//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // A intra-procedural analysis for thread safety (e.g. deadlocks and race // conditions), based off of an annotation system. // // See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more // information. // //===----------------------------------------------------------------------===// #include "clang/Analysis/Analyses/ThreadSafety.h" #include "clang/Analysis/Analyses/PostOrderCFGView.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/CFGStmtMap.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceLocation.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace clang; using namespace thread_safety; // Key method definition ThreadSafetyHandler::~ThreadSafetyHandler() {} namespace { /// \brief A MutexID object uniquely identifies a particular mutex, and /// is built from an Expr* (i.e. calling a lock function). /// /// Thread-safety analysis works by comparing lock expressions. Within the /// body of a function, an expression such as "x->foo->bar.mu" will resolve to /// a particular mutex object at run-time. Subsequent occurrences of the same /// expression (where "same" means syntactic equality) will refer to the same /// run-time object if three conditions hold: /// (1) Local variables in the expression, such as "x" have not changed. /// (2) Values on the heap that affect the expression have not changed. /// (3) The expression involves only pure function calls. /// /// The current implementation assumes, but does not verify, that multiple uses /// of the same lock expression satisfies these criteria. /// /// Clang introduces an additional wrinkle, which is that it is difficult to /// derive canonical expressions, or compare expressions directly for equality. /// Thus, we identify a mutex not by an Expr, but by the list of named /// declarations that are referenced by the Expr. In other words, /// x->foo->bar.mu will be a four element vector with the Decls for /// mu, bar, and foo, and x. The vector will uniquely identify the expression /// for all practical purposes. Null is used to denote 'this'. /// /// Note we will need to perform substitution on "this" and function parameter /// names when constructing a lock expression. /// /// For example: /// class C { Mutex Mu; void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); }; /// void myFunc(C *X) { ... X->lock() ... } /// The original expression for the mutex acquired by myFunc is "this->Mu", but /// "X" is substituted for "this" so we get X->Mu(); /// /// For another example: /// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... } /// MyList *MyL; /// foo(MyL); // requires lock MyL->Mu to be held class MutexID { SmallVector DeclSeq; /// Build a Decl sequence representing the lock from the given expression. /// Recursive function that terminates on DeclRefExpr. /// Note: this function merely creates a MutexID; it does not check to /// ensure that the original expression is a valid mutex expression. void buildMutexID(Expr *Exp, const NamedDecl *D, Expr *Parent, unsigned NumArgs, Expr **FunArgs) { if (!Exp) { DeclSeq.clear(); return; } if (DeclRefExpr *DRE = dyn_cast(Exp)) { NamedDecl *ND = cast(DRE->getDecl()->getCanonicalDecl()); ParmVarDecl *PV = dyn_cast_or_null(ND); if (PV) { FunctionDecl *FD = cast(PV->getDeclContext())->getCanonicalDecl(); unsigned i = PV->getFunctionScopeIndex(); if (FunArgs && FD == D->getCanonicalDecl()) { // Substitute call arguments for references to function parameters assert(i < NumArgs); buildMutexID(FunArgs[i], D, 0, 0, 0); return; } // Map the param back to the param of the original function declaration. DeclSeq.push_back(FD->getParamDecl(i)); return; } // Not a function parameter -- just store the reference. DeclSeq.push_back(ND); } else if (MemberExpr *ME = dyn_cast(Exp)) { NamedDecl *ND = ME->getMemberDecl(); DeclSeq.push_back(ND); buildMutexID(ME->getBase(), D, Parent, NumArgs, FunArgs); } else if (isa(Exp)) { if (Parent) buildMutexID(Parent, D, 0, 0, 0); else { DeclSeq.push_back(0); // Use 0 to represent 'this'. return; // mutexID is still valid in this case } } else if (CXXMemberCallExpr *CMCE = dyn_cast(Exp)) { DeclSeq.push_back(CMCE->getMethodDecl()->getCanonicalDecl()); buildMutexID(CMCE->getImplicitObjectArgument(), D, Parent, NumArgs, FunArgs); unsigned NumCallArgs = CMCE->getNumArgs(); Expr** CallArgs = CMCE->getArgs(); for (unsigned i = 0; i < NumCallArgs; ++i) { buildMutexID(CallArgs[i], D, Parent, NumArgs, FunArgs); } } else if (CallExpr *CE = dyn_cast(Exp)) { buildMutexID(CE->getCallee(), D, Parent, NumArgs, FunArgs); unsigned NumCallArgs = CE->getNumArgs(); Expr** CallArgs = CE->getArgs(); for (unsigned i = 0; i < NumCallArgs; ++i) { buildMutexID(CallArgs[i], D, Parent, NumArgs, FunArgs); } } else if (BinaryOperator *BOE = dyn_cast(Exp)) { buildMutexID(BOE->getLHS(), D, Parent, NumArgs, FunArgs); buildMutexID(BOE->getRHS(), D, Parent, NumArgs, FunArgs); } else if (UnaryOperator *UOE = dyn_cast(Exp)) { buildMutexID(UOE->getSubExpr(), D, Parent, NumArgs, FunArgs); } else if (ArraySubscriptExpr *ASE = dyn_cast(Exp)) { buildMutexID(ASE->getBase(), D, Parent, NumArgs, FunArgs); buildMutexID(ASE->getIdx(), D, Parent, NumArgs, FunArgs); } else if (AbstractConditionalOperator *CE = dyn_cast(Exp)) { buildMutexID(CE->getCond(), D, Parent, NumArgs, FunArgs); buildMutexID(CE->getTrueExpr(), D, Parent, NumArgs, FunArgs); buildMutexID(CE->getFalseExpr(), D, Parent, NumArgs, FunArgs); } else if (ChooseExpr *CE = dyn_cast(Exp)) { buildMutexID(CE->getCond(), D, Parent, NumArgs, FunArgs); buildMutexID(CE->getLHS(), D, Parent, NumArgs, FunArgs); buildMutexID(CE->getRHS(), D, Parent, NumArgs, FunArgs); } else if (CastExpr *CE = dyn_cast(Exp)) { buildMutexID(CE->getSubExpr(), D, Parent, NumArgs, FunArgs); } else if (ParenExpr *PE = dyn_cast(Exp)) { buildMutexID(PE->getSubExpr(), D, Parent, NumArgs, FunArgs); } else if (isa(Exp) || isa(Exp) || isa(Exp) || isa(Exp) || isa(Exp) || isa(Exp) || isa(Exp) || isa(Exp) || isa(Exp)) { return; // FIXME: Ignore literals for now } else { // Ignore. FIXME: mark as invalid expression? } } /// \brief Construct a MutexID from an expression. /// \param MutexExp The original mutex expression within an attribute /// \param DeclExp An expression involving the Decl on which the attribute /// occurs. /// \param D The declaration to which the lock/unlock attribute is attached. void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) { Expr *Parent = 0; unsigned NumArgs = 0; Expr **FunArgs = 0; // If we are processing a raw attribute expression, with no substitutions. if (DeclExp == 0) { buildMutexID(MutexExp, D, 0, 0, 0); return; } // Examine DeclExp to find Parent and FunArgs, which are used to substitute // for formal parameters when we call buildMutexID later. if (MemberExpr *ME = dyn_cast(DeclExp)) { Parent = ME->getBase(); } else if (CXXMemberCallExpr *CE = dyn_cast(DeclExp)) { Parent = CE->getImplicitObjectArgument(); NumArgs = CE->getNumArgs(); FunArgs = CE->getArgs(); } else if (CallExpr *CE = dyn_cast(DeclExp)) { NumArgs = CE->getNumArgs(); FunArgs = CE->getArgs(); } else if (CXXConstructExpr *CE = dyn_cast(DeclExp)) { Parent = 0; // FIXME -- get the parent from DeclStmt NumArgs = CE->getNumArgs(); FunArgs = CE->getArgs(); } else if (D && isa(D)) { // There's no such thing as a "destructor call" in the AST. Parent = DeclExp; } // If the attribute has no arguments, then assume the argument is "this". if (MutexExp == 0) { buildMutexID(Parent, D, 0, 0, 0); return; } buildMutexID(MutexExp, D, Parent, NumArgs, FunArgs); } public: explicit MutexID(clang::Decl::EmptyShell e) { DeclSeq.clear(); } /// \param MutexExp The original mutex expression within an attribute /// \param DeclExp An expression involving the Decl on which the attribute /// occurs. /// \param D The declaration to which the lock/unlock attribute is attached. /// Caller must check isValid() after construction. MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) { buildMutexIDFromExp(MutexExp, DeclExp, D); } /// Return true if this is a valid decl sequence. /// Caller must call this by hand after construction to handle errors. bool isValid() const { return !DeclSeq.empty(); } /// Issue a warning about an invalid lock expression static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) { SourceLocation Loc; if (DeclExp) Loc = DeclExp->getExprLoc(); // FIXME: add a note about the attribute location in MutexExp or D if (Loc.isValid()) Handler.handleInvalidLockExp(Loc); } bool operator==(const MutexID &other) const { return DeclSeq == other.DeclSeq; } bool operator!=(const MutexID &other) const { return !(*this == other); } // SmallVector overloads Operator< to do lexicographic ordering. Note that // we use pointer equality (and <) to compare NamedDecls. This means the order // of MutexIDs in a lockset is nondeterministic. In order to output // diagnostics in a deterministic ordering, we must order all diagnostics to // output by SourceLocation when iterating through this lockset. bool operator<(const MutexID &other) const { return DeclSeq < other.DeclSeq; } /// \brief Returns the name of the first Decl in the list for a given MutexID; /// e.g. the lock expression foo.bar() has name "bar". /// The caret will point unambiguously to the lock expression, so using this /// name in diagnostics is a way to get simple, and consistent, mutex names. /// We do not want to output the entire expression text for security reasons. std::string getName() const { assert(isValid()); if (!DeclSeq.front()) return "this"; // Use 0 to represent 'this'. return DeclSeq.front()->getNameAsString(); } void Profile(llvm::FoldingSetNodeID &ID) const { for (SmallVectorImpl::const_iterator I = DeclSeq.begin(), E = DeclSeq.end(); I != E; ++I) { ID.AddPointer(*I); } } }; /// \brief This is a helper class that stores info about the most recent /// accquire of a Lock. /// /// The main body of the analysis maps MutexIDs to LockDatas. struct LockData { SourceLocation AcquireLoc; /// \brief LKind stores whether a lock is held shared or exclusively. /// Note that this analysis does not currently support either re-entrant /// locking or lock "upgrading" and "downgrading" between exclusive and /// shared. /// /// FIXME: add support for re-entrant locking and lock up/downgrading LockKind LKind; MutexID UnderlyingMutex; // for ScopedLockable objects LockData(SourceLocation AcquireLoc, LockKind LKind) : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Decl::EmptyShell()) {} LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu) : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Mu) {} bool operator==(const LockData &other) const { return AcquireLoc == other.AcquireLoc && LKind == other.LKind; } bool operator!=(const LockData &other) const { return !(*this == other); } void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(AcquireLoc.getRawEncoding()); ID.AddInteger(LKind); } }; /// A Lockset maps each MutexID (defined above) to information about how it has /// been locked. typedef llvm::ImmutableMap Lockset; typedef llvm::ImmutableMap LocalVarContext; class LocalVariableMap; /// A side (entry or exit) of a CFG node. enum CFGBlockSide { CBS_Entry, CBS_Exit }; /// CFGBlockInfo is a struct which contains all the information that is /// maintained for each block in the CFG. See LocalVariableMap for more /// information about the contexts. struct CFGBlockInfo { Lockset EntrySet; // Lockset held at entry to block Lockset ExitSet; // Lockset held at exit from block LocalVarContext EntryContext; // Context held at entry to block LocalVarContext ExitContext; // Context held at exit from block SourceLocation EntryLoc; // Location of first statement in block SourceLocation ExitLoc; // Location of last statement in block. unsigned EntryIndex; // Used to replay contexts later const Lockset &getSet(CFGBlockSide Side) const { return Side == CBS_Entry ? EntrySet : ExitSet; } SourceLocation getLocation(CFGBlockSide Side) const { return Side == CBS_Entry ? EntryLoc : ExitLoc; } private: CFGBlockInfo(Lockset EmptySet, LocalVarContext EmptyCtx) : EntrySet(EmptySet), ExitSet(EmptySet), EntryContext(EmptyCtx), ExitContext(EmptyCtx) { } public: static CFGBlockInfo getEmptyBlockInfo(Lockset::Factory &F, LocalVariableMap &M); }; // A LocalVariableMap maintains a map from local variables to their currently // valid definitions. It provides SSA-like functionality when traversing the // CFG. Like SSA, each definition or assignment to a variable is assigned a // unique name (an integer), which acts as the SSA name for that definition. // The total set of names is shared among all CFG basic blocks. // Unlike SSA, we do not rewrite expressions to replace local variables declrefs // with their SSA-names. Instead, we compute a Context for each point in the // code, which maps local variables to the appropriate SSA-name. This map // changes with each assignment. // // The map is computed in a single pass over the CFG. Subsequent analyses can // then query the map to find the appropriate Context for a statement, and use // that Context to look up the definitions of variables. class LocalVariableMap { public: typedef LocalVarContext Context; /// A VarDefinition consists of an expression, representing the value of the /// variable, along with the context in which that expression should be /// interpreted. A reference VarDefinition does not itself contain this /// information, but instead contains a pointer to a previous VarDefinition. struct VarDefinition { public: friend class LocalVariableMap; NamedDecl *Dec; // The original declaration for this variable. Expr *Exp; // The expression for this variable, OR unsigned Ref; // Reference to another VarDefinition Context Ctx; // The map with which Exp should be interpreted. bool isReference() { return !Exp; } private: // Create ordinary