//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. // //===----------------------------------------------------------------------===// #include "clang/AST/Mangle.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CharUnits.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ExprCXX.h" #include "clang/Basic/ABI.h" using namespace clang; namespace { /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the /// Microsoft Visual C++ ABI. class MicrosoftCXXNameMangler { MangleContext &Context; raw_ostream &Out; ASTContext &getASTContext() const { return Context.getASTContext(); } public: MicrosoftCXXNameMangler(MangleContext &C, raw_ostream &Out_) : Context(C), Out(Out_) { } void mangle(const NamedDecl *D, StringRef Prefix = "?"); void mangleName(const NamedDecl *ND); void mangleFunctionEncoding(const FunctionDecl *FD); void mangleVariableEncoding(const VarDecl *VD); void mangleNumber(int64_t Number); void mangleType(QualType T); private: void mangleUnqualifiedName(const NamedDecl *ND) { mangleUnqualifiedName(ND, ND->getDeclName()); } void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name); void mangleSourceName(const IdentifierInfo *II); void manglePostfix(const DeclContext *DC, bool NoFunction=false); void mangleOperatorName(OverloadedOperatorKind OO); void mangleQualifiers(Qualifiers Quals, bool IsMember); void mangleObjCMethodName(const ObjCMethodDecl *MD); // Declare manglers for every type class. #define ABSTRACT_TYPE(CLASS, PARENT) #define NON_CANONICAL_TYPE(CLASS, PARENT) #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); #include "clang/AST/TypeNodes.def" void mangleType(const TagType*); void mangleType(const FunctionType *T, const FunctionDecl *D, bool IsStructor, bool IsInstMethod); void mangleType(const ArrayType *T, bool IsGlobal); void mangleExtraDimensions(QualType T); void mangleFunctionClass(const FunctionDecl *FD); void mangleCallingConvention(const FunctionType *T, bool IsInstMethod = false); void mangleThrowSpecification(const FunctionProtoType *T); }; /// MicrosoftMangleContext - Overrides the default MangleContext for the /// Microsoft Visual C++ ABI. class MicrosoftMangleContext : public MangleContext { public: MicrosoftMangleContext(ASTContext &Context, DiagnosticsEngine &Diags) : MangleContext(Context, Diags) { } virtual bool shouldMangleDeclName(const NamedDecl *D); virtual void mangleName(const NamedDecl *D, raw_ostream &Out); virtual void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, raw_ostream &); virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, const ThisAdjustment &ThisAdjustment, raw_ostream &); virtual void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &); virtual void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &); virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, const CXXRecordDecl *Type, raw_ostream &); virtual void mangleCXXRTTI(QualType T, raw_ostream &); virtual void mangleCXXRTTIName(QualType T, raw_ostream &); virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, raw_ostream &); virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, raw_ostream &); virtual void mangleReferenceTemporary(const clang::VarDecl *, raw_ostream &); }; } static bool isInCLinkageSpecification(const Decl *D) { D = D->getCanonicalDecl(); for (const DeclContext *DC = D->getDeclContext(); !DC->isTranslationUnit(); DC = DC->getParent()) { if (const LinkageSpecDecl *Linkage = dyn_cast(DC)) return Linkage->getLanguage() == LinkageSpecDecl::lang_c; } return false; } bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) { // In C, functions with no attributes never need to be mangled. Fastpath them. if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs()) return false; // Any decl can be declared with __asm("foo") on it, and this takes precedence // over all other naming in the .o file. if (D->hasAttr()) return true; // Clang's "overloadable" attribute extension to C/C++ implies name mangling // (always) as does passing a C++ member function and a function // whose name is not a simple identifier. const FunctionDecl *FD = dyn_cast(D); if (FD && (FD->hasAttr() || isa(FD) || !FD->getDeclName().isIdentifier())) return true; // Otherwise, no mangling is done outside C++ mode. if (!getASTContext().getLangOpts().CPlusPlus) return false; // Variables at global scope with internal linkage are not mangled. if (!FD) { const DeclContext *DC = D->getDeclContext(); if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage) return false; } // C functions and "main" are not mangled. if ((FD && FD->isMain()) || isInCLinkageSpecification(D)) return false; return true; } void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) { // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. // Therefore it's really important that we don't decorate the // name with leading underscores or leading/trailing at signs. So, emit a // asm marker at the start so we get the name right. Out << '\01'; // LLVM IR Marker for __asm("foo") // Any decl can be declared with __asm("foo") on it, and this takes precedence // over all other naming in the .o file. if (const AsmLabelAttr *ALA = D->getAttr()) { // If we have an asm name, then we use it as the mangling. Out << ALA->getLabel(); return; } // ::= ? Out << Prefix; mangleName(D); if (const FunctionDecl *FD = dyn_cast(D)) mangleFunctionEncoding(FD); else if (const VarDecl *VD = dyn_cast(D)) mangleVariableEncoding(VD); // TODO: Fields? Can MSVC even mangle them? } void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { // ::= // Don't mangle in the type if this isn't a decl we should typically mangle. if (!Context.shouldMangleDeclName(FD)) return; // We should never ever see a FunctionNoProtoType at this point. // We don't even know how to mangle their types anyway :). const FunctionProtoType *FT = cast(FD->getType()); bool InStructor = false, InInstMethod = false; const CXXMethodDecl *MD = dyn_cast(FD); if (MD) { if (MD->isInstance()) InInstMethod = true; if (isa(MD) || isa(MD)) InStructor = true; } // First, the function class. mangleFunctionClass(FD); mangleType(FT, FD, InStructor, InInstMethod); } void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { // ::= // ::= 0 # private static member // ::= 1 # protected static member // ::= 2 # public static member // ::= 3 # global // ::= 4 # static local // The first character in the encoding (after the name) is the storage class. if (VD->isStaticDataMember()) { // If it's a static member, it also encodes the access level. switch (VD->getAccess()) { default: case AS_private: Out << '0'; break; case AS_protected: Out << '1'; break; case AS_public: Out << '2'; break; } } else if (!VD->isStaticLocal()) Out << '3'; else Out << '4'; // Now mangle the type. // ::= // ::= A # pointers, references, arrays // Pointers and references are odd. The type of 'int * const foo;' gets // mangled as 'QAHA' instead of 'PAHB', for example. QualType Ty = VD->getType(); if (Ty->isPointerType() || Ty->isReferenceType()) { mangleType(Ty); Out << 'A'; } else if (Ty->isArrayType()) { // Global arrays are funny, too. mangleType(cast(Ty.getTypePtr()), true); Out << 'A'; } else { mangleType(Ty.getLocalUnqualifiedType()); mangleQualifiers(Ty.getLocalQualifiers(), false); } } void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) { // ::= {[]+ | []}? @ const DeclContext *DC = ND->getDeclContext(); // Always start with the unqualified name. mangleUnqualifiedName(ND); // If this is an extern variable declared locally, the relevant DeclContext // is that of the containing namespace, or the translation unit. if (isa(DC) && ND->hasLinkage()) while (!DC->isNamespace() && !DC->isTranslationUnit()) DC = DC->getParent(); manglePostfix(DC); // Terminate the whole name with an '@'. Out << '@'; } void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { // ::= [?] # <= 9 // ::= [?] + @ # > 9; A = 0, B = 1, etc... if (Number < 0) { Out << '?'; Number = -Number; } if (Number >= 1 && Number <= 10) { Out << Number-1; } else { // We have to build up the encoding in reverse order, so it will come // out right when we write it out. char Encoding[16]; char *EndPtr = Encoding+sizeof(Encoding); char *CurPtr = EndPtr; while (Number) { *--CurPtr = 'A' + (Number % 16); Number /= 16; } Out.write(CurPtr, EndPtr-CurPtr); Out << '@'; } } void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name) { // ::= // ::= // ::= switch (Name.getNameKind()) { case DeclarationName::Identifier: { if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { mangleSourceName(II); break; } // Otherwise, an anonymous entity. We must have a declaration. assert(ND && "mangling empty name without declaration"); if (const NamespaceDecl *NS = dyn_cast(ND)) { if (NS->isAnonymousNamespace()) { Out << "?A"; break; } } // We must have an anonymous struct. const TagDecl *TD = cast(ND); if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { assert(TD->getDeclContext() == D->getDeclContext() && "Typedef should not be in another decl context!"); assert(D->getDeclName().getAsIdentifierInfo() && "Typedef was not named!"); mangleSourceName(D->getDeclName().getAsIdentifierInfo()); break; } // When VC encounters an anonymous type with no tag and no typedef, // it literally emits ''. Out << ""; break; } case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: llvm_unreachable("Can't mangle Objective-C selector names here!"); case DeclarationName::CXXConstructorName: Out << "?0"; break; case DeclarationName::CXXDestructorName: Out << "?1"; break; case DeclarationName::CXXConversionFunctionName: // ::= ?B # (cast) // The target type is encoded as the return type. Out << "?B"; break; case DeclarationName::CXXOperatorName: mangleOperatorName(Name.getCXXOverloadedOperator()); break; case DeclarationName::CXXLiteralOperatorName: // FIXME: Was this added in VS2010? Does MS even know how to mangle this? llvm_unreachable("Don't know how to mangle literal operators yet!"); case DeclarationName::CXXUsingDirective: llvm_unreachable("Can't mangle a using directive name!"); } } void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC, bool NoFunction) { // ::= [] // ::= [] // ::= // ::= [] if (!DC) return; while (isa(DC)) DC = DC->getParent(); if (DC->isTranslationUnit()) return; if (const BlockDecl *BD = dyn_cast(DC)) { Context.mangleBlock(BD, Out); Out << '@'; return manglePostfix(DC->getParent(), NoFunction); } if (NoFunction && (isa(DC) || isa(DC))) return; else if (const ObjCMethodDecl *Method = dyn_cast(DC)) mangleObjCMethodName(Method); else { mangleUnqualifiedName(cast(DC)); manglePostfix(DC->getParent(), NoFunction); } } void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO) { switch (OO) { // ?0 # constructor // ?1 # destructor // ::= ?2 # new case OO_New: Out << "?2"; break; // ::= ?3 # delete case OO_Delete: Out << "?3"; break; // ::= ?4 # = case OO_Equal: Out << "?4"; break; // ::= ?5 # >> case OO_GreaterGreater: Out << "?5"; break; // ::= ?6 # << case OO_LessLess: Out << "?6"; break; // ::= ?7 # ! case OO_Exclaim: Out << "?7"; break; // ::= ?8 # == case OO_EqualEqual: Out << "?8"; break; // ::= ?9 # != case OO_ExclaimEqual: Out << "?9"; break; // ::= ?A # [] case OO_Subscript: Out << "?A"; break; // ?B # conversion // ::= ?C # -> case OO_Arrow: Out << "?C"; break; // ::= ?D # * case OO_Star: Out << "?D"; break; // ::= ?E # ++ case OO_PlusPlus: Out << "?E"; break; // ::= ?F # -- case OO_MinusMinus: Out << "?F"; break; // ::= ?G # - case OO_Minus: Out << "?G"; break; // ::= ?H # + case OO_Plus: Out << "?H"; break; // ::= ?I # & case OO_Amp: Out << "?I"; break; // ::= ?J # ->* case OO_ArrowStar: Out << "?J"; break; // ::= ?K # / case OO_Slash: Out << "?K"; break; // ::= ?L # % case OO_Percent: Out << "?L"; break; // ::= ?M # < case OO_Less: Out << "?M"; break; // ::= ?N # <= case OO_LessEqual: Out << "?N"; break; // ::= ?O # > case OO_Greater: Out << "?O"; break; // ::= ?P # >= case OO_GreaterEqual: Out << "?P"; break; // ::= ?Q # , case OO_Comma: Out << "?Q"; break; // ::= ?R # () case OO_Call: Out << "?R"; break; // ::= ?S # ~ case OO_Tilde: Out << "?S"; break; // ::= ?T # ^ case OO_Caret: Out << "?T"; break; // ::= ?U # | case OO_Pipe: Out << "?U"; break; // ::= ?V # && case OO_AmpAmp: Out << "?V"; break; // ::= ?W # || case OO_PipePipe: Out << "?W"; break; // ::= ?X # *= case OO_StarEqual: Out << "?X"; break; // ::= ?Y # += case OO_PlusEqual: Out << "?Y"; break; // ::= ?Z # -= case OO_MinusEqual: Out << "?Z"; break; // ::= ?