// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines BugReporter, a utility class for generating // PathDiagnostics. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/BugReporter.h" #include "clang/Analysis/PathSensitive/GRExprEngine.h" #include "clang/AST/ASTContext.h" #include "clang/Analysis/CFG.h" #include "clang/AST/Expr.h" #include "clang/AST/ParentMap.h" #include "clang/AST/StmtObjC.h" #include "clang/Basic/SourceManager.h" #include "clang/Analysis/ProgramPoint.h" #include "clang/Analysis/PathDiagnostic.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/OwningPtr.h" #include using namespace clang; BugReporterVisitor::~BugReporterVisitor() {} BugReporterContext::~BugReporterContext() { for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) if ((*I)->isOwnedByReporterContext()) delete *I; } //===----------------------------------------------------------------------===// // Helper routines for walking the ExplodedGraph and fetching statements. //===----------------------------------------------------------------------===// static inline const Stmt* GetStmt(ProgramPoint P) { if (const StmtPoint* SP = dyn_cast(&P)) return SP->getStmt(); else if (const BlockEdge* BE = dyn_cast(&P)) return BE->getSrc()->getTerminator(); return 0; } static inline const ExplodedNode* GetPredecessorNode(const ExplodedNode* N) { return N->pred_empty() ? NULL : *(N->pred_begin()); } static inline const ExplodedNode* GetSuccessorNode(const ExplodedNode* N) { return N->succ_empty() ? NULL : *(N->succ_begin()); } static const Stmt* GetPreviousStmt(const ExplodedNode* N) { for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N)) if (const Stmt *S = GetStmt(N->getLocation())) return S; return 0; } static const Stmt* GetNextStmt(const ExplodedNode* N) { for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N)) if (const Stmt *S = GetStmt(N->getLocation())) { // Check if the statement is '?' or '&&'/'||'. These are "merges", // not actual statement points. switch (S->getStmtClass()) { case Stmt::ChooseExprClass: case Stmt::ConditionalOperatorClass: continue; case Stmt::BinaryOperatorClass: { BinaryOperator::Opcode Op = cast(S)->getOpcode(); if (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr) continue; break; } default: break; } // Some expressions don't have locations. if (S->getLocStart().isInvalid()) continue; return S; } return 0; } static inline const Stmt* GetCurrentOrPreviousStmt(const ExplodedNode* N) { if (const Stmt *S = GetStmt(N->getLocation())) return S; return GetPreviousStmt(N); } static inline const Stmt* GetCurrentOrNextStmt(const ExplodedNode* N) { if (const Stmt *S = GetStmt(N->getLocation())) return S; return GetNextStmt(N); } //===----------------------------------------------------------------------===// // PathDiagnosticBuilder and its associated routines and helper objects. //===----------------------------------------------------------------------===// typedef llvm::DenseMap NodeBackMap; namespace { class VISIBILITY_HIDDEN NodeMapClosure : public BugReport::NodeResolver { NodeBackMap& M; public: NodeMapClosure(NodeBackMap *m) : M(*m) {} ~NodeMapClosure() {} const ExplodedNode* getOriginalNode(const ExplodedNode* N) { NodeBackMap::iterator I = M.find(N); return I == M.end() ? 0 : I->second; } }; class VISIBILITY_HIDDEN PathDiagnosticBuilder : public BugReporterContext { BugReport *R; PathDiagnosticClient *PDC; llvm::OwningPtr PM; NodeMapClosure NMC; public: PathDiagnosticBuilder(GRBugReporter &br, BugReport *r, NodeBackMap *Backmap, PathDiagnosticClient *pdc) : BugReporterContext(br), R(r), PDC(pdc), NMC(Backmap) { addVisitor(R); } PathDiagnosticLocation ExecutionContinues(const ExplodedNode* N); PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream& os, const ExplodedNode* N); ParentMap& getParentMap() { if (PM.get() == 0) PM.reset(new ParentMap(getCodeDecl().getBody())); return *PM.get(); } const Stmt *getParent(const Stmt *S) { return getParentMap().getParent(S); } virtual NodeMapClosure& getNodeResolver() { return NMC; } BugReport& getReport() { return *R; } PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S); PathDiagnosticLocation getEnclosingStmtLocation(const PathDiagnosticLocation &L) { if (const Stmt *S = L.asStmt()) return getEnclosingStmtLocation(S); return L; } PathDiagnosticClient::PathGenerationScheme getGenerationScheme() const { return PDC ? PDC->getGenerationScheme() : PathDiagnosticClient::Extensive; } bool supportsLogicalOpControlFlow() const { return PDC ? PDC->supportsLogicalOpControlFlow() : true; } }; } // end anonymous namespace PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode* N) { if (const Stmt *S = GetNextStmt(N)) return PathDiagnosticLocation(S, getSourceManager()); return FullSourceLoc(N->getLocationContext()->getDecl()->getBodyRBrace(), getSourceManager()); } PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream& os, const ExplodedNode* N) { // Slow, but probably doesn't matter. if (os.str().empty()) os << ' '; const PathDiagnosticLocation &Loc = ExecutionContinues(N); if (Loc.asStmt()) os << "Execution continues on line " << getSourceManager().getInstantiationLineNumber(Loc.asLocation()) << '.'; else os << "Execution jumps to the end of the " << (isa(N->getLocationContext()->getDecl()) ? "method" : "function") << '.'; return Loc; } static bool IsNested(const Stmt *S, ParentMap &PM) { if (isa(S) && PM.isConsumedExpr(cast(S))) return true; const Stmt *Parent = PM.getParentIgnoreParens(S); if (Parent) switch (Parent->getStmtClass()) { case Stmt::ForStmtClass: case Stmt::DoStmtClass: case Stmt::WhileStmtClass: return true; default: break; } return false; } PathDiagnosticLocation PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) { assert(S && "Null Stmt* passed to getEnclosingStmtLocation"); ParentMap &P = getParentMap(); SourceManager &SMgr = getSourceManager(); while (IsNested(S, P)) { const Stmt *Parent = P.getParentIgnoreParens(S); if (!Parent) break; switch (Parent->getStmtClass()) { case Stmt::BinaryOperatorClass: { const BinaryOperator *B = cast(Parent); if (B->isLogicalOp()) return PathDiagnosticLocation(S, SMgr); break; } case Stmt::CompoundStmtClass: case Stmt::StmtExprClass: return PathDiagnosticLocation(S, SMgr); case Stmt::ChooseExprClass: // Similar to '?' if we are referring to condition, just have the edge // point to the entire choose expression. if (cast(Parent)->getCond() == S) return PathDiagnosticLocation(Parent, SMgr); else return PathDiagnosticLocation(S, SMgr); case Stmt::ConditionalOperatorClass: // For '?', if we are referring to condition, just have the edge point // to the entire '?' expression. if (cast(Parent)->getCond() == S) return PathDiagnosticLocation(Parent, SMgr); else return PathDiagnosticLocation(S, SMgr); case Stmt::DoStmtClass: return PathDiagnosticLocation(S, SMgr); case Stmt::ForStmtClass: if (cast(Parent)->getBody() == S) return PathDiagnosticLocation(S, SMgr); break; case Stmt::IfStmtClass: if (cast(Parent)->getCond() != S) return PathDiagnosticLocation(S, SMgr); break; case Stmt::ObjCForCollectionStmtClass: if (cast(Parent)->getBody() == S) return PathDiagnosticLocation(S, SMgr); break; case Stmt::WhileStmtClass: if (cast(Parent)->getCond() != S) return PathDiagnosticLocation(S, SMgr); break; default: break; } S = Parent; } assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); // Special case: DeclStmts can appear in for statement declarations, in which // case the ForStmt is the context. if (isa(S)) { if (const Stmt *Parent = P.getParent(S)) { switch (Parent->getStmtClass()) { case Stmt::ForStmtClass: case Stmt::ObjCForCollectionStmtClass: return PathDiagnosticLocation(Parent, SMgr); default: break; } } } else if (isa(S)) { // Special case: the binary operator represents the initialization // code in a for statement (this can happen when the variable being // initialized is an old variable. if (const ForStmt *FS = dyn_cast_or_null(P.getParentIgnoreParens(S))) { if (FS->getInit() == S) return PathDiagnosticLocation(FS, SMgr); } } return PathDiagnosticLocation(S, SMgr); } //===----------------------------------------------------------------------===// // ScanNotableSymbols: closure-like callback for scanning Store bindings. //===----------------------------------------------------------------------===// static const VarDecl* GetMostRecentVarDeclBinding(const ExplodedNode* N, GRStateManager& VMgr, SVal X) { for ( ; N ; N = N->pred_empty() ? 0 : *N->pred_begin()) { ProgramPoint P = N->getLocation(); if (!isa(P)) continue; const DeclRefExpr* DR = dyn_cast(cast(P).getStmt()); if (!DR) continue; SVal Y = N->getState()->getSVal(DR); if (X != Y) continue; const VarDecl* VD = dyn_cast(DR->getDecl()); if (!VD) continue; return VD; } return 0; } namespace { class VISIBILITY_HIDDEN NotableSymbolHandler : public StoreManager::BindingsHandler { SymbolRef Sym; const GRState* PrevSt; const Stmt* S; GRStateManager& VMgr; const ExplodedNode* Pred; PathDiagnostic& PD; BugReporter& BR; public: NotableSymbolHandler(SymbolRef sym, const GRState* prevst, const Stmt* s, GRStateManager& vmgr, const ExplodedNode* pred, PathDiagnostic& pd, BugReporter& br) : Sym(sym), PrevSt(prevst), S(s), VMgr(vmgr), Pred(pred), PD(pd), BR(br) {} bool HandleBinding(StoreManager& SMgr, Store store, const MemRegion* R, SVal V) { SymbolRef ScanSym = V.getAsSymbol(); if (ScanSym != Sym) return true; // Check if the previous state has this binding. SVal X = PrevSt->getSVal(loc::MemRegionVal(R)); if (X == V) // Same binding? return true; // Different binding. Only handle assignments for now. We don't pull // this check out of the loop because we will eventually handle other // cases. VarDecl *VD = 0; if (const BinaryOperator* B = dyn_cast(S)) { if (!B->isAssignmentOp()) return true; // What variable did we assign to? DeclRefExpr* DR = dyn_cast(B->getLHS()->IgnoreParenCasts()); if (!DR) return true; VD = dyn_cast(DR->getDecl()); } else if (const DeclStmt* DS = dyn_cast(S)) { // FIXME: Eventually CFGs won't have DeclStmts. Right now we // assume that each DeclStmt has a single Decl. This invariant // holds by contruction in the CFG. VD = dyn_cast(*DS->decl_begin()); } if (!VD) return true; // What is the most recently referenced variable with this binding? const VarDecl* MostRecent = GetMostRecentVarDeclBinding(Pred, VMgr, V); if (!MostRecent) return true; // Create the diagnostic. FullSourceLoc L(S->getLocStart(), BR.getSourceManager()); if (Loc::IsLocType(VD->getType())) { std::string msg = "'" + std::string(VD->getNameAsString()) + "' now aliases '" + MostRecent->getNameAsString() + "'"; PD.push_front(new PathDiagnosticEventPiece(L, msg)); } return true; } }; } static void HandleNotableSymbol(const ExplodedNode* N, const Stmt* S, SymbolRef Sym, BugReporter& BR, PathDiagnostic& PD) { const ExplodedNode* Pred = N->pred_empty() ? 