variable definition VarDefinition(NamedDecl *D, Expr *E, Context C) : Dec(D), Exp(E), Ref(0), Ctx(C) { } // Create reference to previous definition VarDefinition(NamedDecl *D, unsigned R, Context C) : Dec(D), Exp(0), Ref(R), Ctx(C) { } }; private: Context::Factory ContextFactory; std::vector VarDefinitions; std::vector CtxIndices; std::vector > SavedContexts; public: LocalVariableMap() { // index 0 is a placeholder for undefined variables (aka phi-nodes). VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext())); } /// Look up a definition, within the given context. const VarDefinition* lookup(NamedDecl *D, Context Ctx) { const unsigned *i = Ctx.lookup(D); if (!i) return 0; assert(*i < VarDefinitions.size()); return &VarDefinitions[*i]; } /// Look up the definition for D within the given context. Returns /// NULL if the expression is not statically known. If successful, also /// modifies Ctx to hold the context of the return Expr. Expr* lookupExpr(NamedDecl *D, Context &Ctx) { const unsigned *P = Ctx.lookup(D); if (!P) return 0; unsigned i = *P; while (i > 0) { if (VarDefinitions[i].Exp) { Ctx = VarDefinitions[i].Ctx; return VarDefinitions[i].Exp; } i = VarDefinitions[i].Ref; } return 0; } Context getEmptyContext() { return ContextFactory.getEmptyMap(); } /// Return the next context after processing S. This function is used by /// clients of the class to get the appropriate context when traversing the /// CFG. It must be called for every assignment or DeclStmt. Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { if (SavedContexts[CtxIndex+1].first == S) { CtxIndex++; Context Result = SavedContexts[CtxIndex].second; return Result; } return C; } void dumpVarDefinitionName(unsigned i) { if (i == 0) { llvm::errs() << "Undefined"; return; } NamedDecl *Dec = VarDefinitions[i].Dec; if (!Dec) { llvm::errs() << "<>"; return; } Dec->printName(llvm::errs()); llvm::errs() << "." << i << " " << ((void*) Dec); } /// Dumps an ASCII representation of the variable map to llvm::errs() void dump() { for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { Expr *Exp = VarDefinitions[i].Exp; unsigned Ref = VarDefinitions[i].Ref; dumpVarDefinitionName(i); llvm::errs() << " = "; if (Exp) Exp->dump(); else { dumpVarDefinitionName(Ref); llvm::errs() << "\n"; } } } /// Dumps an ASCII representation of a Context to llvm::errs() void dumpContext(Context C) { for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { NamedDecl *D = I.getKey(); D->printName(llvm::errs()); const unsigned *i = C.lookup(D); llvm::errs() << " -> "; dumpVarDefinitionName(*i); llvm::errs() << "\n"; } } /// Builds the variable map. void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph, std::vector &BlockInfo); protected: // Get the current context index unsigned getContextIndex() { return SavedContexts.size()-1; } // Save the current context for later replay void saveContext(Stmt *S, Context C) { SavedContexts.push_back(std::make_pair(S,C)); } // Adds a new definition to the given context, and returns a new context. // This method should be called when declaring a new variable. Context addDefinition(NamedDecl *D, Expr *Exp, Context Ctx) { assert(!Ctx.contains(D)); unsigned newID = VarDefinitions.size(); Context NewCtx = ContextFactory.add(Ctx, D, newID); VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); return NewCtx; } // Add a new reference to an existing definition. Context addReference(NamedDecl *D, unsigned i, Context Ctx) { unsigned newID = VarDefinitions.size(); Context NewCtx = ContextFactory.add(Ctx, D, newID); VarDefinitions.push_back(VarDefinition(D, i, Ctx)); return NewCtx; } // Updates a definition only if that definition is already in the map. // This method should be called when assigning to an existing variable. Context updateDefinition(NamedDecl *D, Expr *Exp, Context Ctx) { if (Ctx.contains(D)) { unsigned newID = VarDefinitions.size(); Context NewCtx = ContextFactory.remove(Ctx, D); NewCtx = ContextFactory.add(NewCtx, D, newID); VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); return NewCtx; } return Ctx; } // Removes a definition from the context, but keeps the variable name // as a valid variable. The index 0 is a placeholder for cleared definitions. Context clearDefinition(NamedDecl *D, Context Ctx) { Context NewCtx = Ctx; if (NewCtx.contains(D)) { NewCtx = ContextFactory.remove(NewCtx, D); NewCtx = ContextFactory.add(NewCtx, D, 0); } return NewCtx; } // Remove a definition entirely frmo the context. Context removeDefinition(NamedDecl *D, Context Ctx) { Context NewCtx = Ctx; if (NewCtx.contains(D)) { NewCtx = ContextFactory.remove(NewCtx, D); } return NewCtx; } Context intersectContexts(Context C1, Context C2); Context createReferenceContext(Context C); void intersectBackEdge(Context C1, Context C2); friend class VarMapBuilder; }; // This has to be defined after LocalVariableMap. CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(Lockset::Factory &F, LocalVariableMap &M) { return CFGBlockInfo(F.getEmptyMap(), M.getEmptyContext()); } /// Visitor which builds a LocalVariableMap class VarMapBuilder : public StmtVisitor { public: LocalVariableMap* VMap; LocalVariableMap::Context Ctx; VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) : VMap(VM), Ctx(C) {} void VisitDeclStmt(DeclStmt *S); void VisitBinaryOperator(BinaryOperator *BO); }; // Add new local variables to the variable map void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { bool modifiedCtx = false; DeclGroupRef DGrp = S->getDeclGroup(); for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { if (VarDecl *VD = dyn_cast_or_null(*I)) { Expr *E = VD->getInit(); // Add local variables with trivial type to the variable map QualType T = VD->getType(); if (T.isTrivialType(VD->getASTContext())) { Ctx = VMap->addDefinition(VD, E, Ctx); modifiedCtx = true; } } } if (modifiedCtx) VMap->saveContext(S, Ctx); } // Update local variable definitions in variable map void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { if (!BO->isAssignmentOp()) return; Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); // Update the variable map and current context. if (DeclRefExpr *DRE = dyn_cast(LHSExp)) { ValueDecl *VDec = DRE->getDecl(); if (Ctx.lookup(VDec)) { if (BO->getOpcode() == BO_Assign) Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); else // FIXME -- handle compound assignment operators Ctx = VMap->clearDefinition(VDec, Ctx); VMap->saveContext(BO, Ctx); } } } // Computes the intersection of two contexts. The intersection is the // set of variables which have the same definition in both contexts; // variables with different definitions are discarded. LocalVariableMap::Context LocalVariableMap::intersectContexts(Context C1, Context C2) { Context Result = C1; for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) { NamedDecl *Dec = I.getKey(); unsigned i1 = I.getData(); const unsigned *i2 = C2.lookup(Dec); if (!i2) // variable doesn't exist on second path Result = removeDefinition(Dec, Result); else if (*i2 != i1) // variable exists, but has different definition Result = clearDefinition(Dec, Result); } return Result; } // For every variable in C, create a new variable that refers to the // definition in C. Return a new context that contains these new variables. // (We use this for a naive implementation of SSA on loop back-edges.) LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { Context Result = getEmptyContext(); for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { NamedDecl *Dec = I.getKey(); unsigned i = I.getData(); Result = addReference(Dec, i, Result); } return Result; } // This routine also takes the intersection of C1 and C2, but it does so by // altering the VarDefinitions. C1 must be the result of an earlier call to // createReferenceContext. void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) { NamedDecl *Dec = I.getKey(); unsigned i1 = I.getData(); VarDefinition *VDef = &VarDefinitions[i1]; assert(VDef->isReference()); const unsigned *i2 = C2.lookup(Dec); if (!i2 || (*i2 != i1)) VDef->Ref = 0; // Mark this variable as undefined } } // Traverse the CFG in topological order, so all predecessors of a block // (excluding back-edges) are visited before the block itself. At // each point in the code, we calculate a Context, which holds the set of // variable definitions which are visible at that point in execution. // Visible variables are mapped to their definitions using an array that // contains all definitions. // // At join points in the CFG, the set is computed as the intersection of // the incoming sets along each edge, E.g. // // { Context | VarDefinitions } // int x = 0; { x -> x1 | x1 = 0 } // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } // // This is essentially a simpler and more naive version of the standard SSA // algorithm. Those definitions that remain in the intersection are from blocks // that strictly dominate the current block. We do not bother to insert proper // phi nodes, because they are not used in our analysis; instead, wherever // a phi node would be required, we simply remove that definition from the // context (E.g. x above). // // The initial traversal does not capture back-edges, so those need to be // handled on a separate pass. Whenever the first pass encounters an // incoming back edge, it duplicates the context, creating new definitions // that refer back to the originals. (These correspond to places where SSA // might have to insert a phi node.) On the second pass, these definitions are // set to NULL if the the variable has changed on the back-edge (i.e. a phi // node was actually required.) E.g. // // { Context | VarDefinitions } // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } // ... { y -> y1 | x3 = 2, x2 = 1, ... } // void LocalVariableMap::traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph, std::vector &BlockInfo) { PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); CtxIndices.resize(CFGraph->getNumBlockIDs()); for (PostOrderCFGView::iterator I = SortedGraph->begin(), E = SortedGraph->end(); I!= E; ++I) { const CFGBlock *CurrBlock = *I; int CurrBlockID = CurrBlock->getBlockID(); CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; VisitedBlocks.insert(CurrBlock); // Calculate the entry context for the current block bool HasBackEdges = false; bool CtxInit = true; for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), PE = CurrBlock->pred_end(); PI != PE; ++PI) { // if *PI -> CurrBlock is a back edge, so skip it if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) { HasBackEdges = true; continue; } int PrevBlockID = (*PI)->getBlockID(); CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; if (CtxInit) { CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; CtxInit = false; } else { CurrBlockInfo->EntryContext = intersectContexts(CurrBlockInfo->EntryContext, PrevBlockInfo->ExitContext); } } // Duplicate the context if we have back-edges, so we can call // intersectBackEdges later. if (HasBackEdges) CurrBlockInfo->EntryContext = createReferenceContext(CurrBlockInfo->EntryContext); // Create a starting context index for the current block saveContext(0, CurrBlockInfo->EntryContext); CurrBlockInfo->EntryIndex = getContextIndex(); // Visit all the statements in the basic block. VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); for (CFGBlock::const_iterator BI = CurrBlock->begin(), BE = CurrBlock->end(); BI != BE; ++BI) { switch (BI->getKind()) { case CFGElement::Statement: { const CFGStmt *CS = cast(&*BI); VMapBuilder.Visit(const_cast(CS->getStmt())); break; } default: break; } } CurrBlockInfo->ExitContext = VMapBuilder.Ctx; // Mark variables on back edges as "unknown" if they've been changed. for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), SE = CurrBlock->succ_end(); SI != SE; ++SI) { // if CurrBlock -> *SI is *not* a back edge if (*SI == 0 || !VisitedBlocks.alreadySet(*SI)) continue; CFGBlock *FirstLoopBlock = *SI; Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; Context LoopEnd = CurrBlockInfo->ExitContext; intersectBackEdge(LoopBegin, LoopEnd); } } // Put an extra entry at the end of the indexed context array unsigned exitID = CFGraph->getExit().getBlockID(); saveContext(0, BlockInfo[exitID].ExitContext); } /// Find the appropriate source locations to use when producing diagnostics for /// each block in the CFG. static void findBlockLocations(CFG *CFGraph, PostOrderCFGView *SortedGraph, std::vector &BlockInfo) { for (PostOrderCFGView::iterator I = SortedGraph->begin(), E = SortedGraph->end(); I!= E; ++I) { const CFGBlock *CurrBlock = *I; CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; // Find the source location of the last statement in the block, if the // block is not empty. if (const Stmt *S = CurrBlock->getTerminator()) { CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); } else { for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), BE = CurrBlock->rend(); BI != BE; ++BI) { // FIXME: Handle other CFGElement kinds. if (const CFGStmt *CS = dyn_cast(&*BI)) { CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); break; } } } if (!CurrBlockInfo->ExitLoc.isInvalid()) { // This block contains at least one statement. Find the source location // of the first statement in the block. for (CFGBlock::const_iterator BI = CurrBlock->begin(), BE = CurrBlock->end(); BI != BE; ++BI) { // FIXME: Handle other CFGElement kinds. if (const CFGStmt *CS = dyn_cast(&*BI)) { CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); break; } } } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && CurrBlock != &CFGraph->getExit()) { // The block is empty, and has a single predecessor. Use its exit // location. CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; } } } /// \brief Class which implements the core thread safety analysis routines. class ThreadSafetyAnalyzer { friend class BuildLockset; ThreadSafetyHandler &Handler; Lockset::Factory LocksetFactory; LocalVariableMap LocalVarMap; public: ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {} Lockset intersectAndWarn(const CFGBlockInfo &Block1, CFGBlockSide Side1, const CFGBlockInfo &Block2, CFGBlockSide Side2, LockErrorKind LEK); Lockset addLock(Lockset &LSet, Expr *MutexExp, const NamedDecl *D, LockKind LK, SourceLocation Loc); void runAnalysis(AnalysisDeclContext &AC); }; /// \brief We use this class to visit different types of expressions in /// CFGBlocks, and build up the lockset. /// An expression may cause us to add or remove locks from the lockset, or else /// output error messages related to missing locks. /// FIXME: In future, we may be able to not inherit from a visitor. class BuildLockset : public StmtVisitor { friend class ThreadSafetyAnalyzer; ThreadSafetyHandler &Handler; Lockset::Factory &LocksetFactory; LocalVariableMap &LocalVarMap; Lockset LSet; LocalVariableMap::Context LVarCtx; unsigned CtxIndex; // Helper functions void addLock(const MutexID &Mutex, const LockData &LDat); void removeLock(const MutexID &Mutex, SourceLocation UnlockLoc); template void addLocksToSet(LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl *D, VarDecl *VD = 0); void removeLocksFromSet(UnlockFunctionAttr *Attr, Expr *Exp, NamedDecl* FunDecl); const ValueDecl *getValueDecl(Expr *Exp); void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK, Expr *MutexExp, ProtectedOperationKind POK); void checkAccess(Expr *Exp, AccessKind AK); void checkDereference(Expr *Exp, AccessKind AK); void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0); template void addTrylock(LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl *FunDecl, const CFGBlock* PredBlock, const CFGBlock *CurrBlock, Expr *BrE, bool Neg); CallExpr* getTrylockCallExpr(Stmt *Cond, LocalVariableMap::Context C, bool &Negate); void handleTrylock(Stmt *Cond, const CFGBlock* PredBlock, const CFGBlock *CurrBlock); /// \brief Returns true if the lockset contains a lock, regardless of whether /// the lock is held exclusively or shared. bool locksetContains(const MutexID &Lock) const { return LSet.lookup(Lock); } /// \brief Returns true if the lockset contains a lock with the passed in /// locktype. bool locksetContains(const MutexID &Lock, LockKind KindRequested) const { const LockData *LockHeld = LSet.lookup(Lock); return (LockHeld && KindRequested == LockHeld->LKind); } /// \brief Returns true if the lockset contains a lock with at least the /// passed in locktype. So for example, if we pass in LK_Shared, this function /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive. bool locksetContainsAtLeast(const MutexID &Lock, LockKind KindRequested) const { switch (KindRequested) { case LK_Shared: return locksetContains(Lock); case LK_Exclusive: return locksetContains(Lock, KindRequested); } llvm_unreachable("Unknown LockKind"); } public: BuildLockset(ThreadSafetyAnalyzer *analyzer, CFGBlockInfo &Info) : StmtVisitor(), Handler(analyzer->Handler), LocksetFactory(analyzer->LocksetFactory), LocalVarMap(analyzer->LocalVarMap), LSet(Info.EntrySet), LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {} void VisitUnaryOperator(UnaryOperator *UO); void VisitBinaryOperator(BinaryOperator *BO); void VisitCastExpr(CastExpr *CE); void VisitCallExpr(CallExpr *Exp); void VisitCXXConstructExpr(CXXConstructExpr *Exp); void VisitDeclStmt(DeclStmt *S); }; /// \brief Add a new lock to the lockset, warning if the lock is already there. /// \param Mutex -- the Mutex expression for the lock /// \param LDat -- the LockData for the lock void BuildLockset::addLock(const MutexID &Mutex, const LockData& LDat) { // FIXME: deal with acquired before/after annotations. // FIXME: Don't always warn when we have support for reentrant locks. if (locksetContains(Mutex)) Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc); else LSet = LocksetFactory.add(LSet, Mutex, LDat); } /// \brief Remove a lock from the lockset, warning if the lock is not there. /// \param LockExp The lock expression corresponding to the lock to be removed /// \param UnlockLoc The source location of the unlock (only used in error msg) void BuildLockset::removeLock(const MutexID &Mutex, SourceLocation UnlockLoc) { const LockData *LDat = LSet.lookup(Mutex); if (!LDat) Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc); else { // For scoped-lockable vars, remove the mutex associated with this var. if (LDat->UnderlyingMutex.isValid()) removeLock(LDat->UnderlyingMutex, UnlockLoc); LSet = LocksetFactory.remove(LSet, Mutex); } } /// \brief This function, parameterized by an attribute type, is used to add a /// set of locks specified as attribute arguments to the lockset. template void BuildLockset::addLocksToSet(LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl* FunDecl, VarDecl *VD) { typedef typename AttrType::args_iterator iterator_type; SourceLocation ExpLocation = Exp->getExprLoc(); // Figure out if we're calling the constructor of scoped lockable class bool isScopedVar = false; if (VD) { if (CXXConstructorDecl *CD = dyn_cast(FunDecl)) { CXXRecordDecl* PD = CD->getParent(); if (PD && PD->getAttr()) isScopedVar = true; } } if (Attr->args_size() == 0) { // The mutex held is the "this" object. MutexID Mutex(0, Exp, FunDecl); if (!Mutex.isValid()) MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl); else addLock(Mutex, LockData(ExpLocation, LK)); return; } for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) { MutexID Mutex(*I, Exp, FunDecl); if (!Mutex.isValid()) MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl); else { addLock(Mutex, LockData(ExpLocation, LK)); if (isScopedVar) { // For scoped lockable vars, map this var to its underlying mutex. DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); MutexID SMutex(&DRE, 0, 0); addLock(SMutex, LockData(VD->getLocation(), LK, Mutex)); } } } } /// \brief This function removes a set of locks specified as attribute /// arguments from the lockset. void BuildLockset::removeLocksFromSet(UnlockFunctionAttr *Attr, Expr *Exp, NamedDecl* FunDecl) { SourceLocation ExpLocation; if (Exp) ExpLocation = Exp->getExprLoc(); if (Attr->args_size() == 0) { // The mutex held is the "this" object. MutexID Mu(0, Exp, FunDecl); if (!Mu.isValid()) MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl); else removeLock(Mu, ExpLocation); return; } for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(), E = Attr->args_end(); I != E; ++I) { MutexID Mutex(*I, Exp, FunDecl); if (!Mutex.isValid()) MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl); else removeLock(Mutex, ExpLocation); } } /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) { if (const DeclRefExpr *DR = dyn_cast(Exp)) return DR->getDecl(); if (const MemberExpr *ME = dyn_cast(Exp)) return ME->getMemberDecl(); return 0; } /// \brief Warn if the LSet does not contain a