//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "clang/CodeGen/BackendUtil.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/TargetOptions.h" #include "clang/Basic/LangOptions.h" #include "clang/Frontend/CodeGenOptions.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/Scalar.h" using namespace clang; using namespace llvm; namespace { class EmitAssemblyHelper { DiagnosticsEngine &Diags; const CodeGenOptions &CodeGenOpts; const clang::TargetOptions &TargetOpts; const LangOptions &LangOpts; Module *TheModule; Timer CodeGenerationTime; mutable PassManager *CodeGenPasses; mutable PassManager *PerModulePasses; mutable FunctionPassManager *PerFunctionPasses; private: PassManager *getCodeGenPasses() const { if (!CodeGenPasses) { CodeGenPasses = new PassManager(); CodeGenPasses->add(new TargetData(TheModule)); } return CodeGenPasses; } PassManager *getPerModulePasses() const { if (!PerModulePasses) { PerModulePasses = new PassManager(); PerModulePasses->add(new TargetData(TheModule)); } return PerModulePasses; } FunctionPassManager *getPerFunctionPasses() const { if (!PerFunctionPasses) { PerFunctionPasses = new FunctionPassManager(TheModule); PerFunctionPasses->add(new TargetData(TheModule)); } return PerFunctionPasses; } void CreatePasses(); /// AddEmitPasses - Add passes necessary to emit assembly or LLVM IR. /// /// \return True on success. bool AddEmitPasses(BackendAction Action, formatted_raw_ostream &OS); public: EmitAssemblyHelper(DiagnosticsEngine &_Diags, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, Module *M) : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), CodeGenerationTime("Code Generation Time"), CodeGenPasses(0), PerModulePasses(0), PerFunctionPasses(0) {} ~EmitAssemblyHelper() { delete CodeGenPasses; delete PerModulePasses; delete PerFunctionPasses; } void EmitAssembly(BackendAction Action, raw_ostream *OS); }; } static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { if (Builder.OptLevel > 0) PM.add(createObjCARCAPElimPass()); } static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { if (Builder.OptLevel > 0) PM.add(createObjCARCExpandPass()); } static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { if (Builder.OptLevel > 0) PM.add(createObjCARCOptPass()); } static void addAddressSanitizerPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { PM.add(createAddressSanitizerPass()); } static void addThreadSanitizerPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { PM.add(createThreadSanitizerPass()); } void EmitAssemblyHelper::CreatePasses() { unsigned OptLevel = CodeGenOpts.OptimizationLevel; CodeGenOptions::InliningMethod Inlining = CodeGenOpts.Inlining; // Handle disabling of LLVM optimization, where we want to preserve the // internal module before any optimization. if (CodeGenOpts.DisableLLVMOpts) { OptLevel = 0; Inlining = CodeGenOpts.NoInlining; } PassManagerBuilder PMBuilder; PMBuilder.OptLevel = OptLevel; PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; PMBuilder.DisableSimplifyLibCalls = !CodeGenOpts.SimplifyLibCalls; PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime; PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; // In ObjC ARC mode, add the main ARC optimization passes. if (LangOpts.ObjCAutoRefCount) { PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, addObjCARCExpandPass); PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, addObjCARCAPElimPass); PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, addObjCARCOptPass); } if (LangOpts.AddressSanitizer) { PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, addAddressSanitizerPass); PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, addAddressSanitizerPass); } if (LangOpts.ThreadSanitizer) { PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, addThreadSanitizerPass); PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, addThreadSanitizerPass); } // Figure out TargetLibraryInfo. Triple TargetTriple(TheModule->getTargetTriple()); PMBuilder.LibraryInfo = new TargetLibraryInfo(TargetTriple); if (!CodeGenOpts.SimplifyLibCalls) PMBuilder.LibraryInfo->disableAllFunctions(); switch (Inlining) { case CodeGenOptions::NoInlining: break; case CodeGenOptions::NormalInlining: { // FIXME: Derive these constants in a principled fashion. unsigned Threshold = 225; if (CodeGenOpts.OptimizeSize == 1) // -Os Threshold = 75; else if (CodeGenOpts.OptimizeSize == 2) // -Oz Threshold = 25; else if (OptLevel > 2) Threshold = 275; PMBuilder.Inliner = createFunctionInliningPass(Threshold); break; } case CodeGenOptions::OnlyAlwaysInlining: // Respect always_inline. if (OptLevel == 0) // Do not insert lifetime intrinsics at -O0. PMBuilder.Inliner = createAlwaysInlinerPass(false); else PMBuilder.Inliner = createAlwaysInlinerPass(); break; } // Set up the per-function pass manager. FunctionPassManager *FPM = getPerFunctionPasses(); if (CodeGenOpts.VerifyModule) FPM->add(createVerifierPass()); PMBuilder.populateFunctionPassManager(*FPM); // Set up the per-module pass manager. PassManager *MPM = getPerModulePasses(); if (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) { MPM->add(createGCOVProfilerPass(CodeGenOpts.EmitGcovNotes, CodeGenOpts.EmitGcovArcs, TargetTriple.isMacOSX())); if (!CodeGenOpts.DebugInfo) MPM->add(createStripSymbolsPass(true)); } PMBuilder.populateModulePassManager(*MPM); } bool EmitAssemblyHelper::AddEmitPasses(BackendAction Action, formatted_raw_ostream &OS) { // Create the TargetMachine for generating code. std::string Error; std::string Triple = TheModule->getTargetTriple(); const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); if (!TheTarget) { Diags.Report(diag::err_fe_unable_to_create_target) << Error; return false; } // FIXME: Expose these capabilities via actual APIs!!!! Aside from just // being gross, this is also totally broken if we ever care about // concurrency. TargetMachine::setAsmVerbosityDefault(CodeGenOpts.AsmVerbose); TargetMachine::setFunctionSections(CodeGenOpts.FunctionSections); TargetMachine::setDataSections (CodeGenOpts.DataSections); // FIXME: Parse this earlier. llvm::CodeModel::Model CM; if (CodeGenOpts.CodeModel == "small") { CM = llvm::CodeModel::Small; } else if (CodeGenOpts.CodeModel == "kernel") { CM = llvm::CodeModel::Kernel; } else if (CodeGenOpts.CodeModel == "medium") { CM = llvm::CodeModel::Medium; } else if (CodeGenOpts.CodeModel == "large") { CM = llvm::CodeModel::Large; } else { assert(CodeGenOpts.CodeModel.empty() && "Invalid code model!"); CM = llvm::CodeModel::Default; } SmallVector BackendArgs; BackendArgs.push_back("clang"); // Fake program name. if (!CodeGenOpts.DebugPass.empty()) { BackendArgs.push_back("-debug-pass"); BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); } if (!CodeGenOpts.LimitFloatPrecision.empty()) { BackendArgs.push_back("-limit-float-precision"); BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); } if (llvm::TimePassesIsEnabled) BackendArgs.push_back("-time-passes"); for (unsigned i = 0, e = CodeGenOpts.BackendOptions.size(); i != e; ++i) BackendArgs.push_back(CodeGenOpts.BackendOptions[i].c_str()); if (CodeGenOpts.NoGlobalMerge) BackendArgs.push_back("-global-merge=false"); BackendArgs.push_back(0); llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, BackendArgs.data()); std::string FeaturesStr; if (TargetOpts.Features.size()) { SubtargetFeatures Features; for (std::vector::const_iterator it = TargetOpts.Features.begin(), ie = TargetOpts.Features.end(); it != ie; ++it) Features.AddFeature(*it); FeaturesStr = Features.getString(); } llvm::Reloc::Model RM = llvm::Reloc::Default; if (CodeGenOpts.RelocationModel == "static") { RM = llvm::Reloc::Static; } else if (CodeGenOpts.RelocationModel == "pic") { RM = llvm::Reloc::PIC_; } else { assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && "Invalid PIC model!"); RM = llvm::Reloc::DynamicNoPIC; } CodeGenOpt::Level OptLevel = CodeGenOpt::Default; switch (CodeGenOpts.OptimizationLevel) { default: break; case 0: OptLevel = CodeGenOpt::None; break; case 3: OptLevel = CodeGenOpt::Aggressive; break; } llvm::TargetOptions Options; // Set frame pointer elimination mode. if (!CodeGenOpts.DisableFPElim) { Options.NoFramePointerElim = false; Options.NoFramePointerElimNonLeaf = false; } else if (CodeGenOpts.OmitLeafFramePointer) { Options.NoFramePointerElim = false; Options.NoFramePointerElimNonLeaf = true; } else { Options.NoFramePointerElim = true; Options.NoFramePointerElimNonLeaf = true; } // Set float ABI type. if (CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp") Options.FloatABIType = llvm::FloatABI::Soft; else if (CodeGenOpts.FloatABI == "hard") Options.FloatABIType = llvm::FloatABI::Hard; else { assert(CodeGenOpts.FloatABI.empty() && "Invalid float abi!"); Options.FloatABIType = llvm::FloatABI::Default; } Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; Options.UseSoftFloat = CodeGenOpts.SoftFloat; Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; Options.RealignStack = CodeGenOpts.StackRealignment; Options.DisableTailCalls = CodeGenOpts.DisableTailCalls; Options.TrapFuncName = CodeGenOpts.TrapFuncName; Options.PositionIndependentExecutable = LangOpts.PIELevel != 0; TargetMachine *TM = TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, Options, RM, CM, OptLevel); if (CodeGenOpts.RelaxAll) TM->setMCRelaxAll(true); if (CodeGenOpts.SaveTempLabels) TM->setMCSaveTempLabels(true); if (CodeGenOpts.NoDwarf2CFIAsm) TM->setMCUseCFI(false); if (!CodeGenOpts.NoDwarfDirectoryAsm) TM->setMCUseDwarfDirectory(true); if (CodeGenOpts.NoExecStack) TM->setMCNoExecStack(true); // Create the code generator passes. PassManager *PM = getCodeGenPasses(); // Add LibraryInfo. TargetLibraryInfo *TLI = new TargetLibraryInfo(); if (!CodeGenOpts.SimplifyLibCalls) TLI->disableAllFunctions(); PM->add(TLI); // Normal mode, emit a .s or .o file by running the code generator. Note, // this also adds codegenerator level optimization passes. TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; if (Action == Backend_EmitObj) CGFT = TargetMachine::CGFT_ObjectFile; else if (Action == Backend_EmitMCNull) CGFT = TargetMachine::CGFT_Null; else assert(Action == Backend_EmitAssembly && "Invalid action!"); // Add ObjC ARC final-cleanup optimizations. This is done as part of the // "codegen" passes so that it isn't run multiple times when there is // inlining happening. if (LangOpts.ObjCAutoRefCount && CodeGenOpts.OptimizationLevel > 0) PM->add(createObjCARCContractPass()); if (TM->addPassesToEmitFile(*PM, OS, CGFT, /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { Diags.Report(diag::err_fe_unable_to_interface_with_target); return false; } return true; } void EmitAssemblyHelper::EmitAssembly(BackendAction Action, raw_ostream *OS) { TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : 0); llvm::formatted_raw_ostream FormattedOS; CreatePasses(); switch (Action) { case Backend_EmitNothing: break; case Backend_EmitBC: getPerModulePasses()->add(createBitcodeWriterPass(*OS)); break; case Backend_EmitLL: FormattedOS.setStream(*OS, formatted_raw_ostream::PRESERVE_STREAM); getPerModulePasses()->add(createPrintModulePass(&FormattedOS)); break; default: FormattedOS.setStream(*OS, formatted_raw_ostream::PRESERVE_STREAM); if (!AddEmitPasses(Action, FormattedOS)) return; } // Before executing passes, print the final values of the LLVM options. cl::PrintOptionValues(); // Run passes. For now we do all passes at once, but eventually we // would like to have the option of streaming code generation. if (PerFunctionPasses) { PrettyStackTraceString CrashInfo("Per-function optimization"); PerFunctionPasses->doInitialization(); for (Module::iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) if (!I->isDeclaration()) PerFunctionPasses->run(*I); PerFunctionPasses->doFinalization(); } if (PerModulePasses) { PrettyStackTraceString CrashInfo("Per-module optimization passes"); PerModulePasses->run(*TheModule); } if (CodeGenPasses) { PrettyStackTraceString CrashInfo("Code generation"); CodeGenPasses->run(*TheModule); } } void clang::EmitBackendOutput(DiagnosticsEngine &Diags, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, Module *M, BackendAction Action, raw_ostream *OS) { EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M); AsmHelper.EmitAssembly(Action, OS); }