0 : *N->pred_begin(); const GRState* PrevSt = Pred ? Pred->getState() : 0; if (!PrevSt) return; // Look at the region bindings of the current state that map to the // specified symbol. Are any of them not in the previous state? GRStateManager& VMgr = cast(BR).getStateManager(); NotableSymbolHandler H(Sym, PrevSt, S, VMgr, Pred, PD, BR); cast(BR).getStateManager().iterBindings(N->getState(), H); } namespace { class VISIBILITY_HIDDEN ScanNotableSymbols : public StoreManager::BindingsHandler { llvm::SmallSet AlreadyProcessed; const ExplodedNode* N; const Stmt* S; GRBugReporter& BR; PathDiagnostic& PD; public: ScanNotableSymbols(const ExplodedNode* n, const Stmt* s, GRBugReporter& br, PathDiagnostic& pd) : N(n), S(s), BR(br), PD(pd) {} bool HandleBinding(StoreManager& SMgr, Store store, const MemRegion* R, SVal V) { SymbolRef ScanSym = V.getAsSymbol(); if (!ScanSym) return true; if (!BR.isNotable(ScanSym)) return true; if (AlreadyProcessed.count(ScanSym)) return true; AlreadyProcessed.insert(ScanSym); HandleNotableSymbol(N, S, ScanSym, BR, PD); return true; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // "Minimal" path diagnostic generation algorithm. //===----------------------------------------------------------------------===// static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM); static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N) { SourceManager& SMgr = PDB.getSourceManager(); const ExplodedNode* NextNode = N->pred_empty() ? NULL : *(N->pred_begin()); while (NextNode) { N = NextNode; NextNode = GetPredecessorNode(N); ProgramPoint P = N->getLocation(); if (const BlockEdge* BE = dyn_cast(&P)) { CFGBlock* Src = BE->getSrc(); CFGBlock* Dst = BE->getDst(); Stmt* T = Src->getTerminator(); if (!T) continue; FullSourceLoc Start(T->getLocStart(), SMgr); switch (T->getStmtClass()) { default: break; case Stmt::GotoStmtClass: case Stmt::IndirectGotoStmtClass: { const Stmt* S = GetNextStmt(N); if (!S) continue; std::string sbuf; llvm::raw_string_ostream os(sbuf); const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S); os << "Control jumps to line " << End.asLocation().getInstantiationLineNumber(); PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, os.str())); break; } case Stmt::SwitchStmtClass: { // Figure out what case arm we took. std::string sbuf; llvm::raw_string_ostream os(sbuf); if (Stmt* S = Dst->getLabel()) { PathDiagnosticLocation End(S, SMgr); switch (S->getStmtClass()) { default: os << "No cases match in the switch statement. " "Control jumps to line " << End.asLocation().getInstantiationLineNumber(); break; case Stmt::DefaultStmtClass: os << "Control jumps to the 'default' case at line " << End.asLocation().getInstantiationLineNumber(); break; case Stmt::CaseStmtClass: { os << "Control jumps to 'case "; CaseStmt* Case = cast(S); Expr* LHS = Case->getLHS()->IgnoreParenCasts(); // Determine if it is an enum. bool GetRawInt = true; if (DeclRefExpr* DR = dyn_cast(LHS)) { // FIXME: Maybe this should be an assertion. Are there cases // were it is not an EnumConstantDecl? EnumConstantDecl* D = dyn_cast(DR->getDecl()); if (D) { GetRawInt = false; os << D->getNameAsString(); } } if (GetRawInt) os << LHS->EvaluateAsInt(PDB.getASTContext()); os << ":' at line " << End.asLocation().getInstantiationLineNumber(); break; } } PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, os.str())); } else { os << "'Default' branch taken. "; const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N); PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, os.str())); } break; } case Stmt::BreakStmtClass: case Stmt::ContinueStmtClass: { std::string sbuf; llvm::raw_string_ostream os(sbuf); PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, os.str())); break; } // Determine control-flow for ternary '?'. case Stmt::ConditionalOperatorClass: { std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "'?' condition is "; if (*(Src->succ_begin()+1) == Dst) os << "false"; else os << "true"; PathDiagnosticLocation End = PDB.ExecutionContinues(N); if (const Stmt *S = End.asStmt()) End = PDB.getEnclosingStmtLocation(S); PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, os.str())); break; } // Determine control-flow for short-circuited '&&' and '||'. case Stmt::BinaryOperatorClass: { if (!PDB.supportsLogicalOpControlFlow()) break; BinaryOperator *B = cast(T); std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "Left side of '"; if (B->getOpcode() == BinaryOperator::LAnd) { os << "&&" << "' is "; if (*(Src->succ_begin()+1) == Dst) { os << "false"; PathDiagnosticLocation End(B->getLHS(), SMgr); PathDiagnosticLocation Start(B->getOperatorLoc(), SMgr); PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, os.str())); } else { os << "true"; PathDiagnosticLocation Start(B->getLHS(), SMgr); PathDiagnosticLocation End = PDB.ExecutionContinues(N); PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, os.str())); } } else { assert(B->getOpcode() == BinaryOperator::LOr); os << "||" << "' is "; if (*(Src->succ_begin()+1) == Dst) { os << "false"; PathDiagnosticLocation Start(B->getLHS(), SMgr); PathDiagnosticLocation End = PDB.ExecutionContinues(N); PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, os.str())); } else { os << "true"; PathDiagnosticLocation End(B->getLHS(), SMgr); PathDiagnosticLocation Start(B->getOperatorLoc(), SMgr); PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, os.str())); } } break; } case Stmt::DoStmtClass: { if (*(Src->succ_begin()) == Dst) { std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "Loop condition is true. "; PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); if (const Stmt *S = End.asStmt()) End = PDB.getEnclosingStmtLocation(S); PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, os.str())); } else { PathDiagnosticLocation End = PDB.ExecutionContinues(N); if (const Stmt *S = End.asStmt()) End = PDB.getEnclosingStmtLocation(S); PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, "Loop condition is false. Exiting loop")); } break; } case Stmt::WhileStmtClass: case Stmt::ForStmtClass: { if (*(Src->succ_begin()+1) == Dst) { std::string sbuf; llvm::raw_string_ostream os(sbuf); os << "Loop condition is false. "; PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); if (const Stmt *S = End.asStmt()) End = PDB.getEnclosingStmtLocation(S); PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, os.str())); } else { PathDiagnosticLocation End = PDB.ExecutionContinues(N); if (const Stmt *S = End.asStmt()) End = PDB.getEnclosingStmtLocation(S); PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, "Loop condition is true. Entering loop body")); } break; } case Stmt::IfStmtClass: { PathDiagnosticLocation End = PDB.ExecutionContinues(N); if (const Stmt *S = End.asStmt()) End = PDB.getEnclosingStmtLocation(S); if (*(Src->succ_begin()+1) == Dst) PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, "Taking false branch")); else PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, "Taking true branch")); break; } } } if (NextNode) { for (BugReporterContext::visitor_iterator I = PDB.visitor_begin(), E = PDB.visitor_end(); I!=E; ++I) { if (PathDiagnosticPiece* p = (*I)->VisitNode(N, NextNode, PDB)) PD.push_front(p); } } if (const PostStmt* PS = dyn_cast(&P)) { // Scan the region bindings, and see if a "notable" symbol has a new // lval binding. ScanNotableSymbols SNS(N, PS->getStmt(), PDB.getBugReporter(), PD); PDB.getStateManager().iterBindings(N->getState(), SNS); } } // After constructing the full PathDiagnostic, do a pass over it to compact // PathDiagnosticPieces that occur within a macro. CompactPathDiagnostic(PD, PDB.getSourceManager()); } //===----------------------------------------------------------------------===// // "Extensive" PathDiagnostic generation. //===----------------------------------------------------------------------===// static bool IsControlFlowExpr(const Stmt *S) { const Expr *E = dyn_cast(S); if (!E) return false; E = E->IgnoreParenCasts(); if (isa(E)) return true; if (const BinaryOperator *B = dyn_cast(E)) if (B->isLogicalOp()) return true; return false; } namespace { class VISIBILITY_HIDDEN ContextLocation : public PathDiagnosticLocation { bool IsDead; public: ContextLocation(const PathDiagnosticLocation &L, bool isdead = false) : PathDiagnosticLocation(L), IsDead(isdead) {} void markDead() { IsDead = true; } bool isDead() const { return IsDead; } }; class VISIBILITY_HIDDEN EdgeBuilder { std::vector CLocs; typedef std::vector::iterator iterator; PathDiagnostic &PD; PathDiagnosticBuilder &PDB; PathDiagnosticLocation PrevLoc; bool IsConsumedExpr(const PathDiagnosticLocation &L); bool containsLocation(const PathDiagnosticLocation &Container, const PathDiagnosticLocation &Containee); PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L); PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L, bool firstCharOnly = false) { if (const Stmt *S = L.asStmt()) { const Stmt *Original = S; while (1) { // Adjust the location for some expressions that are best referenced // by one of their subexpressions. switch (S->getStmtClass()) { default: break; case Stmt::ParenExprClass: S = cast(S)->IgnoreParens(); firstCharOnly = true; continue; case Stmt::ConditionalOperatorClass: S = cast(S)->getCond(); firstCharOnly = true; continue; case Stmt::ChooseExprClass: S = cast(S)->getCond(); firstCharOnly = true; continue; case Stmt::BinaryOperatorClass: S = cast(S)->getLHS(); firstCharOnly = true; continue; } break; } if (S != Original) L = PathDiagnosticLocation(S, L.getManager()); } if (firstCharOnly) L = PathDiagnosticLocation(L.asLocation()); return L; } void popLocation() { if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) { // For contexts, we only one the first character as the range. rawAddEdge(cleanUpLocation(CLocs.back(), true)); } CLocs.pop_back(); } PathDiagnosticLocation IgnoreParens(const PathDiagnosticLocation &L); public: EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb) : PD(pd), PDB(pdb) { // If the PathDiagnostic already has pieces, add the enclosing statement // of the first