lock sufficient to protect access /// of at least the passed in AccessKind. void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK, Expr *MutexExp, ProtectedOperationKind POK) { LockKind LK = getLockKindFromAccessKind(AK); MutexID Mutex(MutexExp, Exp, D); if (!Mutex.isValid()) MutexID::warnInvalidLock(Handler, MutexExp, Exp, D); else if (!locksetContainsAtLeast(Mutex, LK)) Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc()); } /// \brief This method identifies variable dereferences and checks pt_guarded_by /// and pt_guarded_var annotations. Note that we only check these annotations /// at the time a pointer is dereferenced. /// FIXME: We need to check for other types of pointer dereferences /// (e.g. [], ->) and deal with them here. /// \param Exp An expression that has been read or written. void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) { UnaryOperator *UO = dyn_cast(Exp); if (!UO || UO->getOpcode() != clang::UO_Deref) return; Exp = UO->getSubExpr()->IgnoreParenCasts(); const ValueDecl *D = getValueDecl(Exp); if(!D || !D->hasAttrs()) return; if (D->getAttr() && LSet.isEmpty()) Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc()); const AttrVec &ArgAttrs = D->getAttrs(); for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) if (PtGuardedByAttr *PGBAttr = dyn_cast(ArgAttrs[i])) warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference); } /// \brief Checks guarded_by and guarded_var attributes. /// Whenever we identify an access (read or write) of a DeclRefExpr or /// MemberExpr, we need to check whether there are any guarded_by or /// guarded_var attributes, and make sure we hold the appropriate mutexes. void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) { const ValueDecl *D = getValueDecl(Exp); if(!D || !D->hasAttrs()) return; if (D->getAttr() && LSet.isEmpty()) Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc()); const AttrVec &ArgAttrs = D->getAttrs(); for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i) if (GuardedByAttr *GBAttr = dyn_cast(ArgAttrs[i])) warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess); } /// \brief Process a function call, method call, constructor call, /// or destructor call. This involves looking at the attributes on the /// corresponding function/method/constructor/destructor, issuing warnings, /// and updating the locksets accordingly. /// /// FIXME: For classes annotated with one of the guarded annotations, we need /// to treat const method calls as reads and non-const method calls as writes, /// and check that the appropriate locks are held. Non-const method calls with /// the same signature as const method calls can be also treated as reads. /// /// FIXME: We need to also visit CallExprs to catch/check global functions. /// /// FIXME: Do not flag an error for member variables accessed in constructors/ /// destructors void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) { AttrVec &ArgAttrs = D->getAttrs(); for(unsigned i = 0; i < ArgAttrs.size(); ++i) { Attr *Attr = ArgAttrs[i]; switch (Attr->getKind()) { // When we encounter an exclusive lock function, we need to add the lock // to our lockset with kind exclusive. case attr::ExclusiveLockFunction: { ExclusiveLockFunctionAttr *A = cast(Attr); addLocksToSet(LK_Exclusive, A, Exp, D, VD); break; } // When we encounter a shared lock function, we need to add the lock // to our lockset with kind shared. case attr::SharedLockFunction: { SharedLockFunctionAttr *A = cast(Attr); addLocksToSet(LK_Shared, A, Exp, D, VD); break; } // When we encounter an unlock function, we need to remove unlocked // mutexes from the lockset, and flag a warning if they are not there. case attr::UnlockFunction: { UnlockFunctionAttr *UFAttr = cast(Attr); removeLocksFromSet(UFAttr, Exp, D); break; } case attr::ExclusiveLocksRequired: { ExclusiveLocksRequiredAttr *ELRAttr = cast(Attr); for (ExclusiveLocksRequiredAttr::args_iterator I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I) warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall); break; } case attr::SharedLocksRequired: { SharedLocksRequiredAttr *SLRAttr = cast(Attr); for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(), E = SLRAttr->args_end(); I != E; ++I) warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall); break; } case attr::LocksExcluded: { LocksExcludedAttr *LEAttr = cast(Attr); for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(), E = LEAttr->args_end(); I != E; ++I) { MutexID Mutex(*I, Exp, D); if (!Mutex.isValid()) MutexID::warnInvalidLock(Handler, *I, Exp, D); else if (locksetContains(Mutex)) Handler.handleFunExcludesLock(D->getName(), Mutex.getName(), Exp->getExprLoc()); } break; } // Ignore other (non thread-safety) attributes default: break; } } } /// \brief Add lock to set, if the current block is in the taken branch of a /// trylock. template void BuildLockset::addTrylock(LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl *FunDecl, const CFGBlock *PredBlock, const CFGBlock *CurrBlock, Expr *BrE, bool Neg) { // Find out which branch has the lock bool branch = 0; if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null(BrE)) { branch = BLE->getValue(); } else if (IntegerLiteral *ILE = dyn_cast_or_null(BrE)) { branch = ILE->getValue().getBoolValue(); } int branchnum = branch ? 0 : 1; if (Neg) branchnum = !branchnum; // If we've taken the trylock branch, then add the lock int i = 0; for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { if (*SI == CurrBlock && i == branchnum) { addLocksToSet(LK, Attr, Exp, FunDecl, 0); } } } // If Cond can be traced back to a function call, return the call expression. // The negate variable should be called with false, and will be set to true // if the function call is negated, e.g. if (!mu.tryLock(...)) CallExpr* BuildLockset::getTrylockCallExpr(Stmt *Cond, LocalVariableMap::Context C, bool &Negate) { if (!Cond) return 0; if (CallExpr *CallExp = dyn_cast(Cond)) { return CallExp; } else if (ImplicitCastExpr *CE = dyn_cast(Cond)) { return getTrylockCallExpr(CE->getSubExpr(), C, Negate); } else if (DeclRefExpr *DRE = dyn_cast(Cond)) { Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); return getTrylockCallExpr(E, C, Negate); } else if (UnaryOperator *UOP = dyn_cast(Cond)) { if (UOP->getOpcode() == UO_LNot) { Negate = !Negate; return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); } } // FIXME -- handle && and || as well. return NULL; } /// \brief Process a conditional branch from a previous block to the current /// block, looking for trylock calls. void BuildLockset::handleTrylock(Stmt *Cond, const CFGBlock *PredBlock, const CFGBlock *CurrBlock) { bool Negate = false; CallExpr *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate); if (!Exp) return; NamedDecl *FunDecl = dyn_cast_or_null(Exp->getCalleeDecl()); if(!FunDecl || !FunDecl->hasAttrs()) return; // If the condition is a call to a Trylock function, then