//===- VirtualFileSystem.cpp - Virtual File System Layer --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This file implements the VirtualFileSystem interface. //===----------------------------------------------------------------------===// #include "clang/Basic/VirtualFileSystem.h" #include "clang/Basic/FileManager.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Errc.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Support/YAMLParser.h" #include #include #include using namespace clang; using namespace clang::vfs; using namespace llvm; using llvm::sys::fs::file_status; using llvm::sys::fs::file_type; using llvm::sys::fs::perms; using llvm::sys::fs::UniqueID; Status::Status(const file_status &Status) : UID(Status.getUniqueID()), MTime(Status.getLastModificationTime()), User(Status.getUser()), Group(Status.getGroup()), Size(Status.getSize()), Type(Status.type()), Perms(Status.permissions()), IsVFSMapped(false) {} Status::Status(StringRef Name, UniqueID UID, sys::TimePoint<> MTime, uint32_t User, uint32_t Group, uint64_t Size, file_type Type, perms Perms) : Name(Name), UID(UID), MTime(MTime), User(User), Group(Group), Size(Size), Type(Type), Perms(Perms), IsVFSMapped(false) {} Status Status::copyWithNewName(const Status &In, StringRef NewName) { return Status(NewName, In.getUniqueID(), In.getLastModificationTime(), In.getUser(), In.getGroup(), In.getSize(), In.getType(), In.getPermissions()); } Status Status::copyWithNewName(const file_status &In, StringRef NewName) { return Status(NewName, In.getUniqueID(), In.getLastModificationTime(), In.getUser(), In.getGroup(), In.getSize(), In.type(), In.permissions()); } bool Status::equivalent(const Status &Other) const { return getUniqueID() == Other.getUniqueID(); } bool Status::isDirectory() const { return Type == file_type::directory_file; } bool Status::isRegularFile() const { return Type == file_type::regular_file; } bool Status::isOther() const { return exists() && !isRegularFile() && !isDirectory() && !isSymlink(); } bool Status::isSymlink() const { return Type == file_type::symlink_file; } bool Status::isStatusKnown() const { return Type != file_type::status_error; } bool Status::exists() const { return isStatusKnown() && Type != file_type::file_not_found; } File::~File() {} FileSystem::~FileSystem() {} ErrorOr> FileSystem::getBufferForFile(const llvm::Twine &Name, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatile) { auto F = openFileForRead(Name); if (!F) return F.getError(); return (*F)->getBuffer(Name, FileSize, RequiresNullTerminator, IsVolatile); } std::error_code FileSystem::makeAbsolute(SmallVectorImpl &Path) const { if (llvm::sys::path::is_absolute(Path)) return std::error_code(); auto WorkingDir = getCurrentWorkingDirectory(); if (!WorkingDir) return WorkingDir.getError(); return llvm::sys::fs::make_absolute(WorkingDir.get(), Path); } bool FileSystem::exists(const Twine &Path) { auto Status = status(Path); return Status && Status->exists(); } #ifndef NDEBUG static bool isTraversalComponent(StringRef Component) { return Component.equals("..") || Component.equals("."); } static bool pathHasTraversal(StringRef Path) { using namespace llvm::sys; for (StringRef Comp : llvm::make_range(path::begin(Path), path::end(Path))) if (isTraversalComponent(Comp)) return true; return false; } #endif //===-----------------------------------------------------------------------===/ // RealFileSystem implementation //===-----------------------------------------------------------------------===/ namespace { /// \brief Wrapper around a raw file descriptor. class RealFile : public File { int FD; Status S; std::string RealName; friend class RealFileSystem; RealFile(int FD, StringRef NewName, StringRef NewRealPathName) : FD(FD), S(NewName, {}, {}, {}, {}, {}, llvm::sys::fs::file_type::status_error, {}), RealName(NewRealPathName.str()) { assert(FD >= 0 && "Invalid or inactive file descriptor"); } public: ~RealFile() override; ErrorOr status() override; ErrorOr getName() override; ErrorOr> getBuffer(const Twine &Name, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatile) override; std::error_code close() override; }; } // end anonymous namespace RealFile::~RealFile() { close(); } ErrorOr RealFile::status() { assert(FD != -1 && "cannot stat closed file"); if (!S.isStatusKnown()) { file_status RealStatus; if (std::error_code EC = sys::fs::status(FD, RealStatus)) return EC; S = Status::copyWithNewName(RealStatus, S.getName()); } return S; } ErrorOr RealFile::getName() { return RealName.empty() ? S.getName().str() : RealName; } ErrorOr> RealFile::getBuffer(const Twine &Name, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatile) { assert(FD != -1 && "cannot get buffer for closed file"); return MemoryBuffer::getOpenFile(FD, Name, FileSize, RequiresNullTerminator, IsVolatile); } std::error_code RealFile::close() { std::error_code EC = sys::Process::SafelyCloseFileDescriptor(FD); FD = -1; return EC; } namespace { /// \brief The file system according to your operating system. class RealFileSystem : public FileSystem { public: ErrorOr status(const Twine &Path) override; ErrorOr> openFileForRead(const Twine &Path) override; directory_iterator dir_begin(const Twine &Dir, std::error_code &EC) override; llvm::ErrorOr getCurrentWorkingDirectory() const override; std::error_code setCurrentWorkingDirectory(const Twine &Path) override; }; } // end anonymous namespace ErrorOr RealFileSystem::status(const Twine &Path) { sys::fs::file_status RealStatus; if (std::error_code EC = sys::fs::status(Path, RealStatus)) return EC; return Status::copyWithNewName(RealStatus, Path.str()); } ErrorOr> RealFileSystem::openFileForRead(const Twine &Name) { int FD; SmallString<256> RealName; if (std::error_code EC = sys::fs::openFileForRead(Name, FD, &RealName)) return EC; return std::unique_ptr(new RealFile(FD, Name.str(), RealName.str())); } llvm::ErrorOr RealFileSystem::getCurrentWorkingDirectory() const { SmallString<256> Dir; if (std::error_code EC = llvm::sys::fs::current_path(Dir)) return EC; return Dir.str().str(); } std::error_code RealFileSystem::setCurrentWorkingDirectory(const Twine &Path) { // FIXME: chdir is thread hostile; on the other hand, creating the same // behavior as chdir is complex: chdir resolves the path once, thus // guaranteeing that all subsequent relative path operations work // on the same path the original chdir resulted in. This makes a // difference for example on network filesystems, where symlinks might be // switched during runtime of the tool. Fixing this depends on having a // file system abstraction