//= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SVal, Loc, and NonLoc, classes that represent // abstract r-values for use with path-sensitive value tracking. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/GRState.h" #include "clang/Basic/IdentifierTable.h" #include "llvm/Support/Streams.h" using namespace clang; using llvm::dyn_cast; using llvm::cast; using llvm::APSInt; //===----------------------------------------------------------------------===// // Symbol iteration within an SVal. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// bool SVal::hasConjuredSymbol() const { if (const nonloc::SymbolVal* SV = dyn_cast(this)) { SymbolRef sym = SV->getSymbol(); if (isa(sym)) return true; } if (const loc::MemRegionVal *RV = dyn_cast(this)) { const MemRegion *R = RV->getRegion(); if (const SymbolicRegion *SR = dyn_cast(R)) { SymbolRef sym = SR->getSymbol(); if (isa(sym)) return true; } else if (const CodeTextRegion *CTR = dyn_cast(R)) { if (CTR->isSymbolic()) { SymbolRef sym = CTR->getSymbol(); if (isa(sym)) return true; } } } return false; } const FunctionDecl* SVal::getAsFunctionDecl() const { if (const loc::MemRegionVal* X = dyn_cast(this)) { const MemRegion* R = X->getRegion(); if (const CodeTextRegion* CTR = R->getAs()) { if (CTR->isDeclared()) return CTR->getDecl(); } } return 0; } /// getAsLocSymbol - If this SVal is a location (subclasses Loc) and /// wraps a symbol, return that SymbolRef. Otherwise return 0. // FIXME: should we consider SymbolRef wrapped in CodeTextRegion? SymbolRef SVal::getAsLocSymbol() const { if (const loc::MemRegionVal *X = dyn_cast(this)) { const MemRegion *R = X->getBaseRegion(); if (const SymbolicRegion *SymR = dyn_cast(R)) return SymR->getSymbol(); } return NULL; } /// getAsSymbol - If this Sval wraps a symbol return that SymbolRef. /// Otherwise return 0. // FIXME: should we consider SymbolRef wrapped in CodeTextRegion? SymbolRef SVal::getAsSymbol() const { if (const nonloc::SymbolVal *X = dyn_cast(this)) return X->getSymbol(); if (const nonloc::SymExprVal *X = dyn_cast(this)) if (SymbolRef Y = dyn_cast(X->getSymbolicExpression())) return Y; return getAsLocSymbol(); } /// getAsSymbolicExpression - If this Sval wraps a symbolic expression then /// return that expression. Otherwise return NULL. const SymExpr *SVal::getAsSymbolicExpression() const { if (const nonloc::SymExprVal *X = dyn_cast(this)) return X->getSymbolicExpression(); return getAsSymbol(); } const MemRegion *SVal::getAsRegion() const { if (const loc::MemRegionVal *X = dyn_cast(this)) return X->getRegion(); return 0; } const MemRegion *loc::MemRegionVal::getBaseRegion() const { const MemRegion *R = getRegion(); return R ? R->getBaseRegion() : NULL; } bool SVal::symbol_iterator::operator==(const symbol_iterator &X) const { return itr == X.itr; } bool SVal::symbol_iterator::operator!=(const symbol_iterator &X) const { return itr != X.itr; } SVal::symbol_iterator::symbol_iterator(const SymExpr *SE) { itr.push_back(SE); while (!isa(itr.back())) expand(); } SVal::symbol_iterator& SVal::symbol_iterator::operator++() { assert(!itr.empty() && "attempting to iterate on an 'end' iterator"); assert(isa(itr.back())); itr.pop_back(); if (!itr.empty()) while (!isa(itr.back())) expand(); return *this; } SymbolRef SVal::symbol_iterator::operator*() { assert(!itr.empty() && "attempting to dereference an 'end' iterator"); return cast(itr.back()); } void SVal::symbol_iterator::expand() { const SymExpr *SE = itr.back(); itr.pop_back(); if (const SymIntExpr *SIE = dyn_cast(SE)) { itr.push_back(SIE->getLHS()); return; } else if (const SymSymExpr *SSE = dyn_cast(SE)) { itr.push_back(SSE->getLHS()); itr.push_back(SSE->getRHS()); return; } assert(false && "unhandled expansion case"); } const GRState *nonloc::LazyCompoundVal::getState() const { return static_cast(Data)->getState(); } const TypedRegion *nonloc::LazyCompoundVal::getRegion() const { return static_cast(Data)->getRegion(); } //===----------------------------------------------------------------------===// // Other