//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defined the types Store and StoreManager. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/Store.h" #include "clang/Analysis/PathSensitive/GRState.h" using namespace clang; StoreManager::StoreManager(GRStateManager &stateMgr) : ValMgr(stateMgr.getValueManager()), StateMgr(stateMgr), MRMgr(ValMgr.getRegionManager()) {} StoreManager::CastResult StoreManager::MakeElementRegion(const GRState *state, const MemRegion *region, QualType pointeeTy, QualType castToTy, uint64_t index) { // Create a new ElementRegion. SVal idx = ValMgr.makeArrayIndex(index); return CastResult(state, MRMgr.getElementRegion(pointeeTy, idx, region, ValMgr.getContext())); } // FIXME: Merge with the implementation of the same method in MemRegion.cpp static bool IsCompleteType(ASTContext &Ctx, QualType Ty) { if (const RecordType *RT = Ty->getAs()) { const RecordDecl *D = RT->getDecl(); if (!D->getDefinition(Ctx)) return false; } return true; } StoreManager::CastResult StoreManager::CastRegion(const GRState *state, const MemRegion* R, QualType CastToTy) { ASTContext& Ctx = StateMgr.getContext(); // Handle casts to Objective-C objects. if (CastToTy->isObjCObjectPointerType()) return CastResult(state, R->getBaseRegion()); if (CastToTy->isBlockPointerType()) { if (isa(R)) return CastResult(state, R); // FIXME: This may not be the right approach, depending on the symbol // involved. Blocks can be casted to/from 'id', as they can be treated // as Objective-C objects. if (SymbolRef sym = loc::MemRegionVal(R).getAsSymbol()) { R = MRMgr.getCodeTextRegion(sym, CastToTy); return CastResult(state, R); } // We don't know what to make of it. Return a NULL region, which // will be interpretted as UnknownVal. return CastResult(state, NULL); } // Now assume we are casting from pointer to pointer. Other cases should // already be handled. QualType PointeeTy = CastToTy->getAs()->getPointeeType(); QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); // Handle casts to void*. We just pass the region through. if (CanonPointeeTy.getUnqualifiedType() == Ctx.VoidTy) return CastResult(state, R); // Handle casts from compatible types. if (R->isBoundable()) if (const TypedRegion *TR = dyn_cast(R)) { QualType ObjTy = Ctx.getCanonicalType(TR->getValueType(Ctx)); if (CanonPointeeTy == ObjTy) return CastResult(state, R); } // Process region cast according to the kind of the region being cast. switch (R->getKind()) { case MemRegion::BEG_TYPED_REGIONS: case MemRegion::MemSpaceRegionKind: case MemRegion::BEG_DECL_REGIONS: case MemRegion::END_DECL_REGIONS: case MemRegion::END_TYPED_REGIONS: { assert(0 && "Invalid region cast"); break; } case MemRegion::CodeTextRegionKind: { // CodeTextRegion should be cast to only a function or block pointer type, // although they can in practice be casted to anything, e.g, void*, // char*, etc. // Just pass the region through. break; } case MemRegion::StringRegionKind: case MemRegion::ObjCObjectRegionKind: // FIXME: Need to handle arbitrary downcasts. case MemRegion::SymbolicRegionKind: case MemRegion::AllocaRegionKind: case MemRegion::CompoundLiteralRegionKind: case MemRegion::FieldRegionKind: case MemRegion::ObjCIvarRegionKind: case MemRegion::VarRegionKind: return MakeElementRegion(state, R, PointeeTy, CastToTy); case MemRegion::ElementRegionKind: { // If we are casting from an ElementRegion to another type, the // algorithm is as follows: // // (1) Compute the "raw offset" of the ElementRegion from the // base region. This is done by calling 'getAsRawOffset()'. // // (2a) If we get a 'RegionRawOffset' after calling // 'getAsRawOffset()', determine if the absolute offset // can be exactly divided into chunks of the size of the // casted-pointee type. If so, create a new ElementRegion with // the pointee-cast type as the new ElementType and the index // being the offset divded by the chunk size. If not, create // a new ElementRegion at offset 0 off the raw offset region. // // (2b) If we don't a get a 'RegionRawOffset' after calling // 'getAsRawOffset()', it means that we are at offset 0. // // FIXME: Handle symbolic raw offsets. const ElementRegion *elementR = cast(R); const RegionRawOffset &rawOff = elementR->getAsRawOffset(); const MemRegion *baseR = rawOff.getRegion(); // If we cannot compute a raw offset, throw up our hands and return // a NULL MemRegion*. if (!baseR) return CastResult(state, NULL); int64_t off = rawOff.getByteOffset(); if (off == 0) { // Edge case: we are at 0 bytes off the beginning of baseR. We // check to see if type we are casting to is the same as the base // region. If so, just return the base region. if (const TypedRegion *TR = dyn_cast(baseR)) { QualType ObjTy = Ctx.getCanonicalType(TR->getValueType(Ctx)); QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); if (CanonPointeeTy == ObjTy) return CastResult(state, baseR); } // Otherwise, create a new ElementRegion at offset 0. return MakeElementRegion(state, baseR, PointeeTy, CastToTy, 0); } // We have a non-zero offset from the base region. We want to determine // if the offset can be evenly divided by sizeof(PointeeTy). If so, // we create an ElementRegion whose index is that value. Otherwise, we // create two ElementRegions, one that reflects a raw offset and the other // that reflects the cast. // Compute the index for the new ElementRegion. int64_t newIndex = 0; const MemRegion *newSuperR = 0; // We can only compute sizeof(PointeeTy) if it is a complete type. if (IsCompleteType(Ctx, PointeeTy)) { // Compute the size in **bytes**. int64_t pointeeTySize = (int64_t) (Ctx.getTypeSize(PointeeTy) / 8); // Is the offset a multiple of the size? If so, we can layer the // ElementRegion (with elementType == PointeeTy) directly on top of // the base region. if (off % pointeeTySize == 0) { newIndex = off / pointeeTySize; newSuperR = baseR; } } if (!newSuperR) { // Create an intermediate ElementRegion to represent the raw byte. // This will be the super region of the final ElementRegion. SVal idx = ValMgr.makeArrayIndex(off); newSuperR = MRMgr.getElementRegion(Ctx.CharTy, idx, baseR, Ctx); } return MakeElementRegion(state, newSuperR, PointeeTy, CastToTy, newIndex); } } return CastResult(state, R); }