedNameSpecifier::Super: return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(), NNS2->getAsRecordDecl()); } return false; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const TemplateName &N1, const TemplateName &N2) { if (N1.getKind() != N2.getKind()) return false; switch (N1.getKind()) { case TemplateName::Template: return IsStructurallyEquivalent(Context, N1.getAsTemplateDecl(), N2.getAsTemplateDecl()); case TemplateName::OverloadedTemplate: { OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(), *OS2 = N2.getAsOverloadedTemplate(); OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(), E1 = OS1->end(), E2 = OS2->end(); for (; I1 != E1 && I2 != E2; ++I1, ++I2) if (!IsStructurallyEquivalent(Context, *I1, *I2)) return false; return I1 == E1 && I2 == E2; } case TemplateName::QualifiedTemplate: { QualifiedTemplateName *QN1 = N1.getAsQualifiedTemplateName(), *QN2 = N2.getAsQualifiedTemplateName(); return IsStructurallyEquivalent(Context, QN1->getDecl(), QN2->getDecl()) && IsStructurallyEquivalent(Context, QN1->getQualifier(), QN2->getQualifier()); } case TemplateName::DependentTemplate: { DependentTemplateName *DN1 = N1.getAsDependentTemplateName(), *DN2 = N2.getAsDependentTemplateName(); if (!IsStructurallyEquivalent(Context, DN1->getQualifier(), DN2->getQualifier())) return false; if (DN1->isIdentifier() && DN2->isIdentifier()) return IsStructurallyEquivalent(DN1->getIdentifier(), DN2->getIdentifier()); else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator()) return DN1->getOperator() == DN2->getOperator(); return false; } case TemplateName::SubstTemplateTemplateParm: { SubstTemplateTemplateParmStorage *TS1 = N1.getAsSubstTemplateTemplateParm(), *TS2 = N2.getAsSubstTemplateTemplateParm(); return IsStructurallyEquivalent(Context, TS1->getParameter(), TS2->getParameter()) && IsStructurallyEquivalent(Context, TS1->getReplacement(), TS2->getReplacement()); } case TemplateName::SubstTemplateTemplateParmPack: { SubstTemplateTemplateParmPackStorage *P1 = N1.getAsSubstTemplateTemplateParmPack(), *P2 = N2.getAsSubstTemplateTemplateParmPack(); return IsStructurallyEquivalent(Context, P1->getArgumentPack(), P2->getArgumentPack()) && IsStructurallyEquivalent(Context, P1->getParameterPack(), P2->getParameterPack()); } } return false; } /// Determine whether two template arguments are equivalent. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, const TemplateArgument &Arg1, const TemplateArgument &Arg2) { if (Arg1.getKind() != Arg2.getKind()) return false; switch (Arg1.getKind()) { case TemplateArgument::Null: return true; case TemplateArgument::Type: return IsStructurallyEquivalent(Context, Arg1.getAsType(), Arg2.getAsType()); case TemplateArgument::Integral: if (!IsStructurallyEquivalent(Context, Arg1.getIntegralType(), Arg2.getIntegralType())) return false; return llvm::APSInt::isSameValue(Arg1.getAsIntegral(), Arg2.getAsIntegral()); case TemplateArgument::Declaration: return IsStructurallyEquivalent(Context, Arg1.getAsDecl(), Arg2.getAsDecl()); case TemplateArgument::NullPtr: return true; // FIXME: Is this correct? case TemplateArgument::Template: return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(), Arg2.getAsTemplate()); case TemplateArgument::TemplateExpansion: return IsStructurallyEquivalent(Context, Arg1.getAsTemplateOrTemplatePattern(), Arg2.getAsTemplateOrTemplatePattern()); case TemplateArgument::Expression: return IsStructurallyEquivalent(Context, Arg1.getAsExpr(), Arg2.getAsExpr()); case TemplateArgument::Pack: if (Arg1.pack_size() != Arg2.pack_size()) return false; for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I) if (!IsStructurallyEquivalent(Context, Arg1.pack_begin()[I], Arg2.pack_begin()[I])) return false; return true; } llvm_unreachable("Invalid template argument kind"); } /// Determine structural equivalence for the common part of array /// types. static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context, const ArrayType *Array1, const ArrayType *Array2) { if (!IsStructurallyEquivalent(Context, Array1->getElementType(), Array2->getElementType())) return false; if (Array1->getSizeModifier() != Array2->getSizeModifier()) return false; if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers()) return false; return true; } /// Determine structural equivalence based on the ExtInfo of functions. This /// is inspired by ASTContext::mergeFunctionTypes(), we compare calling /// conventions bits but must not compare some other bits. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FunctionType::ExtInfo EI1, FunctionType::ExtInfo EI2) { // Compatible functions must have compatible calling conventions. if (EI1.getCC() != EI2.getCC()) return false; // Regparm is part of the calling convention. if (EI1.getHasRegParm() != EI2.getHasRegParm()) return false; if (EI1.getRegParm() != EI2.getRegParm()) return false; if (EI1.getProducesResult() != EI2.getProducesResult()) return false; if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs()) return false; if (EI1.getNoCfCheck() != EI2.getNoCfCheck()) return false; return true; } /// Determine structural equivalence of two types. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, QualType T1, QualType T2) { if (T1.isNull() || T2.isNull()) return T1.isNull() && T2.isNull(); QualType OrigT1 = T1; QualType OrigT2 = T2; if (!Context.StrictTypeSpelling) { // We aren't being strict about token-to-token equivalence of types, // so map down to the canonical type. T1 = Context.FromCtx.getCanonicalType(T1); T2 = Context.ToCtx.getCanonicalType(T2); } if (T1.getQualifiers() != T2.getQualifiers()) return false; Type::TypeClass TC = T1->getTypeClass(); if (T1->getTypeClass() != T2->getTypeClass()) { // Compare function types with prototypes vs. without prototypes as if // both did not have prototypes. if (T1->getTypeClass() == Type::FunctionProto && T2->getTypeClass() == Type::FunctionNoProto) TC = Type::FunctionNoProto; else if (T1->getTypeClass() == Type::FunctionNoProto && T2->getTypeClass() == Type::FunctionProto) TC = Type::FunctionNoProto; else return false; } switch (TC) { case Type::Builtin: // FIXME: Deal with Char_S/Char_U. if (cast(T1)->getKind() != cast(T2)->getKind()) return false; break; case Type::Complex: if (!IsStructurallyEquivalent(Context, cast(T1)->getElementType(), cast(T2)->getElementType())) return false; break; case Type::Adjusted: case Type::Decayed: if (!IsStructurallyEquivalent(Context, cast(T1)->getOriginalType(), cast(T2)->getOriginalType())) return false; break; case Type::Pointer: if (!IsStructurallyEquivalent(Context, cast(T1)->getPointeeType(), cast(T2)->getPointeeType())) return false; break; case Type::BlockPointer: if (!IsStructurallyEquivalent(Context, cast(T1)->getPointeeType(), cast(T2)->getPointeeType())) return false; break; case Type::LValueReference: case Type::RValueReference: { const auto *Ref1 = cast(T1); const auto *Ref2 = cast(T2); if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue()) return false; if (Ref1->isInnerRef() != Ref2->isInnerRef()) return false; if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(), Ref2->getPointeeTypeAsWritten())) return false; break; } case Type::MemberPointer: { const auto *MemPtr1 = cast(T1); const auto *MemPtr2 = cast(T2); if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(), MemPtr2->getPointeeType())) return false; if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0), QualType(MemPtr2->getClass(), 0))) return false; break; } case Type::ConstantArray: { const auto *Array1 = cast(T1); const auto *Array2 = cast(T2); if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize())) return false; if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) return false; break; } case Type::IncompleteArray: if (!IsArrayStructurallyEquivalent(Context, cast(T1), cast(T2))) return false; break; case Type::VariableArray: { const auto *Array1 = cast(T1); const auto *Array2 = cast(T2); if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), Array2->getSizeExpr())) return false; if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) return false; break; } case Type::DependentSizedArray: { const auto *Array1 = cast(T1); const auto *Array2 = cast(T2); if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), Array2->getSizeExpr())) return false; if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) return false; break; } case Type::DependentAddressSpace: { const auto *DepAddressSpace1 = cast(T1); const auto *DepAddressSpace2 = cast(T2); if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getAddrSpaceExpr(), DepAddressSpace2->getAddrSpaceExpr())) return false; if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getPointeeType(), DepAddressSpace2->getPointeeType())) return false; break; } case Type::DependentSizedExtVector: { const auto *Vec1 = cast(T1); const auto *Vec2 = cast(T2); if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), Vec2->getSizeExpr())) return false; if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), Vec2->getElementType())) return false; break; } case Type::DependentVector: { const auto *Vec1 = cast(T1); const auto *Vec2 = cast(T2); if (Vec1->getVectorKind() != Vec2->getVectorKind()) return false; if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), Vec2->getSizeExpr())) return false; if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), Vec2->getElementType())) return false; break; } case Type::Vector: case Type::ExtVector: { const auto *Vec1 = cast(T1); const auto *Vec2 = cast(T2); if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), Vec2->getElementType())) return false; if (Vec1->getNumElements() != Vec2->getNumElements()) return false; if (Vec1->getVectorKind() != Vec2->getVectorKind()) return false; break; } case Type::FunctionProto: { const auto *Proto1 = cast(T1); const auto *Proto2 = cast(T2); if (Proto1->getNumParams() != Proto2->getNumParams()) return false; for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I), Proto2->getParamType(I))) return false; } if (Proto1->isVariadic() != Proto2->isVariadic()) return false; if (Proto1->getMethodQuals() != Proto2->getMethodQuals()) return false; // Check exceptions, this information is lost in canonical type. const auto *OrigProto1 = cast(OrigT1.getDesugaredType(Context.FromCtx)); const auto *OrigProto2 = cast(OrigT2.getDesugaredType(Context.ToCtx)); auto Spec1 = OrigProto1->getExceptionSpecType(); auto Spec2 = OrigProto2->getExceptionSpecType(); if (Spec1 != Spec2) return false; if (Spec1 == EST_Dynamic) { if (OrigProto1->getNumExceptions() != OrigProto2->getNumExceptions()) return false; for (unsigned I = 0, N = OrigProto1->getNumExceptions(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, OrigProto1->getExceptionType(I), OrigProto2->getExceptionType(I))) return false; } } else if (isComputedNoexcept(Spec1)) { if (!IsStructurallyEquivalent(Context, OrigProto1->getNoexceptExpr(), OrigProto2->getNoexceptExpr())) return