Iterators. //===----------------------------------------------------------------------===// nonloc::CompoundVal::iterator nonloc::CompoundVal::begin() const { return getValue()->begin(); } nonloc::CompoundVal::iterator nonloc::CompoundVal::end() const { return getValue()->end(); } //===----------------------------------------------------------------------===// // Useful predicates. //===----------------------------------------------------------------------===// bool SVal::isZeroConstant() const { if (isa(*this)) return cast(*this).getValue() == 0; else if (isa(*this)) return cast(*this).getValue() == 0; else return false; } //===----------------------------------------------------------------------===// // Transfer function dispatch for Non-Locs. //===----------------------------------------------------------------------===// SVal nonloc::ConcreteInt::evalBinOp(ValueManager &ValMgr, BinaryOperator::Opcode Op, const nonloc::ConcreteInt& R) const { const llvm::APSInt* X = ValMgr.getBasicValueFactory().EvaluateAPSInt(Op, getValue(), R.getValue()); if (X) return nonloc::ConcreteInt(*X); else return UndefinedVal(); } nonloc::ConcreteInt nonloc::ConcreteInt::evalComplement(ValueManager &ValMgr) const { return ValMgr.makeIntVal(~getValue()); } nonloc::ConcreteInt nonloc::ConcreteInt::evalMinus(ValueManager &ValMgr) const { return ValMgr.makeIntVal(-getValue()); } //===----------------------------------------------------------------------===// // Transfer function dispatch for Locs. //===----------------------------------------------------------------------===// SVal loc::ConcreteInt::EvalBinOp(BasicValueFactory& BasicVals, BinaryOperator::Opcode Op, const loc::ConcreteInt& R) const { assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub || (Op >= BinaryOperator::LT && Op <= BinaryOperator::NE)); const llvm::APSInt* X = BasicVals.EvaluateAPSInt(Op, getValue(), R.getValue()); if (X) return loc::ConcreteInt(*X); else return UndefinedVal(); } //===----------------------------------------------------------------------===// // Pretty-Printing. //===----------------------------------------------------------------------===// void SVal::dump() const { dumpToStream(llvm::errs()); } void SVal::dumpToStream(llvm::raw_ostream& os) const { switch (getBaseKind()) { case UnknownKind: os << "Invalid"; break; case NonLocKind: cast(this)->dumpToStream(os); break; case LocKind: cast(this)->dumpToStream(os); break; case UndefinedKind: os << "Undefined"; break; default: assert (false && "Invalid SVal."); } } void NonLoc::dumpToStream(llvm::raw_ostream& os) const { switch (getSubKind()) { case nonloc::ConcreteIntKind: os << cast(this)->getValue().getZExtValue(); if (cast(this)->getValue().isUnsigned()) os << 'U'; break; case nonloc::SymbolValKind: os << '$' << cast(this)->getSymbol(); break; case nonloc::SymExprValKind: { const nonloc::SymExprVal& C = *cast(this); const SymExpr *SE = C.getSymbolicExpression(); os << SE; break; } case nonloc::LocAsIntegerKind: { const nonloc::LocAsInteger& C = *cast(this); os << C.getLoc() << " [as " << C.getNumBits() << " bit integer]"; break; } case nonloc::CompoundValKind: { const nonloc::CompoundVal& C = *cast(this); os << "compoundVal{"; bool first = true; for (nonloc::CompoundVal::iterator I=C.begin(), E=C.end(); I!=E; ++I) { if (first) { os << ' '; first = false; } else os << ", "; (*I).dumpToStream(os); } os << "}"; break; } case nonloc::LazyCompoundValKind: { const nonloc::LazyCompoundVal &C = *cast(this); os << "lazyCompoundVal{" << (void*) C.getState() << ',' << C.getRegion() << '}'; break; } default: assert (false && "Pretty-printed not implemented for this NonLoc."); break; } } void Loc::dumpToStream(llvm::raw_ostream& os) const { switch (getSubKind()) { case loc::ConcreteIntKind: os << cast(this)->getValue().getZExtValue() << " (Loc)"; break; case loc::GotoLabelKind: os << "&&" << cast(this)->getLabel()->getID()->getName(); break; case loc::MemRegionKind: os << '&' << cast(this)->getRegion()->getString(); break; default: assert(false && "Pretty-printing not implemented for this Loc."); break; } }