_0 # /= case OO_SlashEqual: Out << "?_0"; break; // ::= ?_1 # %= case OO_PercentEqual: Out << "?_1"; break; // ::= ?_2 # >>= case OO_GreaterGreaterEqual: Out << "?_2"; break; // ::= ?_3 # <<= case OO_LessLessEqual: Out << "?_3"; break; // ::= ?_4 # &= case OO_AmpEqual: Out << "?_4"; break; // ::= ?_5 # |= case OO_PipeEqual: Out << "?_5"; break; // ::= ?_6 # ^= case OO_CaretEqual: Out << "?_6"; break; // ?_7 # vftable // ?_8 # vbtable // ?_9 # vcall // ?_A # typeof // ?_B # local static guard // ?_C # string // ?_D # vbase destructor // ?_E # vector deleting destructor // ?_F # default constructor closure // ?_G # scalar deleting destructor // ?_H # vector constructor iterator // ?_I # vector destructor iterator // ?_J # vector vbase constructor iterator // ?_K # virtual displacement map // ?_L # eh vector constructor iterator // ?_M # eh vector destructor iterator // ?_N # eh vector vbase constructor iterator // ?_O # copy constructor closure // ?_P # udt returning // ?_Q # // ?_R0 # RTTI Type Descriptor // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) // ?_R2 # RTTI Base Class Array // ?_R3 # RTTI Class Hierarchy Descriptor // ?_R4 # RTTI Complete Object Locator // ?_S # local vftable // ?_T # local vftable constructor closure // ::= ?_U # new[] case OO_Array_New: Out << "?_U"; break; // ::= ?_V # delete[] case OO_Array_Delete: Out << "?_V"; break; case OO_Conditional: llvm_unreachable("Don't know how to mangle ?:"); case OO_None: case NUM_OVERLOADED_OPERATORS: llvm_unreachable("Not an overloaded operator"); } } void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) { // ::= @ Out << II->getName() << '@'; } void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { Context.mangleObjCMethodName(MD, Out); } void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, bool IsMember) { // ::= [E] [F] [I] // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); // 'I' means __restrict (32/64-bit). // Note that the MSVC __restrict keyword isn't the same as the C99 restrict // keyword! // ::= A # near // ::= B # near const // ::= C # near volatile // ::= D # near const volatile // ::= E # far (16-bit) // ::= F # far const (16-bit) // ::= G # far volatile (16-bit) // ::= H # far const volatile (16-bit) // ::= I # huge (16-bit) // ::= J # huge const (16-bit) // ::= K # huge volatile (16-bit) // ::= L # huge const volatile (16-bit) // ::= M # based // ::= N # based const // ::= O # based volatile // ::= P # based const volatile // ::= Q # near member // ::= R # near const member // ::= S # near volatile member // ::= T # near const volatile member // ::= U # far member (16-bit) // ::= V # far const member (16-bit) // ::= W # far volatile member (16-bit) // ::= X # far const volatile member (16-bit) // ::= Y # huge member (16-bit) // ::= Z # huge const member (16-bit) // ::= 0 # huge volatile member (16-bit) // ::= 1 # huge const volatile member (16-bit) // ::= 2 # based member // ::= 3 # based const member // ::= 4 # based volatile member // ::= 5 # based const volatile member // ::= 6 # near function (pointers only) // ::= 7 # far function (pointers only) // ::= 8 # near method (pointers only) // ::= 9 # far method (pointers only) // ::= _A # based function (pointers only) // ::= _B # based function (far?) (pointers only) // ::= _C # based method (pointers only) // ::= _D # based method (far?) (pointers only) // ::= _E # block (Clang) // ::= 0 # __based(void) // ::= 1 # __based(segment)? // ::= 2 # __based(name) // ::= 3 # ? // ::= 4 # ? // ::= 5 # not really based if (!IsMember) { if (!Quals.hasVolatile()) { if (!Quals.hasConst()) Out << 'A'; else Out << 'B'; } else { if (!Quals.hasConst()) Out << 'C'; else Out << 'D'; } } else { if (!Quals.hasVolatile()) { if (!Quals.hasConst()) Out << 'Q'; else Out << 'R'; } else { if (!Quals.hasConst()) Out << 'S'; else Out << 'T'; } } // FIXME: For now, just drop all extension qualifiers on the floor. } void MicrosoftCXXNameMangler::mangleType(QualType