//=- LiveVariables.cpp - Live Variable Analysis for Source CFGs -*- C++ --*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Live Variables analysis for source-level CFGs. // //===----------------------------------------------------------------------===// #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/Basic/SourceManager.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Expr.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h" #include "clang/Analysis/FlowSensitive/DataflowSolver.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Compiler.h" #include #include using namespace clang; //===----------------------------------------------------------------------===// // Useful constants. //===----------------------------------------------------------------------===// static const bool Alive = true; static const bool Dead = false; //===----------------------------------------------------------------------===// // Dataflow initialization logic. //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN RegisterDecls : public CFGRecStmtDeclVisitor { LiveVariables::AnalysisDataTy& AD; typedef llvm::SmallVector AlwaysLiveTy; AlwaysLiveTy AlwaysLive; public: RegisterDecls(LiveVariables::AnalysisDataTy& ad) : AD(ad) {} ~RegisterDecls() { AD.AlwaysLive.resetValues(AD); for (AlwaysLiveTy::iterator I = AlwaysLive.begin(), E = AlwaysLive.end(); I != E; ++ I) AD.AlwaysLive(*I, AD) = Alive; } void VisitImplicitParamDecl(ImplicitParamDecl* IPD) { // Register the VarDecl for tracking. AD.Register(IPD); } void VisitVarDecl(VarDecl* VD) { // Register the VarDecl for tracking. AD.Register(VD); // Does the variable have global storage? If so, it is always live. if (VD->hasGlobalStorage()) AlwaysLive.push_back(VD); } CFG& getCFG() { return AD.getCFG(); } }; } // end anonymous namespace LiveVariables::LiveVariables(ASTContext& Ctx, CFG& cfg) { // Register all referenced VarDecls. getAnalysisData().setCFG(cfg); getAnalysisData().setContext(Ctx); RegisterDecls R(getAnalysisData()); cfg.VisitBlockStmts(R); } //===----------------------------------------------------------------------===// // Transfer functions. //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN TransferFuncs : public CFGRecStmtVisitor{ LiveVariables::AnalysisDataTy& AD; LiveVariables::ValTy LiveState; public: TransferFuncs(LiveVariables::AnalysisDataTy& ad) : AD(ad) {} LiveVariables::ValTy& getVal() { return LiveState; } CFG& getCFG() { return AD.getCFG(); } void VisitDeclRefExpr(DeclRefExpr* DR); void VisitBinaryOperator(BinaryOperator* B); void VisitAssign(BinaryOperator* B); void VisitDeclStmt(DeclStmt* DS); void BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt* S); void VisitUnaryOperator(UnaryOperator* U); void Visit(Stmt *S); void VisitTerminator(CFGBlock* B); void SetTopValue(LiveVariables::ValTy& V) { V = AD.AlwaysLive; } }; void TransferFuncs::Visit(Stmt *S) { if (S == getCurrentBlkStmt()) { if (AD.Observer) AD.Observer->ObserveStmt(S,AD,LiveState); if (getCFG().isBlkExpr(S)) LiveState(S,AD) = Dead; StmtVisitor::Visit(S); } else if (!getCFG().isBlkExpr(S)) { if (AD.Observer) AD.Observer->ObserveStmt(S,AD,LiveState); StmtVisitor::Visit(S); } else { // For block-level expressions, mark that they are live. LiveState(S,AD) = Alive; } } void TransferFuncs::VisitTerminator(CFGBlock* B) { const Stmt* E = B->getTerminatorCondition(); if (!E) return; assert (getCFG().isBlkExpr(E)); LiveState(E, AD) = Alive; } void TransferFuncs::VisitDeclRefExpr(DeclRefExpr* DR) { if (VarDecl* V = dyn_cast(DR->getDecl())) LiveState(V,AD) = Alive; } void TransferFuncs::VisitBinaryOperator(BinaryOperator* B) { if (B->isAssignmentOp()) VisitAssign(B); else VisitStmt(B); } void TransferFuncs::BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) { // This is a block-level expression. Its value is 'dead' before this point. LiveState(S, AD) = Dead; // This represents a 'use' of the collection. Visit(S->getCollection()); // This represents a 'kill' for the variable. Stmt* Element = S->getElement(); DeclRefExpr* DR = 0; VarDecl* VD = 0; if (DeclStmt* DS = dyn_cast(Element)) VD = cast(DS->getSingleDecl()); else { Expr* ElemExpr = cast(Element)->IgnoreParens(); if ((DR = dyn_cast(ElemExpr))) VD = cast(DR->getDecl()); else { Visit(ElemExpr); return; } } if (VD) { LiveState(VD, AD) = Dead; if (AD.Observer && DR) { AD.Observer->ObserverKill(DR); } } } void TransferFuncs::VisitUnaryOperator(UnaryOperator* U) { Expr *E = U->getSubExpr(); switch (U->getOpcode()) { case UnaryOperator::PostInc: case UnaryOperator::PostDec: case UnaryOperator::PreInc: case UnaryOperator::PreDec: // Walk through the subexpressions, blasting through ParenExprs // until we either find a DeclRefExpr or some non-DeclRefExpr // expression. if (DeclRefExpr* DR = dyn_cast(E->IgnoreParens())) if (VarDecl* VD = dyn_cast(DR->getDecl())) { // Treat the --/++ operator as a kill. if (AD.Observer) { AD.Observer->ObserverKill(DR); } LiveState(VD, AD) = Alive; return VisitDeclRefExpr(DR); } // Fall-through. default: return Visit(E); } } void TransferFuncs::VisitAssign(BinaryOperator* B) { Expr* LHS = B->getLHS(); // Assigning to a variable? if (DeclRefExpr* DR = dyn_cast(LHS->IgnoreParens())) { // Update liveness inforamtion. unsigned bit = AD.getIdx(DR->getDecl()); LiveState.getDeclBit(bit) = Dead | AD.AlwaysLive.getDeclBit(bit); if (AD.Observer) { AD.Observer->ObserverKill(DR); } // Handle things like +=, etc., which also generate "uses" // of a variable. Do this just by visiting the subexpression. if (B->getOpcode() != BinaryOperator::Assign) VisitDeclRefExpr(DR); } else // Not assigning to a variable. Process LHS as usual. Visit(LHS); Visit(B->getRHS()); } void TransferFuncs::VisitDeclStmt(DeclStmt* DS) { // Declarations effectively "kill" a variable since they cannot // possibly be live before they are declared. for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE = DS->decl_end(); DI != DE; ++DI) if (VarDecl* VD = dyn_cast(*DI)) { // The initializer is evaluated after the variable comes into scope. // Since this is a reverse dataflow analysis, we must evaluate the // transfer function for this expression first. if (Expr* Init = VD->getInit()) Visit(Init); if (const VariableArrayType* VT = AD.getContext().getAsVariableArrayType(VD->getType())) { StmtIterator I(const_cast(VT)); StmtIterator E; for (; I != E; ++I) Visit(*I); } // Update liveness information by killing the VarDecl. unsigned bit = AD.getIdx(VD); LiveState.getDeclBit(bit) = Dead | AD.AlwaysLive.getDeclBit(bit); } } } // end anonymous namespace //===----------------------------------------------------------------------===// // Merge operator: if something is live on any successor block, it is live // in the current block (a set union). //===----------------------------------------------------------------------===// namespace { struct Merge { typedef StmtDeclBitVector_Types::ValTy ValTy; void operator()(ValTy& Dst, const ValTy& Src) { Dst.OrDeclBits(Src); Dst.OrBlkExprBits(Src); } }; typedef DataflowSolver Solver; } // end anonymous namespace //===----------------------------------------------------------------------===// // External interface to run Liveness analysis. //===----------------------------------------------------------------------===// void LiveVariables::runOnCFG(CFG& cfg) { Solver S(*this); S.runOnCFG(cfg); } void LiveVariables::runOnAllBlocks(const CFG& cfg, LiveVariables::ObserverTy* Obs, bool recordStmtValues) { Solver S(*this); ObserverTy* OldObserver = getAnalysisData().Observer; getAnalysisData().Observer = Obs; S.runOnAllBlocks(cfg, recordStmtValues); getAnalysisData().Observer = OldObserver; } //===----------------------------------------------------------------------===// // liveness queries // bool LiveVariables::isLive(const CFGBlock* B, const VarDecl* D) const { DeclBitVector_Types::Idx i = getAnalysisData().getIdx(D); return i.isValid() ? getBlockData(B).getBit(i) : false; } bool LiveVariables::isLive(const ValTy& Live, const VarDecl* D) const { DeclBitVector_Types::Idx i = getAnalysisData().getIdx(D); return i.isValid() ? Live.getBit(i) : false; } bool LiveVariables::isLive(const Stmt* Loc, const Stmt* StmtVal) const { return getStmtData(Loc)(StmtVal,getAnalysisData()); } bool LiveVariables::isLive(const Stmt* Loc, const VarDecl* D) const { return getStmtData(Loc)(D,getAnalysisData()); } //===----------------------------------------------------------------------===// // printing liveness state for debugging // void LiveVariables::dumpLiveness(const ValTy& V, SourceManager& SM) const { const AnalysisDataTy& AD = getAnalysisData(); for (AnalysisDataTy::decl_iterator I = AD.begin_decl(), E = AD.end_decl(); I!=E; ++I) if (V.getDeclBit(I->second)) { fprintf(stderr, " %s <", I->first->getIdentifier()->getName()); I->first->getLocation().dump(SM); fprintf(stderr, ">\n"); } } void LiveVariables::dumpBlockLiveness(SourceManager& M) const { for (BlockDataMapTy::iterator I = getBlockDataMap().begin(), E = getBlockDataMap().end(); I!=E; ++I) { fprintf(stderr, "\n[ B%d (live variables at block exit) ]\n", I->first->getBlockID()); dumpLiveness(I->second,M); } fprintf(stderr,"\n"); }