//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// This file implements classes for searching and anlyzing source code clones. /// //===----------------------------------------------------------------------===// #include "clang/Analysis/CloneDetection.h" #include "clang/AST/ASTContext.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/Stmt.h" #include "clang/Lex/Lexer.h" #include "llvm/Support/MD5.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Path.h" using namespace clang; using namespace clang::clone_detection; StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D, unsigned StartIndex, unsigned EndIndex) : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) { assert(Stmt && "Stmt must not be a nullptr"); assert(StartIndex < EndIndex && "Given array should not be empty"); assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt"); } StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D) : S(Stmt), D(D), StartIndex(0), EndIndex(0) {} StmtSequence::StmtSequence() : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {} bool StmtSequence::contains(const StmtSequence &Other) const { // If both sequences reside in different declarations, they can never contain // each other. if (D != Other.D) return false; const SourceManager &SM = getASTContext().getSourceManager(); // Otherwise check if the start and end locations of the current sequence // surround the other sequence. bool StartIsInBounds = SM.isBeforeInTranslationUnit(getStartLoc(), Other.getStartLoc()) || getStartLoc() == Other.getStartLoc(); if (!StartIsInBounds) return false; bool EndIsInBounds = SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) || Other.getEndLoc() == getEndLoc(); return EndIsInBounds; } StmtSequence::iterator StmtSequence::begin() const { if (!holdsSequence()) { return &S; } auto CS = cast(S); return CS->body_begin() + StartIndex; } StmtSequence::iterator StmtSequence::end() const { if (!holdsSequence()) { return reinterpret_cast(&S) + 1; } auto CS = cast(S); return CS->body_begin() + EndIndex; } ASTContext &StmtSequence::getASTContext() const { assert(D); return D->getASTContext(); } SourceLocation StmtSequence::getStartLoc() const { return front()->getLocStart(); } SourceLocation StmtSequence::getEndLoc() const { return back()->getLocEnd(); } SourceRange StmtSequence::getSourceRange() const { return SourceRange(getStartLoc(), getEndLoc()); } /// Prints the macro name that contains the given SourceLocation into the given /// raw_string_ostream. static void printMacroName(llvm::raw_string_ostream &MacroStack, ASTContext &Context, SourceLocation Loc) { MacroStack << Lexer::getImmediateMacroName(Loc, Context.getSourceManager(), Context.getLangOpts()); // Add an empty space at the end as a padding to prevent // that macro names concatenate to the names of other macros. MacroStack << " "; } std::string clone_detection::getMacroStack(SourceLocation Loc, ASTContext &Context) { std::string MacroStack; llvm::raw_string_ostream MacroStackStream(MacroStack); SourceManager &SM = Context.getSourceManager(); // Iterate over all macros that expanded into the given SourceLocation. while (Loc.isMacroID()) { // Add the macro name to the stream. printMacroName(MacroStackStream, Context, Loc); Loc = SM.getImmediateMacroCallerLoc(Loc); } MacroStackStream.flush(); return MacroStack; } void CloneDetector::analyzeCodeBody(const Decl *D) { assert(D); assert(D->hasBody()); Sequences.push_back(StmtSequence(D->getBody(), D)); } /// Returns true if and only if \p Stmt contains at least one other /// sequence in the \p Group. static bool containsAnyInGroup(StmtSequence &Seq, CloneDetector::CloneGroup &Group) { for (StmtSequence &GroupSeq : Group) { if (Seq.contains(GroupSeq)) return true; } return false; } /// Returns true if and only if all sequences in \p OtherGroup are /// contained by a sequence in \p Group. static bool containsGroup(CloneDetector::CloneGroup &Group, CloneDetector::CloneGroup &OtherGroup) { // We have less sequences in the current group than we have in the other, // so we will never fulfill the requirement for returning true. This is only // possible because we know that a sequence in Group can contain at most // one sequence in OtherGroup. if (Group.size() < OtherGroup.size()) return false; for (StmtSequence &Stmt : Group) { if (!containsAnyInGroup(Stmt, OtherGroup)) return false; } return true; } void OnlyLargestCloneConstraint::constrain( std::vector &Result) { std::vector IndexesToRemove; // Compare every group in the result with the rest. If one groups contains // another group, we