grab the attributes AttrVec &ArgAttrs = FunDecl->getAttrs(); for (unsigned i = 0; i < ArgAttrs.size(); ++i) { Attr *Attr = ArgAttrs[i]; switch (Attr->getKind()) { case attr::ExclusiveTrylockFunction: { ExclusiveTrylockFunctionAttr *A = cast(Attr); addTrylock(LK_Exclusive, A, Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), Negate); break; } case attr::SharedTrylockFunction: { SharedTrylockFunctionAttr *A = cast(Attr); addTrylock(LK_Shared, A, Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), Negate); break; } default: break; } } } /// \brief For unary operations which read and write a variable, we need to /// check whether we hold any required mutexes. Reads are checked in /// VisitCastExpr. void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { switch (UO->getOpcode()) { case clang::UO_PostDec: case clang::UO_PostInc: case clang::UO_PreDec: case clang::UO_PreInc: { Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts(); checkAccess(SubExp, AK_Written); checkDereference(SubExp, AK_Written); break; } default: break; } } /// For binary operations which assign to a variable (writes), we need to check /// whether we hold any required mutexes. /// FIXME: Deal with non-primitive types. void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { if (!BO->isAssignmentOp()) return; // adjust the context LVarCtx = LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); checkAccess(LHSExp, AK_Written); checkDereference(LHSExp, AK_Written); } /// Whenever we do an LValue to Rvalue cast, we are reading a variable and /// need to ensure we hold any required mutexes. /// FIXME: Deal with non-primitive types. void BuildLockset::VisitCastExpr(CastExpr *CE) { if (CE->getCastKind() != CK_LValueToRValue) return; Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts(); checkAccess(SubExp, AK_Read); checkDereference(SubExp, AK_Read); } void BuildLockset::VisitCallExpr(CallExpr *Exp) { NamedDecl *D = dyn_cast_or_null(Exp->getCalleeDecl()); if(!D || !D->hasAttrs()) return; handleCall(Exp, D); } void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { // FIXME -- only handles constructors in DeclStmt below. } void BuildLockset::VisitDeclStmt(DeclStmt *S) { // adjust the context LVarCtx = LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); DeclGroupRef DGrp = S->getDeclGroup(); for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { Decl *D = *I; if (VarDecl *VD = dyn_cast_or_null(D)) { Expr *E = VD->getInit(); if (CXXConstructExpr *CE = dyn_cast_or_null(E)) { NamedDecl *CtorD = dyn_cast_or_null(CE->getConstructor()); if (!CtorD || !CtorD->hasAttrs()) return; handleCall(CE, CtorD, VD); } } } } /// \brief Compute the intersection of two locksets and issue warnings for any /// locks in the symmetric difference. /// /// This function is used at a merge point in the CFG when comparing the lockset /// of each branch being merged. For example, given the following sequence: /// A; if () then B; else C; D; we need to check that the lockset after B and C /// are the same. In the event of a difference, we use the intersection of these /// two locksets at the start of D. Lockset ThreadSafetyAnalyzer::intersectAndWarn(const CFGBlockInfo &Block1, CFGBlockSide Side1, const CFGBlockInfo &Block2, CFGBlockSide Side2, LockErrorKind LEK) { Lockset LSet1 = Block1.getSet(Side1); Lockset LSet2 = Block2.getSet(Side2); Lockset Intersection = LSet1; for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) { const MutexID &LSet2Mutex = I.getKey(); const LockData &LSet2LockData = I.getData(); if (const LockData *LD = LSet1.lookup(LSet2Mutex)) { if (LD->LKind != LSet2LockData.LKind) { Handler.handleExclusiveAndShared(LSet2Mutex.getName(), LSet2LockData.AcquireLoc, LD->AcquireLoc); if (LD->LKind != LK_Exclusive) Intersection = LocksetFactory.add(Intersection, LSet2Mutex, LSet2LockData); } } else { Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(), LSet2LockData.AcquireLoc, Block1.getLocation(Side1), LEK); } } for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) { if (!LSet2.contains(I.getKey())) { const MutexID &Mutex = I.getKey(); const LockData &MissingLock = I.getData(); Handler.handleMutexHeldEndOfScope(Mutex.getName(), MissingLock.AcquireLoc, Block2.getLocation(Side2), LEK); Intersection = LocksetFactory.remove(Intersection, Mutex); } } return Intersection; } Lockset ThreadSafetyAnalyzer::addLock(Lockset &LSet, Expr *MutexExp, const NamedDecl *D, LockKind LK, SourceLocation Loc) { MutexID Mutex(MutexExp, 0, D); if (!Mutex.isValid()) { MutexID::warnInvalidLock(Handler, MutexExp, 0, D); return LSet; } LockData NewLock(Loc, LK); return LocksetFactory.add(LSet, Mutex, NewLock); } /// \brief Check a function's CFG for thread-safety violations. /// /// We traverse the blocks in the CFG, compute the set of mutexes that are held /// at the end of each block, and issue warnings for thread safety violations. /// Each block in the CFG is traversed exactly once. void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { CFG *CFGraph = AC.getCFG(); if (!CFGraph) return; const NamedDecl *D = dyn_cast_or_null(AC.getDecl()); if (!D) return; // Ignore anonymous functions for now. if (D->getAttr()) return; // FIXME: Do something a bit more intelligent inside constructor and // destructor code. Constructors and destructors must assume unique access // to 'this', so checks on member variable access is disabled, but we should // still enable checks on other objects. if (isa(D)) return; // Don't check inside constructors. if (isa(D)) return; // Don't check inside destructors. std::vector BlockInfo(CFGraph->getNumBlockIDs(), CFGBlockInfo::getEmptyBlockInfo(LocksetFactory, LocalVarMap)); // We need to explore the CFG via a "topological" ordering. // That way, we will be guaranteed to have information about required // predecessor locksets when exploring a new block. PostOrderCFGView *SortedGraph = AC.getAnalysis(); PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); // Compute SSA names for local variables LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); // Fill in source locations for all CFGBlocks. findBlockLocations(CFGraph, SortedGraph, BlockInfo); // Add locks from exclusive_locks_required and shared_locks_required // to initial lockset. Also turn off checking for lock and unlock functions. // FIXME: is there a more intelligent way to check lock/unlock functions? if (!SortedGraph->empty() && D->hasAttrs()) { const CFGBlock *FirstBlock = *SortedGraph->begin(); Lockset &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; const AttrVec &ArgAttrs = D->getAttrs(); for (unsigned i = 0; i < ArgAttrs.size(); ++i) { Attr *Attr = ArgAttrs[i]; SourceLocation AttrLoc = Attr->getLocation(); if (SharedLocksRequiredAttr *SLRAttr = dyn_cast(Attr)) { for (SharedLocksRequiredAttr::args_iterator SLRIter = SLRAttr->args_begin(), SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter) InitialLockset = addLock(InitialLockset, *SLRIter, D, LK_Shared, AttrLoc); } else if (ExclusiveLocksRequiredAttr *ELRAttr = dyn_cast(Attr)) { for (ExclusiveLocksRequiredAttr::args_iterator ELRIter = ELRAttr->args_begin(), ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter) InitialLockset = addLock(InitialLockset, *ELRIter, D, LK_Exclusive, AttrLoc); } else if (isa(Attr)) { // Don't try to check unlock functions for now return; } else if (isa(Attr)) { // Don't try to check lock functions for now return; } else if (isa(Attr)) { // Don't try to check lock functions for now return; } } } for (PostOrderCFGView::iterator I = SortedGraph->begin(), E = SortedGraph->end(); I!