false; } // Fall through to check the bits common with FunctionNoProtoType. LLVM_FALLTHROUGH; } case Type::FunctionNoProto: { const auto *Function1 = cast(T1); const auto *Function2 = cast(T2); if (!IsStructurallyEquivalent(Context, Function1->getReturnType(), Function2->getReturnType())) return false; if (!IsStructurallyEquivalent(Context, Function1->getExtInfo(), Function2->getExtInfo())) return false; break; } case Type::UnresolvedUsing: if (!IsStructurallyEquivalent(Context, cast(T1)->getDecl(), cast(T2)->getDecl())) return false; break; case Type::Attributed: if (!IsStructurallyEquivalent(Context, cast(T1)->getModifiedType(), cast(T2)->getModifiedType())) return false; if (!IsStructurallyEquivalent( Context, cast(T1)->getEquivalentType(), cast(T2)->getEquivalentType())) return false; break; case Type::Paren: if (!IsStructurallyEquivalent(Context, cast(T1)->getInnerType(), cast(T2)->getInnerType())) return false; break; case Type::Typedef: if (!IsStructurallyEquivalent(Context, cast(T1)->getDecl(), cast(T2)->getDecl())) return false; break; case Type::TypeOfExpr: if (!IsStructurallyEquivalent( Context, cast(T1)->getUnderlyingExpr(), cast(T2)->getUnderlyingExpr())) return false; break; case Type::TypeOf: if (!IsStructurallyEquivalent(Context, cast(T1)->getUnderlyingType(), cast(T2)->getUnderlyingType())) return false; break; case Type::UnaryTransform: if (!IsStructurallyEquivalent( Context, cast(T1)->getUnderlyingType(), cast(T2)->getUnderlyingType())) return false; break; case Type::Decltype: if (!IsStructurallyEquivalent(Context, cast(T1)->getUnderlyingExpr(), cast(T2)->getUnderlyingExpr())) return false; break; case Type::Auto: if (!IsStructurallyEquivalent(Context, cast(T1)->getDeducedType(), cast(T2)->getDeducedType())) return false; break; case Type::DeducedTemplateSpecialization: { const auto *DT1 = cast(T1); const auto *DT2 = cast(T2); if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(), DT2->getTemplateName())) return false; if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(), DT2->getDeducedType())) return false; break; } case Type::Record: case Type::Enum: if (!IsStructurallyEquivalent(Context, cast(T1)->getDecl(), cast(T2)->getDecl())) return false; break; case Type::TemplateTypeParm: { const auto *Parm1 = cast(T1); const auto *Parm2 = cast(T2); if (Parm1->getDepth() != Parm2->getDepth()) return false; if (Parm1->getIndex() != Parm2->getIndex()) return false; if (Parm1->isParameterPack() != Parm2->isParameterPack()) return false; // Names of template type parameters are never significant. break; } case Type::SubstTemplateTypeParm: { const auto *Subst1 = cast(T1); const auto *Subst2 = cast(T2); if (!IsStructurallyEquivalent(Context, QualType(Subst1->getReplacedParameter(), 0), QualType(Subst2->getReplacedParameter(), 0))) return false; if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(), Subst2->getReplacementType())) return false; break; } case Type::SubstTemplateTypeParmPack: { const auto *Subst1 = cast(T1); const auto *Subst2 = cast(T2); if (!IsStructurallyEquivalent(Context, QualType(Subst1->getReplacedParameter(), 0), QualType(Subst2->getReplacedParameter(), 0))) return false; if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(), Subst2->getArgumentPack())) return false; break; } case Type::TemplateSpecialization: { const auto *Spec1 = cast(T1); const auto *Spec2 = cast(T2); if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(), Spec2->getTemplateName())) return false; if (Spec1->getNumArgs() != Spec2->getNumArgs()) return false; for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Spec1->getArg(I), Spec2->getArg(I))) return false; } break; } case Type::Elaborated: { const auto *Elab1 = cast(T1); const auto *Elab2 = cast(T2); // CHECKME: what if a keyword is ETK_None or ETK_typename ? if (Elab1->getKeyword() != Elab2->getKeyword()) return false; if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(), Elab2->getQualifier())) return false; if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(), Elab2->getNamedType())) return false; break; } case Type::InjectedClassName: { const auto *Inj1 = cast(T1); const auto *Inj2 = cast(T2); if (!IsStructurallyEquivalent(Context, Inj1->getInjectedSpecializationType(), Inj2->getInjectedSpecializationType())) return false; break; } case Type::DependentName: { const auto *Typename1 = cast(T1); const auto *Typename2 = cast(T2); if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(), Typename2->getQualifier())) return false; if (!IsStructurallyEquivalent(Typename1->getIdentifier(), Typename2->getIdentifier())) return false; break; } case Type::DependentTemplateSpecialization: { const auto *Spec1 = cast(T1); const auto *Spec2 = cast(T2); if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(), Spec2->getQualifier())) return false; if (!IsStructurallyEquivalent(Spec1->getIdentifier(), Spec2->getIdentifier())) return false; if (Spec1->getNumArgs() != Spec2->getNumArgs()) return false; for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Spec1->getArg(I), Spec2->getArg(I))) return false; } break; } case Type::PackExpansion: if (!IsStructurallyEquivalent(Context, cast(T1)->getPattern(), cast(T2)->getPattern())) return false; break; case Type::ObjCInterface: { const auto *Iface1 = cast(T1); const auto *Iface2 = cast(T2); if (!IsStructurallyEquivalent(Context, Iface1->getDecl(), Iface2->getDecl())) return