only need to return the bigger group. // Note: This doesn't scale well, so if possible avoid calling any heavy // function from this loop to minimize the performance impact. for (unsigned i = 0; i < Result.size(); ++i) { for (unsigned j = 0; j < Result.size(); ++j) { // Don't compare a group with itself. if (i == j) continue; if (containsGroup(Result[j], Result[i])) { IndexesToRemove.push_back(i); break; } } } // Erasing a list of indexes from the vector should be done with decreasing // indexes. As IndexesToRemove is constructed with increasing values, we just // reverse iterate over it to get the desired order. for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) { Result.erase(Result.begin() + *I); } } bool FilenamePatternConstraint::isAutoGenerated(const CloneDetector::CloneGroup &Group) { std::string Error; if (IgnoredFilesPattern.empty() || Group.empty() || !IgnoredFilesRegex->isValid(Error)) return false; for (const StmtSequence &S : Group) { const SourceManager &SM = S.getASTContext().getSourceManager(); StringRef Filename = llvm::sys::path::filename(SM.getFilename( S.getContainingDecl()->getLocation())); if (IgnoredFilesRegex->match(Filename)) return true; } return false; } static size_t createHash(llvm::MD5 &Hash) { size_t HashCode; // Create the final hash code for the current Stmt. llvm::MD5::MD5Result HashResult; Hash.final(HashResult); // Copy as much as possible of the generated hash code to the Stmt's hash // code. std::memcpy(&HashCode, &HashResult, std::min(sizeof(HashCode), sizeof(HashResult))); return HashCode; } size_t RecursiveCloneTypeIIConstraint::saveHash( const Stmt *S, const Decl *D, std::vector> &StmtsByHash) { llvm::MD5 Hash; ASTContext &Context = D->getASTContext(); StmtDataCollector(S, Context, Hash); auto CS = dyn_cast(S); SmallVector ChildHashes; for (const Stmt *Child : S->children()) { if (Child == nullptr) { ChildHashes.push_back(0); continue; } size_t ChildHash = saveHash(Child, D, StmtsByHash); Hash.update( StringRef(reinterpret_cast(&ChildHash), sizeof(ChildHash))); ChildHashes.push_back(ChildHash); } if (CS) { // If we're in a CompoundStmt, we hash all possible combinations of child // statements to find clones in those subsequences. // We first go through every possible starting position of a subsequence. for (unsigned Pos = 0; Pos < CS->size(); ++Pos) { // Then we try all possible lengths this subsequence could have and // reuse the same hash object to make sure we only hash every child // hash exactly once. llvm::MD5 Hash; for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) { // Grab the current child hash and put it into our hash. We do // -1 on the index because we start counting the length at 1. size_t ChildHash = ChildHashes[Pos + Length - 1]; Hash.update( StringRef(reinterpret_cast(&ChildHash), sizeof(ChildHash))); // If we have at least two elements in our subsequence, we can start // saving it. if (Length > 1) { llvm::MD5 SubHash = Hash; StmtsByHash.push_back(std::make_pair( createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length))); } } } } size_t HashCode = createHash(Hash); StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D))); return HashCode; } namespace { /// Wrapper around FoldingSetNodeID that it can be used as the template /// argument of the StmtDataCollector. class FoldingSetNodeIDWrapper { llvm::FoldingSetNodeID &FS; public: FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {} void update(StringRef Str) { FS.AddString(Str); } }; } // end anonymous namespace /// Writes the relevant data from all statements and child statements /// in the given StmtSequence into the given FoldingSetNodeID. static void CollectStmtSequenceData(const StmtSequence &Sequence, FoldingSetNodeIDWrapper &OutputData) { for (const Stmt *S : Sequence) { StmtDataCollector(S, Sequence.getASTContext(), OutputData); for (const Stmt *Child : S->children()) { if (!Child) continue; CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()), OutputData); } } } /// Returns true if both sequences are clones of each other. static bool areSequencesClones(const StmtSequence &LHS, const StmtSequence &RHS) { // We collect the data from all statements in the sequence as we did before // when generating a hash value for each sequence. But this time we don't // hash the collected data and compare the whole data set instead. This // prevents any false-positives due to hash code collisions. llvm::FoldingSetNodeID DataLHS, DataRHS; FoldingSetNodeIDWrapper LHSWrapper(DataLHS); FoldingSetNodeIDWrapper