that allows openat() style interactions. return llvm::sys::fs::set_current_path(Path); } IntrusiveRefCntPtr vfs::getRealFileSystem() { static IntrusiveRefCntPtr FS = new RealFileSystem(); return FS; } namespace { class RealFSDirIter : public clang::vfs::detail::DirIterImpl { llvm::sys::fs::directory_iterator Iter; public: RealFSDirIter(const Twine &Path, std::error_code &EC) : Iter(Path, EC) { if (!EC && Iter != llvm::sys::fs::directory_iterator()) { llvm::sys::fs::file_status S; EC = Iter->status(S); CurrentEntry = Status::copyWithNewName(S, Iter->path()); } } std::error_code increment() override { std::error_code EC; Iter.increment(EC); if (EC) { return EC; } else if (Iter == llvm::sys::fs::directory_iterator()) { CurrentEntry = Status(); } else { llvm::sys::fs::file_status S; EC = Iter->status(S); CurrentEntry = Status::copyWithNewName(S, Iter->path()); } return EC; } }; } directory_iterator RealFileSystem::dir_begin(const Twine &Dir, std::error_code &EC) { return directory_iterator(std::make_shared(Dir, EC)); } //===-----------------------------------------------------------------------===/ // OverlayFileSystem implementation //===-----------------------------------------------------------------------===/ OverlayFileSystem::OverlayFileSystem(IntrusiveRefCntPtr BaseFS) { FSList.push_back(std::move(BaseFS)); } void OverlayFileSystem::pushOverlay(IntrusiveRefCntPtr FS) { FSList.push_back(FS); // Synchronize added file systems by duplicating the working directory from // the first one in the list. FS->setCurrentWorkingDirectory(getCurrentWorkingDirectory().get()); } ErrorOr OverlayFileSystem::status(const Twine &Path) { // FIXME: handle symlinks that cross file systems for (iterator I = overlays_begin(), E = overlays_end(); I != E; ++I) { ErrorOr Status = (*I)->status(Path); if (Status || Status.getError() != llvm::errc::no_such_file_or_directory) return Status; } return make_error_code(llvm::errc::no_such_file_or_directory); } ErrorOr> OverlayFileSystem::openFileForRead(const llvm::Twine &Path) { // FIXME: handle symlinks that cross file systems for (iterator I = overlays_begin(), E = overlays_end(); I != E; ++I) { auto Result = (*I)->openFileForRead(Path); if (Result || Result.getError() != llvm::errc::no_such_file_or_directory) return Result; } return make_error_code(llvm::errc::no_such_file_or_directory); } llvm::ErrorOr OverlayFileSystem::getCurrentWorkingDirectory() const { // All file systems are synchronized, just take the first working directory. return FSList.front()->getCurrentWorkingDirectory(); } std::error_code OverlayFileSystem::setCurrentWorkingDirectory(const Twine &Path) { for (auto &FS : FSList) if (std::error_code EC = FS->setCurrentWorkingDirectory(Path)) return EC; return std::error_code(); } clang::vfs::detail::DirIterImpl::~DirIterImpl() { } namespace { class OverlayFSDirIterImpl : public clang::vfs::detail::DirIterImpl { OverlayFileSystem &Overlays; std::string Path; OverlayFileSystem::iterator CurrentFS; directory_iterator CurrentDirIter; llvm::StringSet<> SeenNames; std::error_code incrementFS() { assert(CurrentFS != Overlays.overlays_end() && "incrementing past end"); ++CurrentFS; for (auto E = Overlays.overlays_end(); CurrentFS != E; ++CurrentFS) { std::error_code EC; CurrentDirIter = (*CurrentFS)->dir_begin(Path, EC); if (EC && EC != errc::no_such_file_or_directory) return EC; if (CurrentDirIter != directory_iterator()) break; // found } return std::error_code(); } std::error_code incrementDirIter(bool IsFirstTime) { assert((IsFirstTime || CurrentDirIter != directory_iterator()) && "incrementing past end"); std::error_code EC; if (!IsFirstTime) CurrentDirIter.increment(EC); if (!EC && CurrentDirIter == directory_iterator()) EC = incrementFS(); return EC; } std::error_code incrementImpl(bool IsFirstTime) { while (true) { std::error_code EC = incrementDirIter(IsFirstTime); if (EC || CurrentDirIter == directory_iterator()) { CurrentEntry = Status(); return EC; } CurrentEntry = *CurrentDirIter; StringRef Name = llvm::sys::path::filename(CurrentEntry.getName()); if (SeenNames.insert(Name).second) return EC; // name not seen before } llvm_unreachable("returned above"); } public: OverlayFSDirIterImpl(const Twine &Path, OverlayFileSystem &FS, std::error_code &EC) : Overlays(FS), Path(Path.str()), CurrentFS(Overlays.overlays_begin()) { CurrentDirIter = (*CurrentFS)->dir_begin(Path, EC); EC = incrementImpl(true); } std::error_code increment() override { return incrementImpl(false); } }; } // end anonymous namespace directory_iterator OverlayFileSystem::dir_begin(const Twine &Dir, std::error_code &EC) { return directory_iterator( std::make_shared(Dir, *this, EC)); } namespace clang { namespace vfs { namespace detail { enum InMemoryNodeKind { IME_File, IME_Directory }; /// The in memory file system is a tree of Nodes. Every node can either be a /// file or a directory. class InMemoryNode { Status Stat; InMemoryNodeKind Kind; public: InMemoryNode(Status Stat, InMemoryNodeKind Kind) : Stat(std::move(Stat)), Kind(Kind) {} virtual ~InMemoryNode() {} const Status &getStatus() const { return Stat; } InMemoryNodeKind getKind() const { return Kind; } virtual std::string toString(unsigned Indent) const = 0; }; namespace { class InMemoryFile : public InMemoryNode { std::unique_ptr Buffer; public: InMemoryFile(Status Stat, std::unique_ptr Buffer) : InMemoryNode(std::move(Stat), IME_File), Buffer(std::move(Buffer)) {} llvm::MemoryBuffer *getBuffer() { return Buffer.get(); } std::string toString(unsigned Indent) const override { return (std::string(Indent, ' ') + getStatus().getName() + "\n").str(); } static bool classof(const InMemoryNode *N) { return N->getKind() == IME_File; } }; /// Adapt a InMemoryFile for VFS' File interface. class InMemoryFileAdaptor : public File { InMemoryFile &Node; public: explicit InMemoryFileAdaptor(InMemoryFile &Node) : Node(Node) {} llvm::ErrorOr status() override { return Node.getStatus(); } llvm::ErrorOr> getBuffer(const Twine &Name, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatile) override { llvm::MemoryBuffer *Buf = Node.getBuffer(); return llvm::MemoryBuffer::getMemBuffer( Buf->getBuffer(), Buf->getBufferIdentifier(), RequiresNullTerminator); } std::error_code close() override { return std::error_code(); } }; } // end anonymous namespace class InMemoryDirectory : public InMemoryNode { std::map> Entries; public: InMemoryDirectory(Status Stat) : InMemoryNode(std::move(Stat), IME_Directory) {} InMemoryNode *getChild(StringRef Name) { auto I = Entries.find(Name); if (I != Entries.end()) return I->second.get(); return