T) { // Only operate on the canonical type! T = getASTContext().getCanonicalType(T); Qualifiers Quals = T.getLocalQualifiers(); if (Quals) { // We have to mangle these now, while we still have enough information. // ::= P # pointer // ::= Q # const pointer // ::= R # volatile pointer // ::= S # const volatile pointer if (T->isAnyPointerType() || T->isMemberPointerType() || T->isBlockPointerType()) { if (!Quals.hasVolatile()) Out << 'Q'; else { if (!Quals.hasConst()) Out << 'R'; else Out << 'S'; } } else // Just emit qualifiers like normal. // NB: When we mangle a pointer/reference type, and the pointee // type has no qualifiers, the lack of qualifier gets mangled // in there. mangleQualifiers(Quals, false); } else if (T->isAnyPointerType() || T->isMemberPointerType() || T->isBlockPointerType()) { Out << 'P'; } switch (T->getTypeClass()) { #define ABSTRACT_TYPE(CLASS, PARENT) #define NON_CANONICAL_TYPE(CLASS, PARENT) \ case Type::CLASS: \ llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ return; #define TYPE(CLASS, PARENT) \ case Type::CLASS: \ mangleType(static_cast(T.getTypePtr())); \ break; #include "clang/AST/TypeNodes.def" } } void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T) { // ::= // ::= X # void // ::= C # signed char // ::= D # char // ::= E # unsigned char // ::= F # short // ::= G # unsigned short (or wchar_t if it's not a builtin) // ::= H # int // ::= I # unsigned int // ::= J # long // ::= K # unsigned long // L # // ::= M # float // ::= N # double // ::= O # long double (__float80 is mangled differently) // ::= _J # long long, __int64 // ::= _K # unsigned long long, __int64 // ::= _L # __int128 // ::= _M # unsigned __int128 // ::= _N # bool // _O # // ::= _T # __float80 (Intel) // ::= _W # wchar_t // ::= _Z # __float80 (Digital Mars) switch (T->getKind()) { case BuiltinType::Void: Out << 'X'; break; case BuiltinType::SChar: Out << 'C'; break; case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break; case BuiltinType::UChar: Out << 'E'; break; case BuiltinType::Short: Out << 'F'; break; case BuiltinType::UShort: Out << 'G'; break; case BuiltinType::Int: Out << 'H'; break; case BuiltinType::UInt: Out << 'I'; break; case BuiltinType::Long: Out << 'J'; break; case BuiltinType::ULong: Out << 'K'; break; case BuiltinType::Float: Out << 'M'; break; case BuiltinType::Double: Out << 'N'; break; // TODO: Determine size and mangle accordingly case BuiltinType::LongDouble: Out << 'O'; break; case BuiltinType::LongLong: Out << "_J"; break; case BuiltinType::ULongLong: Out << "_K"; break; case BuiltinType::Int128: Out << "_L"; break; case BuiltinType::UInt128: Out << "_M"; break; case BuiltinType::Bool: Out << "_N"; break; case BuiltinType::WChar_S: case BuiltinType::WChar_U: Out << "_W"; break; #define BUILTIN_TYPE(Id, SingletonId) #define PLACEHOLDER_TYPE(Id, SingletonId) \ case BuiltinType::Id: #include "clang/AST/BuiltinTypes.def" case BuiltinType::Dependent: llvm_unreachable("placeholder types shouldn't get to name mangling"); case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break; case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break; case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break; case BuiltinType::Char16: case BuiltinType::Char32: case BuiltinType::Half: case BuiltinType::NullPtr: assert(0 && "Don't know how to mangle this type yet"); } } // ::= void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T) { // Structors only appear in decls, so at this point we know it's not a // structor type. // I'll probably have mangleType(MemberPointerType) call the mangleType() // method directly. mangleType(T, NULL, false, false); } void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T) { llvm_unreachable("Can't mangle K&R function prototypes"); } void MicrosoftCXXNameMangler::mangleType(const FunctionType *T, const FunctionDecl *D, bool IsStructor, bool IsInstMethod) { // ::= // const FunctionProtoType *Proto = cast(T); // If this is a C++ instance method, mangle the CVR qualifiers for the // this pointer. if (IsInstMethod) mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false); mangleCallingConvention(T, IsInstMethod); // ::= // ::= @ # structors (they have no declared return type) if (IsStructor) Out << '@'; else mangleType(Proto->getResultType()); // ::= X # void // ::= + @ // ::= * Z # varargs if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) { Out << 'X'; } else { if (D) { // If we got a decl, use the "types-as-written" to make sure arrays // get mangled right. for (FunctionDecl::param_const_iterator Parm = D->param_begin(), ParmEnd = D->param_end(); Parm != ParmEnd; ++Parm) mangleType((*Parm)->getTypeSourceInfo()->getType()); } else { for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), ArgEnd = Proto->arg_type_end(); Arg != ArgEnd; ++Arg) mangleType(*Arg); } // ::= Z # ellipsis if (Proto->isVariadic()) Out << 'Z'; else Out << '@'; } mangleThrowSpecification(Proto); } void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { // ::= A # private: near // ::= B # private: far // ::= C # private: static near // ::= D # private: static far // ::= E # private: virtual near // ::= F # private: virtual far // ::= G # private: thunk near // ::= H # private: thunk far // ::= I # protected: near // ::= J # protected: far // ::= K # protected: static near // ::= L # protected: static far // ::= M # protected: virtual near // ::= N # protected: virtual far // ::= O # protected: thunk near // ::= P # protected: thunk far // ::= Q # public: near // ::= R # public: far // ::= S # public: static near // ::= T # public: static far // ::= U # public: virtual near // ::= V # public: virtual far // ::= W # public: thunk near // ::= X # public: thunk far // ::= Y # global near // ::= Z # global far if (const CXXMethodDecl *MD = dyn_cast(FD)) { switch (MD->getAccess()) { default: case AS_private: if (MD->isStatic()) Out << 'C'; else if (MD->isVirtual()) Out << 'E'; else Out << 'A'; break; case AS_protected: if (MD->isStatic()) Out << 'K'; else if (MD->isVirtual()) Out << 'M'; else Out << 'I'; break; case AS_public: if (MD->isStatic()) Out << 'S'; else if (MD->isVirtual()) Out << 'U'; else Out << 'Q'; } } else Out << 'Y'; } void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T, bool IsInstMethod) { // ::= A # __cdecl // ::= B # __export __cdecl // ::= C # __pascal // ::= D # __export __pascal // ::= E # __thiscall // ::= F # __export __thiscall // ::= G # __stdcall // ::= H # __export __stdcall // ::= I # __fastcall // ::= J # __export __fastcall // The 'export' calling conventions are from a bygone era // (*cough*Win16*cough*) when functions were declared for export with // that keyword. (It didn't actually export them, it just made them so // that they could be in a DLL and somebody from another module could call // them.) CallingConv CC = T->getCallConv(); if (CC == CC_Default) CC = IsInstMethod ? getASTContext().getDefaultMethodCallConv() : CC_C; switch (CC) { default: llvm_unreachable("Unsupported CC for mangling"); case CC_Default: case CC_C: Out << 'A'; break; case CC_X86Pascal: Out << 'C'; break; case CC_X86ThisCall: Out << 'E'; break; case CC_X86StdCall: Out << 'G'; break; case CC_X86FastCall: Out << 'I'; break; } } void MicrosoftCXXNameMangler::mangleThrowSpecification( const FunctionProtoType *FT) { // ::= Z # throw(...) (default) // ::= @ # throw() or __declspec/__attribute__((nothrow)) // ::= + // NOTE: Since the Microsoft compiler ignores throw specifications, they are // all actually mangled as 'Z'. (They're ignored because their associated // functionality isn't implemented, and probably never will be.) Out << 'Z'; } void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T) { llvm_unreachable("Don't know how to mangle UnresolvedUsingTypes yet!"); } // ::= | | | // ::= T // ::= U // ::= V // ::= W void MicrosoftCXXNameMangler::mangleType(const EnumType *T) { mangleType(static_cast(T)); } void MicrosoftCXXNameMangler::mangleType(const RecordType *T) { mangleType(static_cast(T)); } void MicrosoftCXXNameMangler::mangleType(const TagType *T) { switch (T->getDecl()->getTagKind()) { case TTK_Union: Out << 'T'; break; case TTK_Struct: Out << 