= E; ++I) { const CFGBlock *CurrBlock = *I; int CurrBlockID = CurrBlock->getBlockID(); CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; // Use the default initial lockset in case there are no predecessors. VisitedBlocks.insert(CurrBlock); // Iterate through the predecessor blocks and warn if the lockset for all // predecessors is not the same. We take the entry lockset of the current // block to be the intersection of all previous locksets. // FIXME: By keeping the intersection, we may output more errors in future // for a lock which is not in the intersection, but was in the union. We // may want to also keep the union in future. As an example, let's say // the intersection contains Mutex L, and the union contains L and M. // Later we unlock M. At this point, we would output an error because we // never locked M; although the real error is probably that we forgot to // lock M on all code paths. Conversely, let's say that later we lock M. // In this case, we should compare against the intersection instead of the // union because the real error is probably that we forgot to unlock M on // all code paths. bool LocksetInitialized = false; llvm::SmallVector SpecialBlocks; for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), PE = CurrBlock->pred_end(); PI != PE; ++PI) { // if *PI -> CurrBlock is a back edge if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) continue; // Ignore edges from blocks that can't return. if ((*PI)->hasNoReturnElement()) continue; // If the previous block ended in a 'continue' or 'break' statement, then // a difference in locksets is probably due to a bug in that block, rather // than in some other predecessor. In that case, keep the other // predecessor's lockset. if (const Stmt *Terminator = (*PI)->getTerminator()) { if (isa(Terminator) || isa(Terminator)) { SpecialBlocks.push_back(*PI); continue; } } int PrevBlockID = (*PI)->getBlockID(); CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; if (!LocksetInitialized) { CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; LocksetInitialized = true; } else { CurrBlockInfo->EntrySet = intersectAndWarn(*CurrBlockInfo, CBS_Entry, *PrevBlockInfo, CBS_Exit, LEK_LockedSomePredecessors); } } // Process continue and break blocks. Assume that the lockset for the // resulting block is unaffected by any discrepancies in them. for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size(); SpecialI < SpecialN; ++SpecialI) { CFGBlock *PrevBlock = SpecialBlocks[SpecialI]; int PrevBlockID = PrevBlock->getBlockID(); CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; if (!LocksetInitialized) { CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; LocksetInitialized = true; } else { // Determine whether this edge is a loop terminator for diagnostic // purposes. FIXME: A 'break' statement might be a loop terminator, but // it might also be part of a switch. Also, a subsequent destructor // might add to the lockset, in which case the real issue might be a // double lock on the other path. const Stmt *Terminator = PrevBlock->getTerminator(); bool IsLoop = Terminator && isa(Terminator); // Do not update EntrySet. intersectAndWarn(*CurrBlockInfo, CBS_Entry, *PrevBlockInfo, CBS_Exit, IsLoop ? LEK_LockedSomeLoopIterations : LEK_LockedSomePredecessors); } } BuildLockset LocksetBuilder(this, *CurrBlockInfo); CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), PE = CurrBlock->pred_end(); if (PI != PE) { // If the predecessor ended in a branch, then process any trylocks. // FIXME -- check to make sure there's only one predecessor. if (Stmt *TCE = (*PI)->getTerminatorCondition()) { LocksetBuilder.handleTrylock(TCE, *PI, CurrBlock); } } // Visit all the statements in the basic block. for (CFGBlock::const_iterator BI = CurrBlock->begin(), BE = CurrBlock->end(); BI != BE; ++BI) { switch (BI->getKind()) { case CFGElement::Statement: { const CFGStmt *CS = cast(&*BI); LocksetBuilder.Visit(const_cast(CS->getStmt())); break; } // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. case CFGElement::AutomaticObjectDtor: { const CFGAutomaticObjDtor *AD = cast(&*BI); CXXDestructorDecl *DD = const_cast( AD->getDestructorDecl(AC.getASTContext())); if (!DD->hasAttrs()) break; // Create a dummy expression, VarDecl *VD = const_cast(AD->getVarDecl()); DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, AD->getTriggerStmt()->getLocEnd()); LocksetBuilder.handleCall(&DRE, DD); break; } default: break; } } CurrBlockInfo->ExitSet = LocksetBuilder.LSet; // For every back edge from CurrBlock (the end of the loop) to another block // (FirstLoopBlock) we need to check that the Lockset of Block is equal to // the one held at the beginning of FirstLoopBlock. We can look up the // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), SE = CurrBlock->succ_end(); SI != SE; ++SI) { // if CurrBlock -> *SI is *not* a back edge if (*SI == 0 || !VisitedBlocks.alreadySet(*SI)) continue; CFGBlock *FirstLoopBlock = *SI; CFGBlockInfo &PreLoop = BlockInfo[FirstLoopBlock->getBlockID()]; CFGBlockInfo &LoopEnd = BlockInfo[CurrBlockID]; intersectAndWarn(LoopEnd, CBS_Exit, PreLoop, CBS_Entry, LEK_LockedSomeLoopIterations); } } CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()]; CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()]; // FIXME: Should we call this function for all blocks which exit the function? intersectAndWarn(Initial, CBS_Entry, Final, CBS_Exit, LEK_LockedAtEndOfFunction); } } // end anonymous namespace namespace clang { namespace thread_safety { /// \brief Check a function's CFG for thread-safety violations. /// /// We traverse the blocks in the CFG, compute the set of mutexes that are held /// at the end of each block, and issue warnings for thread safety violations. /// Each block in the CFG is traversed exactly once. void runThreadSafetyAnalysis(AnalysisDeclContext &AC, ThreadSafetyHandler &Handler) { ThreadSafetyAnalyzer Analyzer(Handler); Analyzer.runAnalysis(AC); } /// \brief Helper function that returns a LockKind required for the given level /// of access. LockKind getLockKindFromAccessKind(AccessKind AK) { switch (AK) { case AK_Read : return LK_Shared; case AK_Written : return LK_Exclusive; } llvm_unreachable("Unknown AccessKind"); } }} // end namespace clang::thread_safety