nullptr; } InMemoryNode *addChild(StringRef Name, std::unique_ptr Child) { return Entries.insert(make_pair(Name, std::move(Child))) .first->second.get(); } typedef decltype(Entries)::const_iterator const_iterator; const_iterator begin() const { return Entries.begin(); } const_iterator end() const { return Entries.end(); } std::string toString(unsigned Indent) const override { std::string Result = (std::string(Indent, ' ') + getStatus().getName() + "\n").str(); for (const auto &Entry : Entries) { Result += Entry.second->toString(Indent + 2); } return Result; } static bool classof(const InMemoryNode *N) { return N->getKind() == IME_Directory; } }; } InMemoryFileSystem::InMemoryFileSystem(bool UseNormalizedPaths) : Root(new detail::InMemoryDirectory( Status("", getNextVirtualUniqueID(), llvm::sys::TimePoint<>(), 0, 0, 0, llvm::sys::fs::file_type::directory_file, llvm::sys::fs::perms::all_all))), UseNormalizedPaths(UseNormalizedPaths) {} InMemoryFileSystem::~InMemoryFileSystem() {} std::string InMemoryFileSystem::toString() const { return Root->toString(/*Indent=*/0); } bool InMemoryFileSystem::addFile(const Twine &P, time_t ModificationTime, std::unique_ptr Buffer) { SmallString<128> Path; P.toVector(Path); // Fix up relative paths. This just prepends the current working directory. std::error_code EC = makeAbsolute(Path); assert(!EC); (void)EC; if (useNormalizedPaths()) llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true); if (Path.empty()) return false; detail::InMemoryDirectory *Dir = Root.get(); auto I = llvm::sys::path::begin(Path), E = llvm::sys::path::end(Path); while (true) { StringRef Name = *I; detail::InMemoryNode *Node = Dir->getChild(Name); ++I; if (!Node) { if (I == E) { // End of the path, create a new file. // FIXME: expose the status details in the interface. Status Stat(P.str(), getNextVirtualUniqueID(), llvm::sys::toTimePoint(ModificationTime), 0, 0, Buffer->getBufferSize(), llvm::sys::fs::file_type::regular_file, llvm::sys::fs::all_all); Dir->addChild(Name, llvm::make_unique( std::move(Stat), std::move(Buffer))); return true; } // Create a new directory. Use the path up to here. // FIXME: expose the status details in the interface. Status Stat( StringRef(Path.str().begin(), Name.end() - Path.str().begin()), getNextVirtualUniqueID(), llvm::sys::toTimePoint(ModificationTime), 0, 0, Buffer->getBufferSize(), llvm::sys::fs::file_type::directory_file, llvm::sys::fs::all_all); Dir = cast(Dir->addChild( Name, llvm::make_unique(std::move(Stat)))); continue; } if (auto *NewDir = dyn_cast(Node)) { Dir = NewDir; } else { assert(isa(Node) && "Must be either file or directory!"); // Trying to insert a directory in place of a file. if (I != E) return false; // Return false only if the new file is different from the existing one. return cast(Node)->getBuffer()->getBuffer() == Buffer->getBuffer(); } } } bool InMemoryFileSystem::addFileNoOwn(const Twine &P, time_t ModificationTime, llvm::MemoryBuffer *Buffer) { return addFile(P, ModificationTime, llvm::MemoryBuffer::getMemBuffer( Buffer->getBuffer(), Buffer->getBufferIdentifier())); } static ErrorOr lookupInMemoryNode(const InMemoryFileSystem &FS, detail::InMemoryDirectory *Dir, const Twine &P) { SmallString<128> Path; P.toVector(Path); // Fix up relative paths. This just prepends the current working directory. std::error_code EC = FS.makeAbsolute(Path); assert(!EC); (void)EC; if (FS.useNormalizedPaths()) llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true); if (Path.empty()) return Dir; auto I = llvm::sys::path::begin(Path), E = llvm::sys::path::end(Path); while (true) { detail::InMemoryNode *Node = Dir->getChild(*I); ++I; if (!Node) return errc::no_such_file_or_directory; // Return the file if it's at the end of the path. if (auto File = dyn_cast(Node)) { if (I == E) return File; return errc::no_such_file_or_directory; } // Traverse directories. Dir = cast(Node); if (I == E) return Dir; } } llvm::ErrorOr InMemoryFileSystem::status(const Twine &Path) { auto Node = lookupInMemoryNode(*this, Root.get(), Path); if (Node) return (*Node)->getStatus(); return Node.getError(); } llvm::ErrorOr> InMemoryFileSystem::openFileForRead(const Twine &Path) { auto Node = lookupInMemoryNode(*this, Root.get(), Path); if (!Node) return Node.getError(); // When we have a file provide a heap-allocated wrapper for the memory buffer // to match the ownership semantics for File. if (auto *F = dyn_cast(*Node)) return std::unique_ptr(new detail::InMemoryFileAdaptor(*F)); // FIXME: errc::not_a_file? return make_error_code(llvm::errc::invalid_argument); } namespace { /// Adaptor from InMemoryDir::iterator to directory_iterator. class InMemoryDirIterator : public clang::vfs::detail::DirIterImpl { detail::InMemoryDirectory::const_iterator I; detail::InMemoryDirectory::const_iterator E; public: InMemoryDirIterator() {} explicit InMemoryDirIterator(detail::InMemoryDirectory &Dir) : I(Dir.begin()), E(Dir.end()) { if (I != E) CurrentEntry = I->second->getStatus(); } std::error_code increment() override { ++I; // When we're at the end, make CurrentEntry invalid and DirIterImpl will do // the rest. CurrentEntry = I != E ? I->second->getStatus() : Status(); return std::error_code(); } }; } // end anonymous namespace directory_iterator InMemoryFileSystem::dir_begin(const Twine &Dir, std::error_code &EC) { auto Node = lookupInMemoryNode(*this, Root.get(), Dir); if (!Node) { EC = Node.getError(); return directory_iterator(std::make_shared()); } if (auto *DirNode = dyn_cast(*Node)) return directory_iterator(std::make_shared(*DirNode)); EC = make_error_code(llvm::errc::not_a_directory); return directory_iterator(std::make_shared()); } std::error_code InMemoryFileSystem::setCurrentWorkingDirectory(const Twine &P) { SmallString<128> Path; P.toVector(Path); // Fix up relative paths. This just prepends the current working directory. std::error_code EC = makeAbsolute(Path); assert(!EC); (void)EC; if (useNormalizedPaths()) llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true); if (!Path.empty()) WorkingDirectory = Path.str(); return std::error_code(); } } } //===-----------------------------------------------------------------------===/ // RedirectingFileSystem implementation //===-----------------------------------------------------------------------===/ namespace { enum EntryKind { EK_Directory, EK_File }; /// \brief A single file or directory in the VFS. class Entry { EntryKind Kind; std::string Name; public: virtual ~Entry(); Entry(EntryKind K, StringRef Name) : Kind(K), Name(Name) {} StringRef getName() const { return