'U'; break; case TTK_Class: Out << 'V'; break; case TTK_Enum: Out << 'W'; Out << getASTContext().getTypeSizeInChars( cast(T->getDecl())->getIntegerType()).getQuantity(); break; } mangleName(T->getDecl()); } // ::= // ::= P [Y +] // # as global // ::= Q [Y +] // # as param // It's supposed to be the other way around, but for some strange reason, it // isn't. Today this behavior is retained for the sole purpose of backwards // compatibility. void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) { // This isn't a recursive mangling, so now we have to do it all in this // one call. if (IsGlobal) Out << 'P'; else Out << 'Q'; mangleExtraDimensions(T->getElementType()); } void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T) { mangleType(static_cast(T), false); } void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T) { mangleType(static_cast(T), false); } void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T) { mangleType(static_cast(T), false); } void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T) { mangleType(static_cast(T), false); } void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) { SmallVector Dimensions; for (;;) { if (ElementTy->isConstantArrayType()) { const ConstantArrayType *CAT = static_cast(ElementTy.getTypePtr()); Dimensions.push_back(CAT->getSize()); ElementTy = CAT->getElementType(); } else if (ElementTy->isVariableArrayType()) { llvm_unreachable("Don't know how to mangle VLAs!"); } else if (ElementTy->isDependentSizedArrayType()) { // The dependent expression has to be folded into a constant (TODO). llvm_unreachable("Don't know how to mangle dependent-sized arrays!"); } else if (ElementTy->isIncompleteArrayType()) continue; else break; } mangleQualifiers(ElementTy.getQualifiers(), false); // If there are any additional dimensions, mangle them now. if (Dimensions.size() > 0) { Out << 'Y'; // ::= # number of extra dimensions mangleNumber(Dimensions.size()); for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) { mangleNumber(Dimensions[Dim].getLimitedValue()); } } mangleType(ElementTy.getLocalUnqualifiedType()); } // ::= // ::= // void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T) { QualType PointeeType = T->getPointeeType(); if (const FunctionProtoType *FPT = dyn_cast(PointeeType)) { Out << '8'; mangleName(cast(T->getClass())->getDecl()); mangleType(FPT, NULL, false, true); } else { mangleQualifiers(PointeeType.getQualifiers(), true); mangleName(cast(T->getClass())->getDecl()); mangleType(PointeeType.getLocalUnqualifiedType()); } } void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T) { llvm_unreachable("Don't know how to mangle TemplateTypeParmTypes yet!"); } void MicrosoftCXXNameMangler::mangleType( const SubstTemplateTypeParmPackType *T) { llvm_unreachable( "Don't know how to mangle SubstTemplateTypeParmPackTypes yet!"); } // ::= // ::= void MicrosoftCXXNameMangler::mangleType(const PointerType *T) { QualType PointeeTy = T->getPointeeType(); if (PointeeTy->isArrayType()) { // Pointers to arrays are mangled like arrays. mangleExtraDimensions(T->getPointeeType()); } else if (PointeeTy->isFunctionType()) { // Function pointers are special. Out << '6'; mangleType(static_cast(PointeeTy.getTypePtr()), NULL, false, false); } else { if (!PointeeTy.hasQualifiers()) // Lack of qualifiers is mangled as 'A'. Out << 'A'; mangleType(PointeeTy); } } void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T) { // Object pointers never have qualifiers. Out << 'A'; mangleType(T->getPointeeType()); } // ::= // ::= A void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T) { Out << 'A'; QualType PointeeTy = T->getPointeeType(); if (!PointeeTy.hasQualifiers()) // Lack of qualifiers is mangled as 'A'. Out << 'A'; mangleType(PointeeTy); } void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T) { llvm_unreachable("Don't know how to mangle RValueReferenceTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const ComplexType *T) { llvm_unreachable("Don't know how to mangle ComplexTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const VectorType *T) { llvm_unreachable("Don't