piece as a context as well. if (!PD.empty()) { PrevLoc = PD.begin()->getLocation(); if (const Stmt *S = PrevLoc.asStmt()) addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); } } ~EdgeBuilder() { while (!CLocs.empty()) popLocation(); // Finally, add an initial edge from the start location of the first // statement (if it doesn't already exist). // FIXME: Should handle CXXTryStmt if analyser starts supporting C++. if (const CompoundStmt *CS = PDB.getCodeDecl().getCompoundBody()) if (!CS->body_empty()) { SourceLocation Loc = (*CS->body_begin())->getLocStart(); rawAddEdge(PathDiagnosticLocation(Loc, PDB.getSourceManager())); } } void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false); void addEdge(const Stmt *S, bool alwaysAdd = false) { addEdge(PathDiagnosticLocation(S, PDB.getSourceManager()), alwaysAdd); } void rawAddEdge(PathDiagnosticLocation NewLoc); void addContext(const Stmt *S); void addExtendedContext(const Stmt *S); }; } // end anonymous namespace PathDiagnosticLocation EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) { if (const Stmt *S = L.asStmt()) { if (IsControlFlowExpr(S)) return L; return PDB.getEnclosingStmtLocation(S); } return L; } bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container, const PathDiagnosticLocation &Containee) { if (Container == Containee) return true; if (Container.asDecl()) return true; if (const Stmt *S = Containee.asStmt()) if (const Stmt *ContainerS = Container.asStmt()) { while (S) { if (S == ContainerS) return true; S = PDB.getParent(S); } return false; } // Less accurate: compare using source ranges. SourceRange ContainerR = Container.asRange(); SourceRange ContaineeR = Containee.asRange(); SourceManager &SM = PDB.getSourceManager(); SourceLocation ContainerRBeg = SM.getInstantiationLoc(ContainerR.getBegin()); SourceLocation ContainerREnd = SM.getInstantiationLoc(ContainerR.getEnd()); SourceLocation ContaineeRBeg = SM.getInstantiationLoc(ContaineeR.getBegin()); SourceLocation ContaineeREnd = SM.getInstantiationLoc(ContaineeR.getEnd()); unsigned ContainerBegLine = SM.getInstantiationLineNumber(ContainerRBeg); unsigned ContainerEndLine = SM.getInstantiationLineNumber(ContainerREnd); unsigned ContaineeBegLine = SM.getInstantiationLineNumber(ContaineeRBeg); unsigned ContaineeEndLine = SM.getInstantiationLineNumber(ContaineeREnd); assert(ContainerBegLine <= ContainerEndLine); assert(ContaineeBegLine <= ContaineeEndLine); return (ContainerBegLine <= ContaineeBegLine && ContainerEndLine >= ContaineeEndLine && (ContainerBegLine != ContaineeBegLine || SM.getInstantiationColumnNumber(ContainerRBeg) <= SM.getInstantiationColumnNumber(ContaineeRBeg)) && (ContainerEndLine != ContaineeEndLine || SM.getInstantiationColumnNumber(ContainerREnd) >= SM.getInstantiationColumnNumber(ContainerREnd))); } PathDiagnosticLocation EdgeBuilder::IgnoreParens(const PathDiagnosticLocation &L) { if (const Expr* E = dyn_cast_or_null(L.asStmt())) return PathDiagnosticLocation(E->IgnoreParenCasts(), PDB.getSourceManager()); return L; } void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) { if (!PrevLoc.isValid()) { PrevLoc = NewLoc; return; } const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc); const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc); if (NewLocClean.asLocation() == PrevLocClean.asLocation()) return; // FIXME: Ignore intra-macro edges for now. if (NewLocClean.asLocation().getInstantiationLoc() == PrevLocClean.asLocation().getInstantiationLoc()) return; PD.push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean)); PrevLoc = NewLoc; } void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) { if (!alwaysAdd && NewLoc.asLocation().isMacroID()) return; const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc); while (!CLocs.empty()) { ContextLocation &TopContextLoc = CLocs.back(); // Is the top location context the same as the one for the new location? if (TopContextLoc == CLoc) { if (alwaysAdd) { if (IsConsumedExpr(TopContextLoc) && !IsControlFlowExpr(TopContextLoc.asStmt())) TopContextLoc.markDead(); rawAddEdge(NewLoc); } return; } if (containsLocation(TopContextLoc, CLoc)) { if (alwaysAdd) { rawAddEdge(NewLoc); if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) { CLocs.push_back(ContextLocation(CLoc, true)); return; } } CLocs.push_back(CLoc); return; } // Context does not contain the location. Flush it. popLocation(); } // If we reach here, there is no enclosing context. Just add the edge. rawAddEdge(NewLoc); } bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) { if (const Expr *X = dyn_cast_or_null(L.asStmt())) return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X); return false; } void EdgeBuilder::addExtendedContext(const Stmt *S) { if (!S) return; const Stmt *Parent = PDB.getParent(S); while (Parent) { if (isa(Parent)) Parent = PDB.getParent(Parent); else break; } if (Parent) { switch (Parent->getStmtClass()) { case Stmt::DoStmtClass: case Stmt::ObjCAtSynchronizedStmtClass: addContext(Parent); default: break; } } addContext(S); } void EdgeBuilder::addContext(const Stmt *S) { if (!S) return; PathDiagnosticLocation L(S, PDB.getSourceManager()); while (!CLocs.empty()) { const PathDiagnosticLocation &TopContextLoc = CLocs.back(); // Is the top location context the same as the one for the new location? if (TopContextLoc == L) return; if (containsLocation(TopContextLoc, L)) { CLocs.push_back(L); return; } // Context does not contain the location. Flush it. popLocation(); } CLocs.push_back(L); } static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N) { EdgeBuilder EB(PD, PDB); const ExplodedNode* NextNode = N->pred_empty() ? NULL : *(N->pred_begin()); while (NextNode) { N = NextNode; NextNode = GetPredecessorNode(N); ProgramPoint P = N->getLocation(); do { // Block edges. if (const BlockEdge *BE = dyn_cast(&P)) { const CFGBlock &Blk = *BE->getSrc(); const Stmt *Term = Blk.getTerminator(); // Are we jumping to the head of a loop? Add a special diagnostic. if (const Stmt *Loop = BE->getDst()->getLoopTarget()) { PathDiagnosticLocation L(Loop, PDB.getSourceManager()); const CompoundStmt *CS = NULL; if (!Term) { if (const ForStmt *FS = dyn_cast(Loop)) CS = dyn_cast(FS->getBody()); else if (const WhileStmt *WS = dyn_cast(Loop)) CS = dyn_cast(WS->getBody()); } PathDiagnosticEventPiece *p = new PathDiagnosticEventPiece(L, "Looping back to the head of the loop"); EB.addEdge(p->getLocation(), true); PD.push_front(p); if (CS) { PathDiagnosticLocation BL(CS->getRBracLoc(), PDB.getSourceManager()); BL = PathDiagnosticLocation(BL.asLocation()); EB.addEdge(BL); } } if (Term) EB.addContext(Term); break; } if (const BlockEntrance *BE = dyn_cast(&P)) { if (const Stmt* S = BE->getFirstStmt()) { if (IsControlFlowExpr(S)) { // Add the proper context for '&&', '||', and '?'. EB.addContext(S); } else EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); } break; } } while (0); if (!NextNode) continue; for (BugReporterContext::visitor_iterator I = PDB.visitor_begin(), E = PDB.visitor_end(); I!=E; ++I) { if (PathDiagnosticPiece* p = (*I)->VisitNode(N, NextNode, PDB)) { const PathDiagnosticLocation &Loc = p->getLocation(); EB.addEdge(Loc, true); PD.push_front(p); if (const Stmt *S = Loc.asStmt()) EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); } } } } //===----------------------------------------------------------------------===// // Methods for BugType and subclasses. //===----------------------------------------------------------------------===// BugType::~BugType() {} void BugType::FlushReports(BugReporter &BR) {} //===----------------------------------------------------------------------===// // Methods for BugReport and subclasses. //===----------------------------------------------------------------------===// BugReport::~BugReport() {} RangedBugReport::~RangedBugReport() {} const Stmt* BugReport::getStmt() const { ProgramPoint ProgP = EndNode->getLocation(); const Stmt *S = NULL; if (BlockEntrance* BE = dyn_cast(&ProgP)) { CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); if (BE->getBlock() == &Exit) S = GetPreviousStmt(EndNode); } if (!S) S = GetStmt(ProgP); return S; } PathDiagnosticPiece* BugReport::getEndPath(BugReporterContext& BRC, const ExplodedNode* EndPathNode) { const Stmt* S = getStmt(); if (!S) return NULL; const SourceRange *Beg, *End; getRanges(Beg, End); PathDiagnosticLocation L(S, BRC.getSourceManager()); // Only add the statement itself as a range if we didn't specify any // special ranges for this report. PathDiagnosticPiece* P = new PathDiagnosticEventPiece(L, getDescription(), Beg == End); for (; Beg != End; ++Beg) P->addRange(*Beg); return P; } void BugReport::getRanges(const SourceRange*& beg, const SourceRange*& end) { if (const Expr* E = dyn_cast_or_null(getStmt())) { R = E->getSourceRange(); assert(R.isValid()); beg = &R; end = beg+1; } else beg = end = 0; } SourceLocation BugReport::getLocation() const { if (EndNode) if (const Stmt* S = GetCurrentOrPreviousStmt(EndNode)) { // For member expressions, return the location of the '.' or '->'. if (const MemberExpr* ME = dyn_cast(S)) return ME->getMemberLoc(); return S->getLocStart(); } return FullSourceLoc(); } PathDiagnosticPiece* BugReport::VisitNode(const ExplodedNode* N, const ExplodedNode* PrevN, BugReporterContext &BRC) { return NULL; } //===----------------------------------------------------------------------===// // Methods for BugReporter and subclasses. //===----------------------------------------------------------------------===// BugReportEquivClass::~BugReportEquivClass() { for (iterator I=begin(), E=end(); I!=E; ++I) delete *I; } GRBugReporter::~GRBugReporter() { FlushReports(); } BugReporterData::~BugReporterData() {} ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); } GRStateManager& GRBugReporter::getStateManager() { return Eng.getStateManager(); } BugReporter::~BugReporter() { FlushReports(); } void BugReporter::FlushReports() { if (BugTypes.isEmpty()) return; // First flush the warnings for each BugType. This may end up creating new // warnings and new BugTypes. Because ImmutableSet is a functional data // structure, we do not need to worry about the iterators being invalidated. for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) const_cast(*I)->FlushReports(*this); // Iterate through BugTypes a second time. BugTypes may have been updated // with new BugType objects and new warnings. for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) { BugType *BT = const_cast(*I); typedef llvm::FoldingSet SetTy; SetTy& EQClasses = BT->EQClasses; for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){ BugReportEquivClass& EQ = *EI; FlushReport(EQ); } // Delete the BugType object. // FIXME: this will *not* delete the BugReportEquivClasses, since FoldingSet // only deletes the buckets, not the nodes themselves. delete BT; } // Remove all references to the BugType objects. BugTypes = F.GetEmptySet(); } //===----------------------------------------------------------------------===// // PathDiagnostics generation. //===----------------------------------------------------------------------===// static std::pair, std::pair > MakeReportGraph(const ExplodedGraph* G, const ExplodedNode** NStart, const ExplodedNode** NEnd) { // Create the trimmed graph. It will contain the shortest paths from the // error nodes to the root. In the new graph we should only have one // error node unless there are two or more error nodes with the same minimum // path length. ExplodedGraph* GTrim; InterExplodedGraphMap* NMap; llvm::DenseMap InverseMap; llvm::tie(GTrim, NMap) = G->Trim(NStart, NEnd, &InverseMap); // Create owning pointers for GTrim and NMap just to ensure that they are // released when this function exists. llvm::OwningPtr AutoReleaseGTrim(GTrim); llvm::OwningPtr AutoReleaseNMap(NMap); // Find the (first) error node in the trimmed graph. We just need to consult // the node map (NMap) which maps from nodes in the original graph to nodes // in the new graph. std::queue WS; typedef llvm::DenseMap IndexMapTy; IndexMapTy IndexMap; for (const ExplodedNode** I = NStart; I != NEnd; ++I) if (const ExplodedNode *N = NMap->getMappedNode(*I)) { unsigned NodeIndex = (I - NStart) / sizeof(*I); WS.push(N); IndexMap[*I] = NodeIndex; } assert(!WS.empty() && "No error node found in the trimmed graph."); // Create a new (third!) graph with a single path. This is the graph // that will be returned to the caller. ExplodedGraph *GNew = new ExplodedGraph(GTrim->getCFG(), GTrim->getCodeDecl(), GTrim->getContext()); // Sometimes the trimmed graph can contain a cycle. Perform a reverse BFS // to the root node, and then construct a new graph that contains only // a single path. llvm::DenseMap Visited; unsigned cnt = 0; const ExplodedNode* Root = 0; while (!WS.empty()) { const ExplodedNode* Node = WS.front(); WS.pop(); if (Visited.find(Node) != Visited.end()) continue; Visited[Node] = cnt++; if (Node->pred_empty()) { Root = Node; break; } for (ExplodedNode::const_pred_iterator I=Node->pred_begin(), E=Node->pred_end(); I!=E; ++I) WS.push(*I); } assert(Root); // Now walk from the root down the BFS path, always taking the successor // with the lowest number. ExplodedNode *Last = 0, *First = 0; NodeBackMap *BM = new NodeBackMap(); unsigned NodeIndex = 0; for ( const ExplodedNode *N = Root ;;) { // Lookup the number associated with the current node. llvm::DenseMap::iterator I = Visited.find(N); assert(I != Visited.end()); // Create the equivalent node in the new graph with the same state // and location. ExplodedNode* NewN = GNew->getNode(N->getLocation(), N->getState()); // Store the mapping to the original node. llvm::DenseMap::iterator IMitr=InverseMap.find(N); assert(IMitr != InverseMap.end() && "No mapping to original node."); (*BM)[NewN] = (const ExplodedNode*) IMitr->second; // Link up the new node with the previous node. if (Last) NewN->addPredecessor(Last); Last = NewN; // Are we at the final node? IndexMapTy::iterator IMI = IndexMap.find((const ExplodedNode*)(IMitr->second)); if (IMI != IndexMap.end()) { First = NewN; NodeIndex = IMI->second; break; } // Find the next successor node. We choose the node that is marked // with the lowest DFS number. ExplodedNode::const_succ_iterator SI = N->succ_begin(); ExplodedNode::const_succ_iterator SE = N->succ_end(); N = 0; for (unsigned MinVal = 0; SI != SE; ++SI) { I = Visited.find(*SI); if (I == Visited.end()) continue; if (!N || I->second < MinVal) { N = *SI; MinVal = I->second; } } assert(N); } assert(First); return std::make_pair(std::make_pair(GNew, BM), std::make_pair(First, NodeIndex)); } /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object /// and collapses PathDiagosticPieces that are expanded by macros. static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM) { typedef std::vector > MacroStackTy; typedef std::vector PiecesTy; MacroStackTy MacroStack; PiecesTy Pieces; for (PathDiagnostic::iterator I = PD.begin(), E = PD.end(); I!