false; break; } case Type::ObjCTypeParam: { const auto *Obj1 = cast(T1); const auto *Obj2 = cast(T2); if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl())) return false; if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) return false; for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), Obj2->getProtocol(I))) return false; } break; } case Type::ObjCObject: { const auto *Obj1 = cast(T1); const auto *Obj2 = cast(T2); if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(), Obj2->getBaseType())) return false; if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) return false; for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), Obj2->getProtocol(I))) return false; } break; } case Type::ObjCObjectPointer: { const auto *Ptr1 = cast(T1); const auto *Ptr2 = cast(T2); if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(), Ptr2->getPointeeType())) return false; break; } case Type::Atomic: if (!IsStructurallyEquivalent(Context, cast(T1)->getValueType(), cast(T2)->getValueType())) return false; break; case Type::Pipe: if (!IsStructurallyEquivalent(Context, cast(T1)->getElementType(), cast(T2)->getElementType())) return false; break; } // end switch return true; } /// Determine structural equivalence of two fields. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FieldDecl *Field1, FieldDecl *Field2) { const auto *Owner2 = cast(Field2->getDeclContext()); // For anonymous structs/unions, match up the anonymous struct/union type // declarations directly, so that we don't go off searching for anonymous // types if (Field1->isAnonymousStructOrUnion() && Field2->isAnonymousStructOrUnion()) { RecordDecl *D1 = Field1->getType()->castAs()->getDecl(); RecordDecl *D2 = Field2->getType()->castAs()->getDecl(); return IsStructurallyEquivalent(Context, D1, D2); } // Check for equivalent field names. IdentifierInfo *Name1 = Field1->getIdentifier(); IdentifierInfo *Name2 = Field2->getIdentifier(); if (!::IsStructurallyEquivalent(Name1, Name2)) { if (Context.Complain) { Context.Diag2( Owner2->getLocation(), Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(Owner2); Context.Diag2(Field2->getLocation(), diag::note_odr_field_name) << Field2->getDeclName(); Context.Diag1(Field1->getLocation(), diag::note_odr_field_name) << Field1->getDeclName(); } return false; } if (!IsStructurallyEquivalent(Context, Field1->getType(), Field2->getType())) { if (Context.Complain) { Context.Diag2( Owner2->getLocation(), Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(Owner2); Context.Diag2(Field2->getLocation(), diag::note_odr_field) << Field2->getDeclName() << Field2->getType(); Context.Diag1(Field1->getLocation(), diag::note_odr_field) << Field1->getDeclName() << Field1->getType(); } return false; } if (Field1->isBitField() != Field2->isBitField()) { if (Context.Complain) { Context.Diag2( Owner2->getLocation(), Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(Owner2); if (Field1->isBitField()) { Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field) << Field1->getDeclName() << Field1->getType() << Field1->getBitWidthValue(Context.FromCtx); Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field) << Field2->getDeclName(); } else { Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field) << Field2->getDeclName() << Field2->getType() << Field2->getBitWidthValue(Context.ToCtx); Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field) << Field1->getDeclName(); } } return false; } if (Field1->isBitField()) { // Make sure that the bit-fields are the same length. unsigned Bits1 = Field1->getBitWidthValue(Context.FromCtx); unsigned Bits2 = Field2->getBitWidthValue(Context.ToCtx); if (Bits1 != Bits2) { if (Context.Complain) { Context.Diag2(Owner2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(Owner2); Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field) << Field2->getDeclName() << Field2->getType() << Bits2; Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field) << Field1->getDeclName() << Field1->getType() << Bits1; } return false; } } return true; } /// Determine structural equivalence of two methods. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, CXXMethodDecl *Method1, CXXMethodDecl *Method2) { bool PropertiesEqual = Method1->getDeclKind() == Method2->getDeclKind() && Method1->getRefQualifier() == Method2->getRefQualifier() && Method1->getAccess() == Method2->getAccess() && Method1->getOverloadedOperator() == Method2->getOverloadedOperator() && Method1->isStatic() == Method2->isStatic() && Method1->isConst() == Method2->isConst() && Method1->isVolatile() == Method2->isVolatile() && Method1->isVirtual() == Method2->isVirtual() && Method1->isPure() == Method2->isPure() && Method1->isDefaulted() == Method2->isDefaulted() && Method1->isDeleted() == Method2->isDeleted(); if (!PropertiesEqual) return false; // FIXME: Check for 'final'. if (auto *Constructor1 = dyn_cast(Method1)) { auto *Constructor2 = cast(Method2); if (!Constructor1->getExplicitSpecifier().isEquivalent( Constructor2->getExplicitSpecifier())) return false; } if (auto *Conversion1 = dyn_cast(Method1)) { auto *Conversion2 = cast(Method2); if (!Conversion1->getExplicitSpecifier().isEquivalent( Conversion2->getExplicitSpecifier())) return false; if (!IsStructurallyEquivalent(Context, Conversion1->getConversionType(), Conversion2->getConversionType())) return false; } const IdentifierInfo *Name1 = Method1->getIdentifier(); const IdentifierInfo *Name2 = Method2->getIdentifier(); if (!::IsStructurallyEquivalent(Name1, Name2)) { return false; // TODO: Names do not match, add warning like at check for FieldDecl. } // Check the prototypes. if (!::IsStructurallyEquivalent(Context, Method1->getType(), Method2->getType())) return false; return true; } /// Determine structural equivalence of two records. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, RecordDecl *D1, RecordDecl *D2) { if (D1->isUnion() != D2->isUnion()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here) << D1->getDeclName() << (unsigned)D1->getTagKind(); } return false; } if (!D1->getDeclName() && !D2->getDeclName()) { // If both anonymous structs/unions are in a record context, make sure // they occur in the same location in the context records. if (Optional Index1 = StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) { if (Optional Index2 = StructuralEquivalenceContext::findUntaggedStructOrUnionIndex( D2)) { if (*Index1 != *Index2) return false; } } } // If both declarations are class template specializations, we know // the ODR applies, so check the template and template arguments. const auto *Spec1 = dyn_cast(D1); const auto *Spec2 = dyn_cast(D2); if (Spec1 && Spec2) { // Check that the specialized templates are the same. if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(), Spec2->getSpecializedTemplate())) return false; // Check that the template arguments are the same. if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size()) return false; for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I) if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I), Spec2->getTemplateArgs().get(I))) return false; } // If one is a class template specialization and the other is not, these // structures are different. else if (Spec1 || Spec2) return false; // Compare the definitions of these two records. If either or both are // incomplete (i.e. it is a forward decl), we assume that they are // equivalent. D1 = D1->getDefinition(); D2 = D2->getDefinition(); if (!D1 || !D2) return true; // If any of the records has external storage and we do a minimal check (or // AST import) we assume they are equivalent. (If we didn't have this // assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger // another AST import which in turn would call the structural equivalency // check again and finally we'd have an improper result.) if (Context.EqKind == StructuralEquivalenceKind::Minimal) if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage()) return true; // If one definition is currently being defined, we do not compare for // equality and we assume that the decls are equal. if (D1->isBeingDefined() || D2->isBeingDefined()) return true; if (auto *D1CXX = dyn_cast(D1)) { if (auto *D2CXX = dyn_cast(D2)) { if (D1CXX->hasExternalLexicalStorage() && !D1CXX->isCompleteDefinition()) { D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX); } if (D1CXX->getNumBases() != D2CXX->getNumBases()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases) << D2CXX->getNumBases(); Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases) << D1CXX->getNumBases(); } return false; } // Check the base classes. for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(), BaseEnd1 = D1CXX->bases_end(), Base2 = D2CXX->bases_begin(); Base1 != BaseEnd1; ++Base1, ++Base2) { if (!IsStructurallyEquivalent(Context, Base1->getType(), Base2->getType())) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2(Base2->getBeginLoc(), diag::note_odr_base) << Base2->getType() << Base2->getSourceRange(); Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) << Base1->getType() << Base1->getSourceRange(); } return false; } // Check virtual vs. non-virtual inheritance mismatch. if (Base1->isVirtual() != Base2->isVirtual()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2(Base2->getBeginLoc(), diag::note_odr_virtual_base) << Base2->isVirtual() << Base2->getSourceRange(); Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) << Base1->isVirtual() << Base1->getSourceRange(); } return false; } } // Check the friends for consistency. CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(), Friend2End = D2CXX->friend_end(); for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(), Friend1End = D1CXX->friend_end(); Friend1 != Friend1End; ++Friend1, ++Friend2) { if (Friend2 == Friend2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2CXX); Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend); Context.Diag2(D2->getLocation(), diag::note_odr_missing_friend); } return false; } if (!IsStructurallyEquivalent(Context, *Friend1, *Friend2)) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2CXX); Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend); Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend); } return false; } } if (Friend2 != Friend2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend); Context.Diag1(D1->getLocation(), diag::note_odr_missing_friend); } return false; } } else if (D1CXX->getNumBases() > 0) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); const CXXBaseSpecifier *Base1 = D1CXX->bases_begin(); Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) << Base1->getType() << Base1->getSourceRange(); Context.Diag2(D2->getLocation(), diag::note_odr_missing_base); } return false; } } // Check the fields for consistency. RecordDecl::field_iterator Field2 = D2->field_begin(), Field2End = D2->field_end(); for (RecordDecl::field_iterator Field1 = D1->field_begin(), Field1End = D1->field_end(); Field1 != Field1End; ++Field1, ++Field2) { if (Field2 == Field2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag1(Field1->getLocation(), diag::note_odr_field) << Field1->getDeclName() << Field1->getType(); Context.Diag2(D2->getLocation(), diag::note_odr_missing_field); } return false; } if (!IsStructurallyEquivalent(Context, *Field1, *Field2)) return false; } if (Field2 != Field2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2(Field2->getLocation(), diag::note_odr_field) << Field2->getDeclName() << Field2->getType(); Context.Diag1(D1->getLocation(), diag::note_odr_missing_field); } return false; } return true; } /// Determine structural equivalence of two enums. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, EnumDecl *D1, EnumDecl *D2) { // Compare the definitions of these two enums. If either or both are // incomplete (i.e. forward declared), we assume that they are equivalent. D1 = D1->getDefinition(); D2 = D2->getDefinition(); if (!D1 || !D2) return true; EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(), EC2End = D2->enumerator_end(); for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(), EC1End = D1->enumerator_end(); EC1 != EC1End; ++EC1, ++EC2) { if (EC2 == EC2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) << EC1->getDeclName() << EC1->getInitVal().toString(10); Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator); } return false; } llvm::APSInt Val1 = EC1->getInitVal(); llvm::APSInt Val2 = EC2->getInitVal(); if (!llvm::APSInt::isSameValue(Val1, Val2) || !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) << EC2->getDeclName() << EC2->getInitVal().toString(10); Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) << EC1->getDeclName() << EC1->getInitVal().toString(10); } return false; } } if (EC2 != EC2End) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_tag_type_inconsistent)) << Context.ToCtx.getTypeDeclType(D2); Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) << EC2->getDeclName() << EC2->getInitVal().toString(10); Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator); } return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TemplateParameterList *Params1, TemplateParameterList *Params2) { if (Params1->size() != Params2->size()) { if (Context.Complain) { Context.Diag2(Params2->getTemplateLoc(), Context.getApplicableDiagnostic( diag::err_odr_different_num_template_parameters)) << Params1->size() << Params2->size(); Context.Diag1(Params1->getTemplateLoc(), diag::note_odr_template_parameter_list); } return false; } for (unsigned I = 0, N = Params1->size(); I != N; ++I) { if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) { if (Context.Complain) { Context.Diag2(Params2->getParam(I)->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_different_template_parameter_kind)); Context.Diag1(Params1->getParam(I)->getLocation(), diag::note_odr_template_parameter_here); } return false; } if (!IsStructurallyEquivalent(Context, Params1->getParam(I), Params2->getParam(I))) return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TemplateTypeParmDecl *D1, TemplateTypeParmDecl *D2) { if (D1->isParameterPack() != D2->isParameterPack()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_parameter_pack_non_pack)) << D2->isParameterPack(); Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) << D1->isParameterPack(); } return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, NonTypeTemplateParmDecl *D1, NonTypeTemplateParmDecl *D2) { if (D1->isParameterPack() != D2->isParameterPack()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_parameter_pack_non_pack)) << D2->isParameterPack(); Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) << D1->isParameterPack(); } return false; } // Check types. if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_non_type_parameter_type_inconsistent)) << D2->getType() << D1->getType(); Context.Diag1(D1->getLocation(), diag::note_odr_value_here) << D1->getType(); } return false; } return true; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, TemplateTemplateParmDecl *D1, TemplateTemplateParmDecl *D2) { if (D1->isParameterPack() != D2->isParameterPack()) { if (Context.Complain) { Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( diag::err_odr_parameter_pack_non_pack)) << D2->isParameterPack(); Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) << D1->isParameterPack(); } return false; } // Check template parameter lists. return IsStructurallyEquivalent(Context, D1->getTemplateParameters(), D2->getTemplateParameters()); } static bool IsTemplateDeclCommonStructurallyEquivalent( StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) { if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) return false; if (!D1->getIdentifier()) // Special name if (D1->getNameAsString() != D2->getNameAsString()) return false; return IsStructurallyEquivalent(Ctx, D1->getTemplateParameters(), D2->getTemplateParameters()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, ClassTemplateDecl *D1, ClassTemplateDecl *D2) { // Check template parameters. if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) return false; // Check the templated declaration. return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(), D2->getTemplatedDecl()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FunctionTemplateDecl *D1, FunctionTemplateDecl *D2) { // Check template