//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the template classes ExplodedNode and ExplodedGraph, // which represent a path-sensitive, intra-procedural "exploded graph." // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/ExplodedGraph.h" #include "clang/Analysis/PathSensitive/GRState.h" #include "clang/AST/Stmt.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include using namespace clang; //===----------------------------------------------------------------------===// // Node auditing. //===----------------------------------------------------------------------===// // An out of line virtual method to provide a home for the class vtable. ExplodedNode::Auditor::~Auditor() {} #ifndef NDEBUG static ExplodedNode::Auditor* NodeAuditor = 0; #endif void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) { #ifndef NDEBUG NodeAuditor = A; #endif } //===----------------------------------------------------------------------===// // ExplodedNode. //===----------------------------------------------------------------------===// static inline std::vector& getVector(void* P) { return *reinterpret_cast*>(P); } void ExplodedNode::Profile(llvm::FoldingSetNodeID& ID, const ProgramPoint& Loc, const GRState* state) { ID.Add(Loc); ID.AddPointer(state); } void ExplodedNode::addPredecessor(ExplodedNode* V) { assert (!V->isSink()); Preds.addNode(V); V->Succs.addNode(this); #ifndef NDEBUG if (NodeAuditor) NodeAuditor->AddEdge(V, this); #endif } void ExplodedNode::NodeGroup::addNode(ExplodedNode* N) { assert ((reinterpret_cast(N) & Mask) == 0x0); assert (!getFlag()); if (getKind() == Size1) { if (ExplodedNode* NOld = getNode()) { std::vector* V = new std::vector(); assert ((reinterpret_cast(V) & Mask) == 0x0); V->push_back(NOld); V->push_back(N); P = reinterpret_cast(V) | SizeOther; assert (getPtr() == (void*) V); assert (getKind() == SizeOther); } else { P = reinterpret_cast(N); assert (getKind() == Size1); } } else { assert (getKind() == SizeOther); getVector(getPtr()).push_back(N); } } unsigned ExplodedNode::NodeGroup::size() const { if (getFlag()) return 0; if (getKind() == Size1) return getNode() ? 1 : 0; else return getVector(getPtr()).size(); } ExplodedNode** ExplodedNode::NodeGroup::begin() const { if (getFlag()) return NULL; if (getKind() == Size1) return (ExplodedNode**) (getPtr() ? &P : NULL); else return const_cast(&*(getVector(getPtr()).begin())); } ExplodedNode** ExplodedNode::NodeGroup::end() const { if (getFlag()) return NULL; if (getKind() == Size1) return (ExplodedNode**) (getPtr() ? &P+1 : NULL); else { // Dereferencing end() is undefined behaviour. The vector is not empty, so // we can dereference the last elem and then add 1 to the result. return const_cast(&getVector(getPtr()).back()) + 1; } } ExplodedNode::NodeGroup::~NodeGroup() { if (getKind() == SizeOther) delete &getVector(getPtr()); } ExplodedNode *ExplodedGraph::getNode(const ProgramPoint& L, const GRState* State, bool* IsNew) { // Profile 'State' to determine if we already have an existing node. llvm::FoldingSetNodeID profile; void* InsertPos = 0; NodeTy::Profile(profile, L, State); NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); if (!V) { // Allocate a new node. V = (NodeTy*) Allocator.Allocate(); new (V) NodeTy(L, State); // Insert the node into the node set and return it. Nodes.InsertNode(V, InsertPos); ++NumNodes; if (IsNew) *IsNew = true; } else if (IsNew) *IsNew = false; return V; } std::pair ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd, llvm::DenseMap *InverseMap) const { if (NBeg == NEnd) return std::make_pair((ExplodedGraph*) 0, (InterExplodedGraphMap*) 0); assert (NBeg < NEnd); llvm::OwningPtr M(new InterExplodedGraphMap()); ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap); return std::make_pair(static_cast(G), M.take()); } ExplodedGraph* ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources, const ExplodedNode* const* EndSources, InterExplodedGraphMap* M, llvm::DenseMap *InverseMap) const { typedef llvm::DenseSet Pass1Ty; Pass1Ty Pass1; typedef llvm::DenseMap Pass2Ty; Pass2Ty& Pass2 = M->M; llvm::SmallVector WL1, WL2; // ===- Pass 1 (reverse DFS) -=== for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) { assert(*I); WL1.push_back(*I); } // Process the first worklist until it is empty. Because it is a std::list // it acts like a FIFO queue. while (!WL1.empty()) { const ExplodedNode *N = WL1.back(); WL1.pop_back(); // Have we already visited this node? If so, continue to the next one. if (Pass1.count(N)) continue; // Otherwise, mark this node as visited. Pass1.insert(N); // If this is a root enqueue it to the second worklist. if (N->Preds.empty()) { WL2.push_back(N); continue; } // Visit our predecessors and enqueue them. for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) WL1.push_back(*I); } // We didn't hit a root? Return with a null pointer for the new graph. if (WL2.empty()) return 0; // Create an empty graph. ExplodedGraph* G = MakeEmptyGraph(); // ===- Pass 2 (forward DFS to construct the new graph) -=== while (!WL2.empty()) { const ExplodedNode* N = WL2.back(); WL2.pop_back(); // Skip this node if we have already processed it. if (Pass2.find(N) != Pass2.end()) continue; // Create the corresponding node in the new graph and record the mapping // from the old node to the new node. ExplodedNode* NewN = G->getNode(N->getLocation(), N->State, NULL); Pass2[N] = NewN; // Also record the reverse mapping from the new node to the old node. if (InverseMap) (*InverseMap)[NewN] = N; // If this node is a root, designate it as such in the graph. if (N->Preds.empty()) G->addRoot(NewN); // In the case that some of the intended predecessors of NewN have already // been created, we should hook them up as predecessors. // Walk through the predecessors of 'N' and hook up their corresponding // nodes in the new graph (if any) to the freshly created node. for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) { Pass2Ty::iterator PI = Pass2.find(*I); if (PI == Pass2.end()) continue; NewN->addPredecessor(PI->second); } // In the case that some of the intended successors of NewN have already // been created, we should hook them up as successors. Otherwise, enqueue // the new nodes from the original graph that should have nodes created // in the new graph. for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) { Pass2Ty::iterator PI = Pass2.find(*I); if (PI != Pass2.end()) { PI->second->addPredecessor(NewN); continue; } // Enqueue nodes to the worklist that were marked during pass 1. if (Pass1.count(*I)) WL2.push_back(*I); } // Finally, explictly mark all nodes without any successors as sinks. if (N->isSink()) NewN->markAsSink(); } return G; } ExplodedNode* InterExplodedGraphMap::getMappedNode(const ExplodedNode* N) const { llvm::DenseMap::iterator I = M.find(N); return I == M.end() ? 0 : I->second; }