know how to mangle VectorTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T) { llvm_unreachable("Don't know how to mangle ExtVectorTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { llvm_unreachable( "Don't know how to mangle DependentSizedExtVectorTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T) { // ObjC interfaces have structs underlying them. Out << 'U'; mangleName(T->getDecl()); } void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T) { // We don't allow overloading by different protocol qualification, // so mangling them isn't necessary. mangleType(T->getBaseType()); } void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T) { Out << "_E"; mangleType(T->getPointeeType()); } void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T) { llvm_unreachable("Don't know how to mangle InjectedClassNameTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T) { llvm_unreachable("Don't know how to mangle TemplateSpecializationTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T) { llvm_unreachable("Don't know how to mangle DependentNameTypes yet!"); } void MicrosoftCXXNameMangler::mangleType( const DependentTemplateSpecializationType *T) { llvm_unreachable( "Don't know how to mangle DependentTemplateSpecializationTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T) { llvm_unreachable("Don't know how to mangle PackExpansionTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T) { llvm_unreachable("Don't know how to mangle TypeOfTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T) { llvm_unreachable("Don't know how to mangle TypeOfExprTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T) { llvm_unreachable("Don't know how to mangle DecltypeTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T) { llvm_unreachable("Don't know how to mangle UnaryTransformationTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const AutoType *T) { llvm_unreachable("Don't know how to mangle AutoTypes yet!"); } void MicrosoftCXXNameMangler::mangleType(const AtomicType *T) { llvm_unreachable("Don't know how to mangle AtomicTypes yet!"); } void MicrosoftMangleContext::mangleName(const NamedDecl *D, raw_ostream &Out) { assert((isa(D) || isa(D)) && "Invalid mangleName() call, argument is not a variable or function!"); assert(!isa(D) && !isa(D) && "Invalid mangleName() call on 'structor decl!"); PrettyStackTraceDecl CrashInfo(D, SourceLocation(), getASTContext().getSourceManager(), "Mangling declaration"); MicrosoftCXXNameMangler Mangler(*this, Out); return Mangler.mangle(D); } void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, raw_ostream &) { llvm_unreachable("Can't yet mangle thunks!"); } void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, const ThisAdjustment &, raw_ostream &) { llvm_unreachable("Can't yet mangle destructor thunks!"); } void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) { llvm_unreachable("Can't yet mangle virtual tables!"); } void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) { llvm_unreachable("The MS C++ ABI does not have virtual table tables!"); } void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, const CXXRecordDecl *Type, raw_ostream &) { llvm_unreachable("The MS C++ ABI does not have constructor vtables!"); } void MicrosoftMangleContext::mangleCXXRTTI(QualType T, raw_ostream &) { llvm_unreachable("Can't yet mangle RTTI!"); } void MicrosoftMangleContext::mangleCXXRTTIName(QualType T, raw_ostream &) { llvm_unreachable("Can't yet mangle RTTI names!"); } void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, raw_ostream & Out) { MicrosoftCXXNameMangler mangler(*this, Out); mangler.mangle(D); } void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, raw_ostream & Out) { MicrosoftCXXNameMangler mangler(*this, Out); mangler.mangle(D); } void MicrosoftMangleContext::mangleReferenceTemporary(const clang::VarDecl *, raw_ostream &) { llvm_unreachable("Can't yet mangle reference temporaries!"); } MangleContext *clang::createMicrosoftMangleContext(ASTContext &Context, DiagnosticsEngine &Diags) { return new MicrosoftMangleContext(Context, Diags); }