Name; } EntryKind getKind() const { return Kind; } }; class RedirectingDirectoryEntry : public Entry { std::vector> Contents; Status S; public: RedirectingDirectoryEntry(StringRef Name, std::vector> Contents, Status S) : Entry(EK_Directory, Name), Contents(std::move(Contents)), S(std::move(S)) {} RedirectingDirectoryEntry(StringRef Name, Status S) : Entry(EK_Directory, Name), S(std::move(S)) {} Status getStatus() { return S; } void addContent(std::unique_ptr Content) { Contents.push_back(std::move(Content)); } Entry *getLastContent() const { return Contents.back().get(); } typedef decltype(Contents)::iterator iterator; iterator contents_begin() { return Contents.begin(); } iterator contents_end() { return Contents.end(); } static bool classof(const Entry *E) { return E->getKind() == EK_Directory; } }; class RedirectingFileEntry : public Entry { public: enum NameKind { NK_NotSet, NK_External, NK_Virtual }; private: std::string ExternalContentsPath; NameKind UseName; public: RedirectingFileEntry(StringRef Name, StringRef ExternalContentsPath, NameKind UseName) : Entry(EK_File, Name), ExternalContentsPath(ExternalContentsPath), UseName(UseName) {} StringRef getExternalContentsPath() const { return ExternalContentsPath; } /// \brief whether to use the external path as the name for this file. bool useExternalName(bool GlobalUseExternalName) const { return UseName == NK_NotSet ? GlobalUseExternalName : (UseName == NK_External); } NameKind getUseName() const { return UseName; } static bool classof(const Entry *E) { return E->getKind() == EK_File; } }; class RedirectingFileSystem; class VFSFromYamlDirIterImpl : public clang::vfs::detail::DirIterImpl { std::string Dir; RedirectingFileSystem &FS; RedirectingDirectoryEntry::iterator Current, End; public: VFSFromYamlDirIterImpl(const Twine &Path, RedirectingFileSystem &FS, RedirectingDirectoryEntry::iterator Begin, RedirectingDirectoryEntry::iterator End, std::error_code &EC); std::error_code increment() override; }; /// \brief A virtual file system parsed from a YAML file. /// /// Currently, this class allows creating virtual directories and mapping /// virtual file paths to existing external files, available in \c ExternalFS. /// /// The basic structure of the parsed file is: /// \verbatim /// { /// 'version': , /// /// 'roots': [ /// /// ] /// } /// \endverbatim /// /// All configuration options are optional. /// 'case-sensitive': /// 'use-external-names': /// 'overlay-relative': /// 'ignore-non-existent-contents': /// /// Virtual directories are represented as /// \verbatim /// { /// 'type': 'directory', /// 'name': , /// 'contents': [ ] /// } /// \endverbatim /// /// The default attributes for virtual directories are: /// \verbatim /// MTime = now() when created /// Perms = 0777 /// User = Group = 0 /// Size = 0 /// UniqueID = unspecified unique value /// \endverbatim /// /// Re-mapped files are represented as /// \verbatim /// { /// 'type': 'file', /// 'name': , /// 'use-external-name': # Optional /// 'external-contents': ) /// } /// \endverbatim /// /// and inherit their attributes from the external contents. /// /// In both cases, the 'name' field may contain multiple path components (e.g. /// /path/to/file). However, any directory that contains more than one child /// must be uniquely represented by a directory entry. class RedirectingFileSystem : public vfs::FileSystem { /// The root(s) of the virtual file system. std::vector> Roots; /// \brief The file system to use for external references. IntrusiveRefCntPtr ExternalFS; /// If IsRelativeOverlay is set, this represents the directory /// path that should be prefixed to each 'external-contents' entry /// when reading from YAML files. std::string ExternalContentsPrefixDir; /// @name Configuration /// @{ /// \brief Whether to perform case-sensitive comparisons. /// /// Currently, case-insensitive matching only works correctly with ASCII. bool CaseSensitive = true; /// IsRelativeOverlay marks whether a IsExternalContentsPrefixDir path must /// be prefixed in every 'external-contents' when reading from YAML files. bool IsRelativeOverlay = false; /// \brief Whether to use to use the value of 'external-contents' for the /// names of files. This global value is overridable on a per-file basis. bool UseExternalNames = true; /// \brief Whether an invalid path obtained via 'external-contents' should /// cause iteration on the VFS to stop. If 'true', the VFS should ignore /// the entry and continue with the next. Allows YAML files to be shared /// across multiple compiler invocations regardless of prior existent /// paths in 'external-contents'. This global value is overridable on a /// per-file basis. bool IgnoreNonExistentContents = true; /// @} /// Virtual file paths and external files could be canonicalized without "..", /// "." and "./" in their paths. FIXME: some unittests currently fail on /// win32 when using remove_dots and remove_leading_dotslash on paths. bool UseCanonicalizedPaths = #ifdef LLVM_ON_WIN32 false; #else true; #endif friend class RedirectingFileSystemParser; private: RedirectingFileSystem(IntrusiveRefCntPtr ExternalFS) : ExternalFS(std::move(ExternalFS)) {} /// \brief Looks up the path [Start, End) in \p From, possibly /// recursing into the contents of \p From if it is a directory. ErrorOr lookupPath(sys::path::const_iterator Start, sys::path::const_iterator End, Entry *From); /// \brief Get the status of a given an \c Entry. ErrorOr status(const Twine &Path, Entry *E); public: /// \brief Looks up \p Path in \c Roots. ErrorOr lookupPath(const Twine &Path); /// \brief Parses \p Buffer, which is expected to be in YAML format and /// returns a virtual file system representing its contents. static RedirectingFileSystem * create(std::unique_ptr Buffer, SourceMgr::DiagHandlerTy DiagHandler, StringRef YAMLFilePath, void *DiagContext, IntrusiveRefCntPtr ExternalFS); ErrorOr status(const Twine &Path) override; ErrorOr> openFileForRead(const Twine &Path) override; llvm::ErrorOr getCurrentWorkingDirectory() const override { return ExternalFS->getCurrentWorkingDirectory(); } std::error_code setCurrentWorkingDirectory(const Twine &Path) override { return ExternalFS->setCurrentWorkingDirectory(Path); } directory_iterator dir_begin(const Twine &Dir, std::error_code &EC) override{ ErrorOr E = lookupPath(Dir); if (!E) { EC = E.getError(); return directory_iterator(); } ErrorOr S = status(Dir, *E); if (!S) { EC = S.getError(); return directory_iterator(); } if (!S->isDirectory()) { EC = std::error_code(static_cast(errc::not_a_directory), std::system_category()); return