=E; ++I) { // Get the location of the PathDiagnosticPiece. const FullSourceLoc Loc = I->getLocation().asLocation(); // Determine the instantiation location, which is the location we group // related PathDiagnosticPieces. SourceLocation InstantiationLoc = Loc.isMacroID() ? SM.getInstantiationLoc(Loc) : SourceLocation(); if (Loc.isFileID()) { MacroStack.clear(); Pieces.push_back(&*I); continue; } assert(Loc.isMacroID()); // Is the PathDiagnosticPiece within the same macro group? if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { MacroStack.back().first->push_back(&*I); continue; } // We aren't in the same group. Are we descending into a new macro // or are part of an old one? PathDiagnosticMacroPiece *MacroGroup = 0; SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? SM.getInstantiationLoc(Loc) : SourceLocation(); // Walk the entire macro stack. while (!MacroStack.empty()) { if (InstantiationLoc == MacroStack.back().second) { MacroGroup = MacroStack.back().first; break; } if (ParentInstantiationLoc == MacroStack.back().second) { MacroGroup = MacroStack.back().first; break; } MacroStack.pop_back(); } if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { // Create a new macro group and add it to the stack. PathDiagnosticMacroPiece *NewGroup = new PathDiagnosticMacroPiece(Loc); if (MacroGroup) MacroGroup->push_back(NewGroup); else { assert(InstantiationLoc.isFileID()); Pieces.push_back(NewGroup); } MacroGroup = NewGroup; MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); } // Finally, add the PathDiagnosticPiece to the group. MacroGroup->push_back(&*I); } // Now take the pieces and construct a new PathDiagnostic. PD.resetPath(false); for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) { if (PathDiagnosticMacroPiece *MP=dyn_cast(*I)) if (!MP->containsEvent()) { delete MP; continue; } PD.push_back(*I); } } void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD, BugReportEquivClass& EQ) { std::vector Nodes; for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) { const ExplodedNode* N = I->getEndNode(); if (N) Nodes.push_back(N); } if (Nodes.empty()) return; // Construct a new graph that contains only a single path from the error // node to a root. const std::pair, std::pair >& GPair = MakeReportGraph(&getGraph(), &Nodes[0], &Nodes[0] + Nodes.size()); // Find the BugReport with the original location. BugReport *R = 0; unsigned i = 0; for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I, ++i) if (i == GPair.second.second) { R = *I; break; } assert(R && "No original report found for sliced graph."); llvm::OwningPtr ReportGraph(GPair.first.first); llvm::OwningPtr BackMap(GPair.first.second); const ExplodedNode *N = GPair.second.first; // Start building the path diagnostic... PathDiagnosticBuilder PDB(*this, R, BackMap.get(), getPathDiagnosticClient()); if (PathDiagnosticPiece* Piece = R->getEndPath(PDB, N)) PD.push_back(Piece); else return; R->registerInitialVisitors(PDB, N); switch (PDB.getGenerationScheme()) { case PathDiagnosticClient::Extensive: GenerateExtensivePathDiagnostic(PD, PDB, N); break; case PathDiagnosticClient::Minimal: GenerateMinimalPathDiagnostic(PD, PDB, N); break; } } void BugReporter::Register(BugType *BT) { BugTypes = F.Add(BugTypes, BT); } void BugReporter::EmitReport(BugReport* R) { // Compute the bug report's hash to determine its equivalence class. llvm::FoldingSetNodeID ID; R->Profile(ID); // Lookup the equivance class. If there isn't one, create it. BugType& BT = R->getBugType(); Register(&BT); void *InsertPos; BugReportEquivClass* EQ = BT.EQClasses.FindNodeOrInsertPos(ID, InsertPos); if (!EQ) { EQ = new BugReportEquivClass(R); BT.EQClasses.InsertNode(EQ, InsertPos); } else EQ->AddReport(R); } void BugReporter::FlushReport(BugReportEquivClass& EQ) { assert(!EQ.Reports.empty()); BugReport &R = **EQ.begin(); PathDiagnosticClient* PD = getPathDiagnosticClient(); // FIXME: Make sure we use the 'R' for the path that was actually used. // Probably doesn't make a difference in practice. BugType& BT = R.getBugType(); llvm::OwningPtr D(new PathDiagnostic(R.getBugType().getName(), !PD || PD->useVerboseDescription() ? R.getDescription() : R.getShortDescription(), BT.getCategory())); GeneratePathDiagnostic(*D.get(), EQ); // Get the meta data. std::pair Meta = R.getExtraDescriptiveText(); for (const char** s = Meta.first; s != Meta.second; ++s) D->addMeta(*s); // Emit a summary diagnostic to the regular Diagnostics engine. const SourceRange *Beg = 0, *End = 0; R.getRanges(Beg, End); Diagnostic& Diag = getDiagnostic(); FullSourceLoc L(R.getLocation(), getSourceManager()); unsigned ErrorDiag = Diag.getCustomDiagID(Diagnostic::Warning, R.getShortDescription().c_str()); switch (End-Beg) { default: assert(0 && "Don't handle this many ranges yet!"); case 0: Diag.Report(L, ErrorDiag); break; case 1: Diag.Report(L, ErrorDiag) << Beg[0]; break; case 2: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1]; break; case 3: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1] << Beg[2]; break; } // Emit a full diagnostic for the path if we have a PathDiagnosticClient. if (!PD) return; if (D->empty()) { PathDiagnosticPiece* piece = new PathDiagnosticEventPiece(L, R.getDescription()); for ( ; Beg != End; ++Beg) piece->addRange(*Beg); D->push_back(piece); } PD->HandlePathDiagnostic(D.take()); } void BugReporter::EmitBasicReport(const char* name, const char* str, SourceLocation Loc, SourceRange* RBeg, unsigned NumRanges) { EmitBasicReport(name, "", str, Loc, RBeg, NumRanges); } void BugReporter::EmitBasicReport(const char* name, const char* category, const char* str, SourceLocation Loc, SourceRange* RBeg, unsigned NumRanges) { // 'BT' will be owned by BugReporter as soon as we call 'EmitReport'. BugType *BT = new BugType(name, category); FullSourceLoc L = getContext().getFullLoc(Loc); RangedBugReport *R = new DiagBugReport(*BT, str, L); for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg); EmitReport(R); }