parameters. if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) return false; // Check the templated declaration. return IsStructurallyEquivalent(Context, D1->getTemplatedDecl()->getType(), D2->getTemplatedDecl()->getType()); } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FriendDecl *D1, FriendDecl *D2) { if ((D1->getFriendType() && D2->getFriendDecl()) || (D1->getFriendDecl() && D2->getFriendType())) { return false; } if (D1->getFriendType() && D2->getFriendType()) return IsStructurallyEquivalent(Context, D1->getFriendType()->getType(), D2->getFriendType()->getType()); if (D1->getFriendDecl() && D2->getFriendDecl()) return IsStructurallyEquivalent(Context, D1->getFriendDecl(), D2->getFriendDecl()); return false; } static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, FunctionDecl *D1, FunctionDecl *D2) { // FIXME: Consider checking for function attributes as well. if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) return false; return true; } /// Determine structural equivalence of two declarations. static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, Decl *D2) { // FIXME: Check for known structural equivalences via a callback of some sort. // Check whether we already know that these two declarations are not // structurally equivalent. if (Context.NonEquivalentDecls.count( std::make_pair(D1->getCanonicalDecl(), D2->getCanonicalDecl()))) return false; // Determine whether we've already produced a tentative equivalence for D1. Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()]; if (EquivToD1) return EquivToD1 == D2->getCanonicalDecl(); // Produce a tentative equivalence D1 <-> D2, which will be checked later. EquivToD1 = D2->getCanonicalDecl(); Context.DeclsToCheck.push_back(D1->getCanonicalDecl()); return true; } DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc, unsigned DiagID) { assert(Complain && "Not allowed to complain"); if (LastDiagFromC2) FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics()); LastDiagFromC2 = false; return FromCtx.getDiagnostics().Report(Loc, DiagID); } DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc, unsigned DiagID) { assert(Complain && "Not allowed to complain"); if (!LastDiagFromC2) ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics()); LastDiagFromC2 = true; return ToCtx.getDiagnostics().Report(Loc, DiagID); } Optional StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) { ASTContext &Context = Anon->getASTContext(); QualType AnonTy = Context.getRecordType(Anon); const auto *Owner = dyn_cast(Anon->getDeclContext()); if (!Owner) return None; unsigned Index = 0; for (const auto *D : Owner->noload_decls()) { const auto *F = dyn_cast(D); if (!F) continue; if (F->isAnonymousStructOrUnion()) { if (Context.hasSameType(F->getType(), AnonTy)) break; ++Index; continue; } // If the field looks like this: // struct { ... } A; QualType FieldType = F->getType(); // In case of nested structs. while (const auto *ElabType = dyn_cast(FieldType)) FieldType = ElabType->getNamedType(); if (const auto *RecType = dyn_cast(FieldType)) { const RecordDecl *RecDecl = RecType->getDecl(); if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) { if (Context.hasSameType(FieldType, AnonTy)) break; ++Index; continue; } } } return Index; } unsigned StructuralEquivalenceContext::getApplicableDiagnostic( unsigned ErrorDiagnostic) { if (ErrorOnTagTypeMismatch) return ErrorDiagnostic; switch (ErrorDiagnostic) { case diag::err_odr_variable_type_inconsistent: return diag::warn_odr_variable_type_inconsistent; case diag::err_odr_variable_multiple_def: return diag::warn_odr_variable_multiple_def; case diag::err_odr_function_type_inconsistent: return diag::warn_odr_function_type_inconsistent; case diag::err_odr_tag_type_inconsistent: return diag::warn_odr_tag_type_inconsistent; case diag::err_odr_field_type_inconsistent: return diag::warn_odr_field_type_inconsistent; case diag::err_odr_ivar_type_inconsistent: return diag::warn_odr_ivar_type_inconsistent; case diag::err_odr_objc_superclass_inconsistent: return diag::warn_odr_objc_superclass_inconsistent; case diag::err_odr_objc_method_result_type_inconsistent: return diag::warn_odr_objc_method_result_type_inconsistent; case diag::err_odr_objc_method_num_params_inconsistent: return diag::warn_odr_objc_method_num_params_inconsistent; case diag::err_odr_objc_method_param_type_inconsistent: return diag::warn_odr_objc_method_param_type_inconsistent; case diag::err_odr_objc_method_variadic_inconsistent: return diag::warn_odr_objc_method_variadic_inconsistent; case diag::err_odr_objc_property_type_inconsistent: return diag::warn_odr_objc_property_type_inconsistent; case diag::err_odr_objc_property_impl_kind_inconsistent: return diag::warn_odr_objc_property_impl_kind_inconsistent; case diag::err_odr_objc_synthesize_ivar_inconsistent: return diag::warn_odr_objc_synthesize_ivar_inconsistent; case diag::err_odr_different_num_template_parameters: return diag::warn_odr_different_num_template_parameters; case diag::err_odr_different_template_parameter_kind: return diag::warn_odr_different_template_parameter_kind; case diag::err_odr_parameter_pack_non_pack: return diag::warn_odr_parameter_pack_non_pack; case diag::err_odr_non_type_parameter_type_inconsistent: return diag::warn_odr_non_type_parameter_type_inconsistent; } llvm_unreachable("Diagnostic kind not handled in preceding switch"); } bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) { // Ensure that the