directory_iterator(); } auto *D = cast(*E); return directory_iterator(std::make_shared(Dir, *this, D->contents_begin(), D->contents_end(), EC)); } void setExternalContentsPrefixDir(StringRef PrefixDir) { ExternalContentsPrefixDir = PrefixDir.str(); } StringRef getExternalContentsPrefixDir() const { return ExternalContentsPrefixDir; } bool ignoreNonExistentContents() const { return IgnoreNonExistentContents; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void dump() const { for (const std::unique_ptr &Root : Roots) dumpEntry(Root.get()); } LLVM_DUMP_METHOD void dumpEntry(Entry *E, int NumSpaces = 0) const { StringRef Name = E->getName(); for (int i = 0, e = NumSpaces; i < e; ++i) dbgs() << " "; dbgs() << "'" << Name.str().c_str() << "'" << "\n"; if (E->getKind() == EK_Directory) { auto *DE = dyn_cast(E); assert(DE && "Should be a directory"); for (std::unique_ptr &SubEntry : llvm::make_range(DE->contents_begin(), DE->contents_end())) dumpEntry(SubEntry.get(), NumSpaces+2); } } #endif }; /// \brief A helper class to hold the common YAML parsing state. class RedirectingFileSystemParser { yaml::Stream &Stream; void error(yaml::Node *N, const Twine &Msg) { Stream.printError(N, Msg); } // false on error bool parseScalarString(yaml::Node *N, StringRef &Result, SmallVectorImpl &Storage) { yaml::ScalarNode *S = dyn_cast(N); if (!S) { error(N, "expected string"); return false; } Result = S->getValue(Storage); return true; } // false on error bool parseScalarBool(yaml::Node *N, bool &Result) { SmallString<5> Storage; StringRef Value; if (!parseScalarString(N, Value, Storage)) return false; if (Value.equals_lower("true") || Value.equals_lower("on") || Value.equals_lower("yes") || Value == "1") { Result = true; return true; } else if (Value.equals_lower("false") || Value.equals_lower("off") || Value.equals_lower("no") || Value == "0") { Result = false; return true; } error(N, "expected boolean value"); return false; } struct KeyStatus { KeyStatus(bool Required=false) : Required(Required), Seen(false) {} bool Required; bool Seen; }; typedef std::pair KeyStatusPair; // false on error bool checkDuplicateOrUnknownKey(yaml::Node *KeyNode, StringRef Key, DenseMap &Keys) { if (!Keys.count(Key)) { error(KeyNode, "unknown key"); return false; } KeyStatus &S = Keys[Key]; if (S.Seen) { error(KeyNode, Twine("duplicate key '") + Key + "'"); return false; } S.Seen = true; return true; } // false on error bool checkMissingKeys(yaml::Node *Obj, DenseMap &Keys) { for (DenseMap::iterator I = Keys.begin(), E = Keys.end(); I != E; ++I) { if (I->second.Required && !I->second.Seen) { error(Obj, Twine("missing key '") + I->first + "'"); return false; } } return true; } Entry *lookupOrCreateEntry(RedirectingFileSystem *FS, StringRef Name, Entry *ParentEntry = nullptr) { if (!ParentEntry) { // Look for a existent root for (const std::unique_ptr &Root : FS->Roots) { if (Name.equals(Root->getName())) { ParentEntry = Root.get(); return ParentEntry; } } } else { // Advance to the next component auto *DE = dyn_cast(ParentEntry); for (std::unique_ptr &Content : llvm::make_range(DE->contents_begin(), DE->contents_end())) { auto *DirContent = dyn_cast(Content.get()); if (DirContent && Name.equals(Content->getName())) return DirContent; } } // ... or create a new one std::unique_ptr E = llvm::make_unique( Name, Status("", getNextVirtualUniqueID(), std::chrono::system_clock::now(), 0, 0, 0, file_type::directory_file, sys::fs::all_all)); if (!ParentEntry) { // Add a new root to the overlay FS->Roots.push_back(std::move(E)); ParentEntry = FS->Roots.back().get(); return ParentEntry; } auto *DE = dyn_cast(ParentEntry); DE->addContent(std::move(E)); return DE->getLastContent(); } void uniqueOverlayTree(RedirectingFileSystem *FS, Entry *SrcE, Entry *NewParentE = nullptr) { StringRef Name = SrcE->getName(); switch (SrcE->getKind()) { case EK_Directory: { auto *DE = dyn_cast(SrcE); assert(DE && "Must be a directory"); // Empty directories could be present in the YAML as a way to // describe a file for a current directory after some of its subdir // is parsed. This only leads to redundant walks, ignore it. if (!Name.empty()) NewParentE = lookupOrCreateEntry(FS, Name, NewParentE); for (std::unique_ptr &SubEntry : llvm::make_range(DE->contents_begin(), DE->contents_end())) uniqueOverlayTree(FS, SubEntry.get(), NewParentE); break; } case EK_File: { auto *FE = dyn_cast(SrcE); assert(FE && "Must be a file"); assert(NewParentE && "Parent entry must exist"); auto *DE = dyn_cast(NewParentE); DE->addContent(llvm::make_unique( Name, FE->getExternalContentsPath(), FE->getUseName())); break; } } } std::unique_ptr parseEntry(yaml::Node *N, RedirectingFileSystem *FS) { yaml::MappingNode *M = dyn_cast(N); if (!M) { error(N, "expected mapping node for file or directory entry"); return nullptr; } KeyStatusPair Fields[] = { KeyStatusPair("name", true), KeyStatusPair("type", true), KeyStatusPair("contents", false), KeyStatusPair("external-contents", false), KeyStatusPair("use-external-name", false), }; DenseMap Keys(std::begin(Fields), std::end(Fields)); bool HasContents = false; // external or otherwise std::vector> EntryArrayContents; std::string ExternalContentsPath; std::string Name; auto UseExternalName = RedirectingFileEntry::NK_NotSet; EntryKind Kind; for (yaml::MappingNode::iterator I = M->begin(), E = M->end(); I != E; ++I) { StringRef Key; // Reuse the buffer for key and value, since we don't look at key after // parsing value. SmallString<256> Buffer; if (!parseScalarString(I->getKey(), Key, Buffer)) return nullptr; if (!checkDuplicateOrUnknownKey(I->getKey(), Key, Keys)) return nullptr; StringRef Value; if (Key == "name") { if (!parseScalarString(I->getValue(), Value, Buffer)) return nullptr; if (FS->UseCanonicalizedPaths) { SmallString<256> Path(Value); // Guarantee that old YAML files containing paths with ".." and "." // are properly canonicalized before read into the VFS. Path = sys::path::remove_leading_dotslash(Path); sys::path::remove_dots(Path, /*remove_dot_dot=*/true); Name = Path.str(); } else { Name = Value; } } else if (Key == "type") { if (!parseScalarString(I->getValue(), Value, Buffer)) return nullptr; if (Value == "file") Kind = EK_File; else if (Value == "directory") Kind = EK_Directory; else { error(I->getValue(), "unknown value for 'type'"); return nullptr; } } else if (Key == "contents") { if (HasContents) { error(I->getKey(), "entry already has 'contents' or 'external-contents'"); return nullptr; } HasContents = true; yaml::SequenceNode *Contents = dyn_cast(I->getValue()); if (!Contents) { // FIXME: this is only for directories, what about files? error(I->getValue(), "expected array"); return nullptr; } for (yaml::SequenceNode::iterator I = Contents->begin(), E = Contents->end(); I != E; ++I) { if (std::unique_ptr E = parseEntry(&*I, FS)) EntryArrayContents.push_back(std::move(E)); else return nullptr; } } else if (Key == "external-contents") { if (HasContents) { error(I->getKey(), "entry already has 'contents' or 'external-contents'"); return nullptr; } HasContents = true; if (!parseScalarString(I->getValue(), Value, Buffer)) return nullptr; SmallString<256> FullPath; if (FS->IsRelativeOverlay) { FullPath = FS->getExternalContentsPrefixDir(); assert(!FullPath.empty() && "External contents prefix directory must exist"); llvm::sys::path::append(FullPath, Value); } else { FullPath = Value; } if (FS->UseCanonicalizedPaths) { // Guarantee that old YAML files containing paths with ".." and "." // are properly canonicalized before read into the VFS. FullPath = sys::path::remove_leading_dotslash(FullPath); sys::path::remove_dots(FullPath, /*remove_dot_dot=*/true); } ExternalContentsPath = FullPath.str(); } else if (Key == "use-external-name") { bool Val; if (!parseScalarBool(I->getValue(), Val)) return nullptr; UseExternalName = Val ? RedirectingFileEntry::NK_External : RedirectingFileEntry::NK_Virtual; } else { llvm_unreachable("key missing from Keys"); } } if (Stream.failed()) return nullptr; // check for missing keys if (!HasContents) { error(N, "missing key 'contents' or 'external-contents'"); return nullptr; } if (!checkMissingKeys(N, Keys)) return nullptr; // check invalid configuration if (Kind == EK_Directory && UseExternalName != RedirectingFileEntry::NK_NotSet) { error(N, "'use-external-name' is not supported for directories"); return nullptr; } // Remove trailing slash(es), being careful not to remove the root path StringRef Trimmed(Name); size_t RootPathLen = sys::path::root_path(Trimmed).size(); while (Trimmed.size() > RootPathLen && sys::path::is_separator(Trimmed.back())) Trimmed = Trimmed.slice(0, Trimmed.size()-1); // Get the last component StringRef LastComponent = sys::path::filename(Trimmed); std::unique_ptr Result; switch (Kind) { case EK_File: Result = llvm::make_unique( LastComponent, std::move(ExternalContentsPath), UseExternalName); break; case EK_Directory: Result = llvm::make_unique( LastComponent, std::move(EntryArrayContents), Status("", getNextVirtualUniqueID(), std::chrono::system_clock::now(), 0, 0, 0, file_type::directory_file, sys::fs::all_all)); break; } StringRef Parent = sys::path::parent_path(Trimmed); if (Parent.empty()) return Result; // if 'name' contains multiple components, create implicit directory entries for (sys::path::reverse_iterator I = sys::path::rbegin(Parent), E = sys::path::rend(Parent); I != E; ++I) { std::vector> Entries; Entries.push_back(std::move(Result)); Result = llvm::make_unique( *I, std::move(Entries), Status("", getNextVirtualUniqueID(), std::chrono::system_clock::now(), 0, 0, 0, file_type::directory_file, sys::fs::all_all)); } return Result; } public: RedirectingFileSystemParser(yaml::Stream &S) : Stream(S) {} // false on error bool parse(yaml::Node *Root, RedirectingFileSystem *FS) { yaml::MappingNode *Top = dyn_cast(Root); if (!Top) { error(Root, "expected mapping node"); return false; } KeyStatusPair Fields[] = { KeyStatusPair("version", true), KeyStatusPair("case-sensitive", false), KeyStatusPair("use-external-names", false), KeyStatusPair("overlay-relative", false), KeyStatusPair("ignore-non-existent-contents", false), KeyStatusPair("roots", true), }; DenseMap Keys(std::begin(Fields), std::end(Fields)); std::vector> RootEntries; // Parse configuration and 'roots' for (yaml::MappingNode::iterator I = Top->begin(), E = Top->end(); I != E; ++I) { SmallString<10> KeyBuffer; StringRef Key; if (!parseScalarString(I->getKey(), Key, KeyBuffer)) return false; if (!checkDuplicateOrUnknownKey(I->getKey(), Key, Keys)) return false; if (Key == "roots") { yaml::SequenceNode *Roots = dyn_cast(I->getValue()); if (!Roots) { error(I->getValue(), "expected array"); return false; } for (yaml::SequenceNode::iterator I = Roots->begin(), E = Roots->end(); I != E; ++I) { if (std::unique_ptr E = parseEntry(&*I, FS)) RootEntries.push_back(std::move(E)); else return false; } } else if (Key == "version") { StringRef VersionString; SmallString<4> Storage; if (!parseScalarString(I->getValue(), VersionString, Storage)) return false; int Version; if (VersionString.getAsInteger(10, Version)) { error(I->getValue(), "expected integer"); return false; } if (Version < 0) { error(I->getValue(), "invalid version number"); return false; } if (Version != 0) { error(I->getValue(), "version mismatch, expected 0"); return false; } } else if (Key == "case-sensitive") { if (!parseScalarBool(I->getValue(), FS->CaseSensitive)) return false; } else if (Key == "overlay-relative") { if (!parseScalarBool(I->getValue(), FS->IsRelativeOverlay)) return false; } else if (Key == "use-external-names") { if (!parseScalarBool(I->getValue(), FS->UseExternalNames)) return false; } else if (Key == "ignore-non-existent-contents") { if (!parseScalarBool(I->getValue(), FS->IgnoreNonExistentContents)) return false; } else { llvm_unreachable("key missing from Keys"); } } if (Stream.failed()) return false; if (!checkMissingKeys(Top, Keys)) return false; // Now that we sucessefully parsed the YAML file, canonicalize the internal // representation to a proper directory tree so that we can search faster // inside the VFS. for (std::unique_ptr &E : RootEntries) uniqueOverlayTree(FS, E.get()); return true; } }; } // end of anonymous namespace Entry::~Entry() = default; RedirectingFileSystem * RedirectingFileSystem::create(std::unique_ptr Buffer, SourceMgr::DiagHandlerTy DiagHandler, StringRef YAMLFilePath, void *DiagContext, IntrusiveRefCntPtr ExternalFS) { SourceMgr SM; yaml::Stream Stream(Buffer->getMemBufferRef(), SM); SM.setDiagHandler(DiagHandler, DiagContext); yaml::document_iterator DI = Stream.begin(); yaml::Node *Root = DI->getRoot(); if (DI == Stream.end() || !Root) { SM.PrintMessage(SMLoc(), SourceMgr::DK_Error, "expected root node"); return nullptr; } RedirectingFileSystemParser P(Stream); std::unique_ptr FS( new RedirectingFileSystem(std::move(ExternalFS))); if (!YAMLFilePath.empty()) { // Use the YAML path from -ivfsoverlay to compute the dir to be prefixed // to each 'external-contents' path. // // Example: // -ivfsoverlay dummy.cache/vfs/vfs.yaml // yields: // FS->ExternalContentsPrefixDir => //dummy.cache/vfs // SmallString<256> OverlayAbsDir = sys::path::parent_path(YAMLFilePath); std::error_code EC = llvm::sys::fs::make_absolute(OverlayAbsDir); assert(!EC && "Overlay dir final path must be absolute"); (void)EC; FS->setExternalContentsPrefixDir(OverlayAbsDir); } if (!P.parse(Root, FS.get())) return nullptr; return FS.release(); } ErrorOr RedirectingFileSystem::lookupPath(const Twine &Path_) { SmallString<256> Path; Path_.toVector(Path); // Handle relative paths if (std::error_code EC = makeAbsolute(Path)) return EC; // Canonicalize path by removing ".", "..", "./", etc components. This is // a VFS request, do bot bother about symlinks in the path components // but canonicalize in order to perform the correct entry search. if (UseCanonicalizedPaths) { Path = sys::path::remove_leading_dotslash(Path); sys::path::remove_dots(Path, /*remove_dot_dot=*/true); } if (Path.empty()) return make_error_code(llvm::errc::invalid_argument); sys::path::const_iterator Start = sys::path::begin(Path); sys::path::const_iterator End = sys::path::end(Path); for (const std::unique_ptr &Root : Roots) { ErrorOr Result = lookupPath(Start, End, Root.get()); if (Result || Result.getError() != llvm::errc::no_such_file_or_directory) return Result; } return make_error_code(llvm::errc::no_such_file_or_directory); } ErrorOr RedirectingFileSystem::lookupPath(sys::path::const_iterator Start, sys::path::const_iterator End, Entry *From) { #ifndef LLVM_ON_WIN32 assert(!isTraversalComponent(*Start) && !isTraversalComponent(From->getName()) && "Paths should not contain traversal components"); #else // FIXME: this is here to support windows, remove it once canonicalized // paths become globally default. if (Start->equals(".")) ++Start; #endif StringRef FromName = From->getName(); // Forward the search to the next component in case this is an empty one. if (!FromName.empty()) { if (CaseSensitive ? !Start->equals(FromName) : !Start->equals_lower(FromName)) // failure to match return make_error_code(llvm::errc::no_such_file_or_directory); ++Start; if (Start == End) { // Match! return From; } } auto *DE = dyn_cast(From); if (!DE) return make_error_code(llvm::errc::not_a_directory); for (const std::unique_ptr &DirEntry : llvm::make_range(DE->contents_begin(), DE->contents_end())) { ErrorOr Result = lookupPath(Start, End, DirEntry.get()); if (Result || Result.getError() != llvm::errc::no_such_file_or_directory) return Result; } return make_error_code(llvm::errc::no_such_file_or_directory); } static Status getRedirectedFileStatus(const Twine &Path, bool UseExternalNames, Status ExternalStatus) { Status S = ExternalStatus; if (!UseExternalNames) S = Status::copyWithNewName(S, Path.str()); S.IsVFSMapped = true; return S; } ErrorOr RedirectingFileSystem::status(const Twine &Path, Entry *E) { assert(E != nullptr); if (auto *F = dyn_cast(E)) { ErrorOr S = ExternalFS->status(F->getExternalContentsPath()); assert(!S || S->getName() == F->getExternalContentsPath()); if (S) return getRedirectedFileStatus(Path, F->useExternalName(UseExternalNames), *S); return S; } else { // directory auto *DE = cast(E); return Status::copyWithNewName(DE->getStatus(), Path.str()); } } ErrorOr RedirectingFileSystem::status(const Twine &Path) { ErrorOr Result = lookupPath(Path); if (!Result) return Result.getError(); return status(Path, *Result); } namespace { /// Provide a file wrapper with an overriden status. class FileWithFixedStatus : public File { std::unique_ptr InnerFile; Status S; public: FileWithFixedStatus(std::unique_ptr InnerFile, Status S) : InnerFile(std::move(InnerFile)), S(std::move(S)) {} ErrorOr status() override { return S; } ErrorOr> getBuffer(const Twine &Name, int64_t FileSize, bool RequiresNullTerminator, bool IsVolatile) override { return InnerFile->getBuffer(Name, FileSize, RequiresNullTerminator, IsVolatile); } std::error_code close() override { return InnerFile->close(); } }; } // end anonymous namespace ErrorOr> RedirectingFileSystem::openFileForRead(const Twine &Path) { ErrorOr E = lookupPath(Path); if (!E) return E.getError(); auto *F = dyn_cast(*E); if (!F) // FIXME: errc::not_a_file? return make_error_code(llvm::errc::invalid_argument); auto Result = ExternalFS->openFileForRead(F->getExternalContentsPath()); if (!Result) return Result; auto ExternalStatus = (*Result)->status(); if (!ExternalStatus) return ExternalStatus.getError(); // FIXME: Update the status with the name and VFSMapped. Status S = getRedirectedFileStatus(Path, F->useExternalName(UseExternalNames), *ExternalStatus); return std::unique_ptr( llvm::make_unique(std::move(*Result), S)); } IntrusiveRefCntPtr vfs::getVFSFromYAML(std::unique_ptr Buffer, SourceMgr::DiagHandlerTy DiagHandler, StringRef YAMLFilePath, void *DiagContext, IntrusiveRefCntPtr ExternalFS) { return RedirectingFileSystem::create(std::move(Buffer), DiagHandler, YAMLFilePath, DiagContext, std::move(ExternalFS)); } static void getVFSEntries(Entry *SrcE, SmallVectorImpl &Path, SmallVectorImpl &Entries) { auto Kind = SrcE->getKind(); if (Kind == EK_Directory) { auto *DE = dyn_cast(SrcE); assert(DE && "Must be a directory"); for (std::unique_ptr &SubEntry : llvm::make_range(DE->contents_begin(), DE->contents_end())) { Path.push_back(SubEntry->getName()); getVFSEntries(SubEntry.get(), Path, Entries); Path.pop_back(); } return; } assert(Kind == EK_File && "Must be a EK_File"); auto *FE = dyn_cast(SrcE); assert(FE && "Must be a file"); SmallString<128> VPath; for (auto &Comp : Path) llvm::sys::path::append(VPath, Comp); Entries.push_back(YAMLVFSEntry(VPath.c_str(), FE->getExternalContentsPath())); } void vfs::collectVFSFromYAML(std::unique_ptr Buffer, SourceMgr::DiagHandlerTy DiagHandler, StringRef YAMLFilePath, SmallVectorImpl &CollectedEntries, void *DiagContext, IntrusiveRefCntPtr ExternalFS) { RedirectingFileSystem *VFS = RedirectingFileSystem::create( std::move(Buffer), DiagHandler, YAMLFilePath, DiagContext, std::move(ExternalFS)); ErrorOr RootE = VFS->lookupPath("/"); if (!RootE) return; SmallVector Components; Components.push_back("/"); getVFSEntries(*RootE, Components, CollectedEntries); } UniqueID vfs::getNextVirtualUniqueID() { static std::atomic UID; unsigned ID = ++UID; // The following assumes that uint64_t max will never collide with a real // dev_t value from the OS. return UniqueID(std::numeric_limits::max(), ID); } void YAMLVFSWriter::addFileMapping(StringRef VirtualPath, StringRef RealPath) { assert(sys::path::is_absolute(VirtualPath) && "virtual path not absolute"); assert(sys::path::is_absolute(RealPath) && "real path not absolute"); assert(!pathHasTraversal(VirtualPath) && "path traversal is not