RHSWrapper(DataRHS); CollectStmtSequenceData(LHS, LHSWrapper); CollectStmtSequenceData(RHS, RHSWrapper); return DataLHS == DataRHS; } void RecursiveCloneTypeIIConstraint::constrain( std::vector &Sequences) { // FIXME: Maybe we can do this in-place and don't need this additional vector. std::vector Result; for (CloneDetector::CloneGroup &Group : Sequences) { // We assume in the following code that the Group is non-empty, so we // skip all empty groups. if (Group.empty()) continue; std::vector> StmtsByHash; // Generate hash codes for all children of S and save them in StmtsByHash. for (const StmtSequence &S : Group) { saveHash(S.front(), S.getContainingDecl(), StmtsByHash); } // Sort hash_codes in StmtsByHash. std::stable_sort(StmtsByHash.begin(), StmtsByHash.end(), [](std::pair LHS, std::pair RHS) { return LHS.first < RHS.first; }); // Check for each StmtSequence if its successor has the same hash value. // We don't check the last StmtSequence as it has no successor. // Note: The 'size - 1 ' in the condition is safe because we check for an // empty Group vector at the beginning of this function. for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) { const auto Current = StmtsByHash[i]; // It's likely that we just found an sequence of StmtSequences that // represent a CloneGroup, so we create a new group and start checking and // adding the StmtSequences in this sequence. CloneDetector::CloneGroup NewGroup; size_t PrototypeHash = Current.first; for (; i < StmtsByHash.size(); ++i) { // A different hash value means we have reached the end of the sequence. if (PrototypeHash != StmtsByHash[i].first || !areSequencesClones(StmtsByHash[i].second, Current.second)) { // The current sequence could be the start of a new CloneGroup. So we // decrement i so that we visit it again in the outer loop. // Note: i can never be 0 at this point because we are just comparing // the hash of the Current StmtSequence with itself in the 'if' above. assert(i != 0); --i; break; } // Same hash value means we should add the StmtSequence to the current // group. NewGroup.push_back(StmtsByHash[i].second); } // We created a new clone group with matching hash codes and move it to // the result vector. Result.push_back(NewGroup); } } // Sequences is the output parameter, so we copy our result into it. Sequences = Result; } size_t MinComplexityConstraint::calculateStmtComplexity( const StmtSequence &Seq, const std::string &ParentMacroStack) { if (Seq.empty()) return 0; size_t Complexity = 1; ASTContext &Context = Seq.getASTContext(); // Look up what macros expanded into the current statement. std::string StartMacroStack = getMacroStack(Seq.getStartLoc(), Context); std::string EndMacroStack = getMacroStack(Seq.getEndLoc(), Context); // First, check if ParentMacroStack is not empty which means we are currently // dealing with a parent statement which was expanded from a macro. // If this parent statement was expanded from the same macros as this // statement, we reduce the initial complexity of this statement to zero. // This causes that a group of statements that were generated by a single // macro expansion will only increase the total complexity by one. // Note: This is not the final complexity of this statement as we still // add the complexity of the child statements to the complexity value. if (!ParentMacroStack.empty() && (StartMacroStack == ParentMacroStack && EndMacroStack == ParentMacroStack)) { Complexity = 0; } // Iterate over the Stmts in the StmtSequence and add their complexity values // to the current complexity value. if (Seq.holdsSequence()) { for (const Stmt *S : Seq) { Complexity += calculateStmtComplexity( StmtSequence(S, Seq.getContainingDecl()), StartMacroStack); } } else { for (const Stmt *S : Seq.front()->children()) { Complexity += calculateStmtComplexity( StmtSequence(S, Seq.getContainingDecl()), StartMacroStack); } } return Complexity; } void MatchingVariablePatternConstraint::constrain( std::vector &CloneGroups) { CloneConstraint::splitCloneGroups( CloneGroups, [](const StmtSequence &A, const StmtSequence &B) { VariablePattern PatternA(A); VariablePattern PatternB(B); return PatternA.countPatternDifferences(PatternB) == 0; }); } void CloneConstraint::splitCloneGroups( std::vector &CloneGroups, std::function Compare) { std::vector Result; for (auto &HashGroup : CloneGroups) { // Contains all indexes in HashGroup that were already added to a // CloneGroup. std::vector Indexes; Indexes.resize(HashGroup.size()); for (unsigned i = 0; i < HashGroup.size(); ++i) { // Skip indexes that are already part of a CloneGroup. if (Indexes[i]) continue; // Pick the first unhandled StmtSequence and consider it as the // beginning // of a new CloneGroup for now. // We don't add i to Indexes because we never iterate back. StmtSequence Prototype = HashGroup[i]; CloneDetector::CloneGroup PotentialGroup = {Prototype}; ++Indexes[i]; // Check all following StmtSequences for clones. for (unsigned j = i + 1; j < HashGroup.size(); ++j) { // Skip indexes that are already part of a CloneGroup. if (Indexes[j]) continue; // If a following StmtSequence belongs to our CloneGroup, we add it. const StmtSequence &Candidate = HashGroup[j]; if (!Compare(Prototype, Candidate)) continue; PotentialGroup.push_back(Candidate); // Make sure we never visit this StmtSequence again. ++Indexes[j]; } // Otherwise, add it to the result and continue searching for more // groups. Result.push_back(PotentialGroup); } assert(std::all_of(Indexes.begin(), Indexes.end(), [](char c) { return c == 1; })); } CloneGroups = Result; } void VariablePattern::addVariableOccurence(const VarDecl *VarDecl, const Stmt *Mention) { // First check if we already reference this variable for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) { if (Variables[KindIndex] == VarDecl) { // If yes, add a new occurence that points to the existing entry in // the Variables vector. Occurences.emplace_back(KindIndex, Mention); return; } } // If this variable wasn't already referenced, add it to the list of // referenced variables and add a occurence that points to this new entry. Occurences.emplace_back(Variables.size(), Mention); Variables.push_back(VarDecl); } void VariablePattern::addVariables(const Stmt *S) { // Sometimes we get a nullptr (such as from IfStmts which often have nullptr // children). We skip such statements as they don't reference any // variables. if (!S) return; // Check if S is a reference to a variable. If yes, add it to the pattern. if (auto D = dyn_cast(S)) { if (auto VD = dyn_cast(D->getDecl()->getCanonicalDecl())) addVariableOccurence(VD, D); } // Recursively check all children of the given statement. for (const Stmt *Child : S->children()) { addVariables(Child); } } unsigned VariablePattern::countPatternDifferences( const VariablePattern &Other, VariablePattern::SuspiciousClonePair *FirstMismatch) { unsigned NumberOfDifferences = 0; assert(Other.Occurences.size() == Occurences.size()); for (unsigned i = 0; i < Occurences.size(); ++i) { auto ThisOccurence = Occurences[i]; auto OtherOccurence = Other.Occurences[i]; if (ThisOccurence.KindID == OtherOccurence.KindID) continue; ++NumberOfDifferences; // If FirstMismatch is not a nullptr, we need to store information about // the first difference between the two patterns. if (FirstMismatch == nullptr) continue; // Only proceed if we just found the first difference as we only store // information about the first difference. if (NumberOfDifferences != 1) continue; const VarDecl *FirstSuggestion = nullptr; // If there is a variable available in the list of referenced variables // which wouldn't break the pattern if it is used in place of the // current variable, we provide this variable as the suggested fix. if (OtherOccurence.KindID < Variables.size()) FirstSuggestion = Variables[OtherOccurence.KindID]; // Store information about the first clone. FirstMismatch->FirstCloneInfo = VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo( Variables[ThisOccurence.KindID], ThisOccurence.Mention, FirstSuggestion); // Same as above but with the other clone. We do this for both clones as // we don't know which clone is the one containing the unintended // pattern error. const VarDecl *SecondSuggestion = nullptr; if (ThisOccurence.KindID < Other.Variables.size()) SecondSuggestion = Other.Variables[ThisOccurence.KindID]; // Store information about the second clone. FirstMismatch->SecondCloneInfo = VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo( Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention, SecondSuggestion); // SuspiciousClonePair guarantees that the first clone always has a // suggested variable associated with it. As we know that one of the two // clones in the pair always has suggestion, we swap the two clones // in case the first clone has no suggested variable which means that // the second clone has a suggested variable and should be first. if (!FirstMismatch->FirstCloneInfo.Suggestion) std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo); // This ensures that we always have at least one suggestion in a pair. assert(FirstMismatch->FirstCloneInfo.Suggestion); } return NumberOfDifferences; }