implementation functions (all static functions in this TU) // never call the public ASTStructuralEquivalence::IsEquivalent() functions, // because that will wreak havoc the internal state (DeclsToCheck and // TentativeEquivalences members) and can cause faulty behaviour. For // instance, some leaf declarations can be stated and cached as inequivalent // as a side effect of one inequivalent element in the DeclsToCheck list. assert(DeclsToCheck.empty()); assert(TentativeEquivalences.empty()); if (!::IsStructurallyEquivalent(*this, D1, D2)) return false; return !Finish(); } bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) { assert(DeclsToCheck.empty()); assert(TentativeEquivalences.empty()); if (!::IsStructurallyEquivalent(*this, T1, T2)) return false; return !Finish(); } bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) { // Check for equivalent described template. TemplateDecl *Template1 = D1->getDescribedTemplate(); TemplateDecl *Template2 = D2->getDescribedTemplate(); if ((Template1 != nullptr) != (Template2 != nullptr)) return false; if (Template1 && !IsStructurallyEquivalent(*this, Template1, Template2)) return false; // FIXME: Move check for identifier names into this function. return true; } bool StructuralEquivalenceContext::CheckKindSpecificEquivalence( Decl *D1, Decl *D2) { // FIXME: Switch on all declaration kinds. For now, we're just going to // check the obvious ones. if (auto *Record1 = dyn_cast(D1)) { if (auto *Record2 = dyn_cast(D2)) { // Check for equivalent structure names. IdentifierInfo *Name1 = Record1->getIdentifier(); if (!Name1 && Record1->getTypedefNameForAnonDecl()) Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier(); IdentifierInfo *Name2 = Record2->getIdentifier(); if (!Name2 && Record2->getTypedefNameForAnonDecl()) Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier(); if (!::IsStructurallyEquivalent(Name1, Name2) || !::IsStructurallyEquivalent(*this, Record1, Record2)) return false; } else { // Record/non-record mismatch. return false; } } else if (auto *Enum1 = dyn_cast(D1)) { if (auto *Enum2 = dyn_cast(D2)) { // Check for equivalent enum names. IdentifierInfo *Name1 = Enum1->getIdentifier(); if (!Name1 && Enum1->getTypedefNameForAnonDecl()) Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier(); IdentifierInfo *Name2 = Enum2->getIdentifier(); if (!Name2 && Enum2->getTypedefNameForAnonDecl()) Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier(); if (!::IsStructurallyEquivalent(Name1, Name2) || !::IsStructurallyEquivalent(*this, Enum1, Enum2)) return false; } else { // Enum/non-enum mismatch return false; } } else if (const auto *Typedef1 = dyn_cast(D1)) { if (const auto *Typedef2 = dyn_cast(D2)) { if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(), Typedef2->getIdentifier()) || !::IsStructurallyEquivalent(*this, Typedef1->getUnderlyingType(), Typedef2->getUnderlyingType())) return false; } else { // Typedef/non-typedef mismatch. return false; } } else if (auto *ClassTemplate1 = dyn_cast(D1)) { if (auto *ClassTemplate2 = dyn_cast(D2)) { if (!::IsStructurallyEquivalent(*this, ClassTemplate1, ClassTemplate2)) return false; } else { // Class template/non-class-template mismatch. return false; } } else if (auto *FunctionTemplate1 = dyn_cast(D1)) { if (auto *FunctionTemplate2 = dyn_cast(D2)) { if (!::IsStructurallyEquivalent(*this, FunctionTemplate1, FunctionTemplate2)) return false; } else { // Class template/non-class-template mismatch. return false; } } else if (auto *TTP1 = dyn_cast(D1)) { if (auto *TTP2 = dyn_cast(D2)) { if (!::IsStructurallyEquivalent(*this, TTP1, TTP2)) return false; } else { // Kind mismatch. return false; } } else if (auto *NTTP1 = dyn_cast(D1)) { if (auto *NTTP2 = dyn_cast(D2)) { if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2)) return false; } else { // Kind mismatch. return false; } } else if (auto *TTP1 = dyn_cast(D1)) { if (auto *TTP2 = dyn_cast(D2)) { if (!::IsStructurallyEquivalent(*this, TTP1, TTP2)) return false; } else { // Kind mismatch. return false; } } else if (auto *MD1 = dyn_cast(D1)) { if (auto *MD2 = dyn_cast(D2)) { if (!::IsStructurallyEquivalent(*this, MD1, MD2)) return false; } else { // Kind mismatch. return false; } } else if (FunctionDecl *FD1 = dyn_cast(D1)) { if (FunctionDecl *FD2 = dyn_cast(D2)) { if (FD1->isOverloadedOperator()) { if (!FD2->isOverloadedOperator()) return false; if (FD1->getOverloadedOperator() != FD2->getOverloadedOperator()) return false; } if (!::IsStructurallyEquivalent(FD1->getIdentifier(), FD2->getIdentifier())) return false; if (!::IsStructurallyEquivalent(*this, FD1, FD2)) return false; } else { // Kind mismatch. return false; } } else if (FriendDecl *FrD1 = dyn_cast(D1)) { if (FriendDecl *FrD2 = dyn_cast(D2)) { if (!::IsStructurallyEquivalent(*this, FrD1, FrD2)) return false; } else { // Kind mismatch. return false; } } return true; } bool StructuralEquivalenceContext::Finish() { while (!DeclsToCheck.empty()) { // Check the next declaration. Decl *D1 = DeclsToCheck.front(); DeclsToCheck.pop_front(); Decl *D2 = TentativeEquivalences[D1]; assert(D2 && "Unrecorded tentative equivalence?"); bool Equivalent = CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2); if (!Equivalent) { // Note that these two declarations are not equivalent (and we already // know about it). NonEquivalentDecls.insert( std::make_pair(D1->getCanonicalDecl(), D2->getCanonicalDecl())); return true; } } return false; }