supported"); Mappings.emplace_back(VirtualPath, RealPath); } namespace { class JSONWriter { llvm::raw_ostream &OS; SmallVector DirStack; inline unsigned getDirIndent() { return 4 * DirStack.size(); } inline unsigned getFileIndent() { return 4 * (DirStack.size() + 1); } bool containedIn(StringRef Parent, StringRef Path); StringRef containedPart(StringRef Parent, StringRef Path); void startDirectory(StringRef Path); void endDirectory(); void writeEntry(StringRef VPath, StringRef RPath); public: JSONWriter(llvm::raw_ostream &OS) : OS(OS) {} void write(ArrayRef Entries, Optional UseExternalNames, Optional IsCaseSensitive, Optional IsOverlayRelative, Optional IgnoreNonExistentContents, StringRef OverlayDir); }; } bool JSONWriter::containedIn(StringRef Parent, StringRef Path) { using namespace llvm::sys; // Compare each path component. auto IParent = path::begin(Parent), EParent = path::end(Parent); for (auto IChild = path::begin(Path), EChild = path::end(Path); IParent != EParent && IChild != EChild; ++IParent, ++IChild) { if (*IParent != *IChild) return false; } // Have we exhausted the parent path? return IParent == EParent; } StringRef JSONWriter::containedPart(StringRef Parent, StringRef Path) { assert(!Parent.empty()); assert(containedIn(Parent, Path)); return Path.slice(Parent.size() + 1, StringRef::npos); } void JSONWriter::startDirectory(StringRef Path) { StringRef Name = DirStack.empty() ? Path : containedPart(DirStack.back(), Path); DirStack.push_back(Path); unsigned Indent = getDirIndent(); OS.indent(Indent) << "{\n"; OS.indent(Indent + 2) << "'type': 'directory',\n"; OS.indent(Indent + 2) << "'name': \"" << llvm::yaml::escape(Name) << "\",\n"; OS.indent(Indent + 2) << "'contents': [\n"; } void JSONWriter::endDirectory() { unsigned Indent = getDirIndent(); OS.indent(Indent + 2) << "]\n"; OS.indent(Indent) << "}"; DirStack.pop_back(); } void JSONWriter::writeEntry(StringRef VPath, StringRef RPath) { unsigned Indent = getFileIndent(); OS.indent(Indent) << "{\n"; OS.indent(Indent + 2) << "'type': 'file',\n"; OS.indent(Indent + 2) << "'name': \"" << llvm::yaml::escape(VPath) << "\",\n"; OS.indent(Indent + 2) << "'external-contents': \"" << llvm::yaml::escape(RPath) << "\"\n"; OS.indent(Indent) << "}"; } void JSONWriter::write(ArrayRef Entries, Optional UseExternalNames, Optional IsCaseSensitive, Optional IsOverlayRelative, Optional IgnoreNonExistentContents, StringRef OverlayDir) { using namespace llvm::sys; OS << "{\n" " 'version': 0,\n"; if (IsCaseSensitive.hasValue()) OS << " 'case-sensitive': '" << (IsCaseSensitive.getValue() ? "true" : "false") << "',\n"; if (UseExternalNames.hasValue()) OS << " 'use-external-names': '" << (UseExternalNames.getValue() ? "true" : "false") << "',\n"; bool UseOverlayRelative = false; if (IsOverlayRelative.hasValue()) { UseOverlayRelative = IsOverlayRelative.getValue(); OS << " 'overlay-relative': '" << (UseOverlayRelative ? "true" : "false") << "',\n"; } if (IgnoreNonExistentContents.hasValue()) OS << " 'ignore-non-existent-contents': '" << (IgnoreNonExistentContents.getValue() ? "true" : "false") << "',\n"; OS << " 'roots': [\n"; if (!Entries.empty()) { const YAMLVFSEntry &Entry = Entries.front(); startDirectory(path::parent_path(Entry.VPath)); StringRef RPath = Entry.RPath; if (UseOverlayRelative) { unsigned OverlayDirLen = OverlayDir.size(); assert(RPath.substr(0, OverlayDirLen) == OverlayDir && "Overlay dir must be contained in RPath"); RPath = RPath.slice(OverlayDirLen, RPath.size()); } writeEntry(path::filename(Entry.VPath), RPath); for (const auto &Entry : Entries.slice(1)) { StringRef Dir = path::parent_path(Entry.VPath); if (Dir == DirStack.back()) OS << ",\n"; else { while (!DirStack.empty() && !containedIn(DirStack.back(), Dir)) { OS << "\n"; endDirectory(); } OS << ",\n"; startDirectory(Dir); } StringRef RPath = Entry.RPath; if (UseOverlayRelative) { unsigned OverlayDirLen = OverlayDir.size(); assert(RPath.substr(0, OverlayDirLen) == OverlayDir && "Overlay dir must be contained in RPath"); RPath = RPath.slice(OverlayDirLen, RPath.size()); } writeEntry(path::filename(Entry.VPath), RPath); } while (!DirStack.empty()) { OS << "\n"; endDirectory(); } OS << "\n"; } OS << " ]\n" << "}\n"; } void YAMLVFSWriter::write(llvm::raw_ostream &OS) { std::sort(Mappings.begin(), Mappings.end(), [](const YAMLVFSEntry &LHS, const YAMLVFSEntry &RHS) { return LHS.VPath < RHS.VPath; }); JSONWriter(OS).write(Mappings, UseExternalNames, IsCaseSensitive, IsOverlayRelative, IgnoreNonExistentContents, OverlayDir); } VFSFromYamlDirIterImpl::VFSFromYamlDirIterImpl( const Twine &_Path, RedirectingFileSystem &FS, RedirectingDirectoryEntry::iterator Begin, RedirectingDirectoryEntry::iterator End, std::error_code &EC) : Dir(_Path.str()), FS(FS), Current(Begin), End(End) { while (Current != End) { SmallString<128> PathStr(Dir); llvm::sys::path::append(PathStr, (*Current)->getName()); llvm::ErrorOr S = FS.status(PathStr); if (S) { CurrentEntry = *S; return; } // Skip entries which do not map to a reliable external content. if (FS.ignoreNonExistentContents() && S.getError() == llvm::errc::no_such_file_or_directory) { ++Current; continue; } else { EC = S.getError(); break; } } } std::error_code VFSFromYamlDirIterImpl::increment() { assert(Current != End && "cannot iterate past end"); while (++Current != End) { SmallString<128> PathStr(Dir); llvm::sys::path::append(PathStr, (*Current)->getName()); llvm::ErrorOr S = FS.status(PathStr); if (!S) { // Skip entries which do not map to a reliable external content. if (FS.ignoreNonExistentContents() && S.getError() == llvm::errc::no_such_file_or_directory) { continue; } else { return S.getError(); } } CurrentEntry = *S; break; } if (Current == End) CurrentEntry = Status(); return std::error_code(); } vfs::recursive_directory_iterator::recursive_directory_iterator(FileSystem &FS_, const Twine &Path, std::error_code &EC) : FS(&FS_) { directory_iterator I = FS->dir_begin(Path, EC); if (I != directory_iterator()) { State = std::make_shared(); State->push(I); } } vfs::recursive_directory_iterator & recursive_directory_iterator::increment(std::error_code &EC) { assert(FS && State && !State->empty() && "incrementing past end"); assert(State->top()->isStatusKnown() && "non-canonical end iterator"); vfs::directory_iterator End; if (State->top()->isDirectory()) { vfs::directory_iterator I = FS->dir_begin(State->top()->getName(), EC); if (I != End) { State->push(I); return *this; } } while (!State->empty() && State->top().increment(EC) == End) State->pop(); if (State->empty()) State.reset(); // end iterator return *this; }