//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Builtin calls as LLVM code. // //===----------------------------------------------------------------------===// #include "CGCXXABI.h" #include "CGObjCRuntime.h" #include "CGOpenCLRuntime.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "ConstantEmitter.h" #include "TargetInfo.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/Analysis/Analyses/OSLog.h" #include "clang/Basic/TargetBuiltins.h" #include "clang/Basic/TargetInfo.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/MDBuilder.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Support/ConvertUTF.h" #include using namespace clang; using namespace CodeGen; using namespace llvm; static int64_t clamp(int64_t Value, int64_t Low, int64_t High) { return std::min(High, std::max(Low, Value)); } /// getBuiltinLibFunction - Given a builtin id for a function like /// "__builtin_fabsf", return a Function* for "fabsf". llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, unsigned BuiltinID) { assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); // Get the name, skip over the __builtin_ prefix (if necessary). StringRef Name; GlobalDecl D(FD); // If the builtin has been declared explicitly with an assembler label, // use the mangled name. This differs from the plain label on platforms // that prefix labels. if (FD->hasAttr()) Name = getMangledName(D); else Name = Context.BuiltinInfo.getName(BuiltinID) + 10; llvm::FunctionType *Ty = cast(getTypes().ConvertType(FD->getType())); return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); } /// Emit the conversions required to turn the given value into an /// integer of the given size. static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, QualType T, llvm::IntegerType *IntType) { V = CGF.EmitToMemory(V, T); if (V->getType()->isPointerTy()) return CGF.Builder.CreatePtrToInt(V, IntType); assert(V->getType() == IntType); return V; } static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, QualType T, llvm::Type *ResultType) { V = CGF.EmitFromMemory(V, T); if (ResultType->isPointerTy()) return CGF.Builder.CreateIntToPtr(V, ResultType); assert(V->getType() == ResultType); return V; } /// Utility to insert an atomic instruction based on Instrinsic::ID /// and the expression node. static Value *MakeBinaryAtomicValue(CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E) { QualType T = E->getType(); assert(E->getArg(0)->getType()->isPointerType()); assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())); assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); llvm::IntegerType *IntType = llvm::IntegerType::get(CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); llvm::Value *Args[2]; Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); Args[1] = CGF.EmitScalarExpr(E->getArg(1)); llvm::Type *ValueType = Args[1]->getType(); Args[1] = EmitToInt(CGF, Args[1], T, IntType); llvm::Value *Result = CGF.Builder.CreateAtomicRMW( Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); return EmitFromInt(CGF, Result, T, ValueType); } static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { Value *Val = CGF.EmitScalarExpr(E->getArg(0)); Value *Address = CGF.EmitScalarExpr(E->getArg(1)); // Convert the type of the pointer to a pointer to the stored type. Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); Value *BC = CGF.Builder.CreateBitCast( Address, llvm::PointerType::getUnqual(Val->getType()), "cast"); LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType()); LV.setNontemporal(true); CGF.EmitStoreOfScalar(Val, LV, false); return nullptr; } static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { Value *Address = CGF.EmitScalarExpr(E->getArg(0)); LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType()); LV.setNontemporal(true); return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); } static RValue EmitBinaryAtomic(CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E) { return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); } /// Utility to insert an atomic instruction based Instrinsic::ID and /// the expression node, where the return value is the result of the /// operation. static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, Instruction::BinaryOps Op, bool Invert = false) { QualType T = E->getType(); assert(E->getArg(0)->getType()->isPointerType()); assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())); assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); llvm::IntegerType *IntType = llvm::IntegerType::get(CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); llvm::Value *Args[2]; Args[1] = CGF.EmitScalarExpr(E->getArg(1)); llvm::Type *ValueType = Args[1]->getType(); Args[1] = EmitToInt(CGF, Args[1], T, IntType); Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); llvm::Value *Result = CGF.Builder.CreateAtomicRMW( Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); if (Invert) Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, llvm::ConstantInt::get(IntType, -1)); Result = EmitFromInt(CGF, Result, T, ValueType); return RValue::get(Result); } /// @brief Utility to insert an atomic cmpxchg instruction. /// /// @param CGF The current codegen function. /// @param E Builtin call expression to convert to cmpxchg. /// arg0 - address to operate on /// arg1 - value to compare with /// arg2 - new value /// @param ReturnBool Specifies whether to return success flag of /// cmpxchg result or the old value. /// /// @returns result of cmpxchg, according to ReturnBool static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, bool ReturnBool) { QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType(); llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); llvm::IntegerType *IntType = llvm::IntegerType::get( CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); Value *Args[3]; Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); Args[1] = CGF.EmitScalarExpr(E->getArg(1)); llvm::Type *ValueType = Args[1]->getType(); Args[1] = EmitToInt(CGF, Args[1], T, IntType); Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); Value *Pair = CGF.Builder.CreateAtomicCmpXchg( Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent, llvm::AtomicOrdering::SequentiallyConsistent); if (ReturnBool) // Extract boolean success flag and zext it to int. return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), CGF.ConvertType(E->getType())); else // Extract old value and emit it using the same type as compare value. return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, ValueType); } // Emit a simple mangled intrinsic that has 1 argument and a return type // matching the argument type. static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E, unsigned IntrinsicID) { llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); return CGF.Builder.CreateCall(F, Src0); } // Emit an intrinsic that has 2 operands of the same type as its result. static Value *emitBinaryBuiltin(CodeGenFunction &CGF, const CallExpr *E, unsigned IntrinsicID) { llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); return CGF.Builder.CreateCall(F, { Src0, Src1 }); } // Emit an intrinsic that has 3 operands of the same type as its result. static Value *emitTernaryBuiltin(CodeGenFunction &CGF, const CallExpr *E, unsigned IntrinsicID) { llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); } // Emit an intrinsic that has 1 float or double operand, and 1 integer. static Value *emitFPIntBuiltin(CodeGenFunction &CGF, const CallExpr *E, unsigned IntrinsicID) { llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); return CGF.Builder.CreateCall(F, {Src0, Src1}); } /// EmitFAbs - Emit a call to @llvm.fabs(). static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { Value *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); Call->setDoesNotAccessMemory(); return Call; } /// Emit the computation of the sign bit for a floating point value. Returns /// the i1 sign bit value. static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { LLVMContext &C = CGF.CGM.getLLVMContext(); llvm::Type *Ty = V->getType(); int Width = Ty->getPrimitiveSizeInBits(); llvm::Type *IntTy = llvm::IntegerType::get(C, Width); V = CGF.Builder.CreateBitCast(V, IntTy); if (Ty->isPPC_FP128Ty()) { // We want the sign bit of the higher-order double. The bitcast we just // did works as if the double-double was stored to memory and then // read as an i128. The "store" will put the higher-order double in the // lower address in both little- and big-Endian modes, but the "load" // will treat those bits as a different part of the i128: the low bits in // little-Endian, the high bits in big-Endian. Therefore, on big-Endian // we need to shift the high bits down to the low before truncating. Width >>= 1; if (CGF.getTarget().isBigEndian()) { Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); V = CGF.Builder.CreateLShr(V, ShiftCst); } // We are truncating value in order to extract the higher-order // double, which we will be using to extract the sign from. IntTy = llvm::IntegerType::get(C, Width); V = CGF.Builder.CreateTrunc(V, IntTy); } Value *Zero = llvm::Constant::getNullValue(IntTy); return CGF.Builder.CreateICmpSLT(V, Zero); } static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, const CallExpr *E, llvm::Constant *calleeValue) { CGCallee callee = CGCallee::forDirect(calleeValue, FD); return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot()); } /// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* /// depending on IntrinsicID. /// /// \arg CGF The current codegen function. /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. /// \arg X The first argument to the llvm.*.with.overflow.*. /// \arg Y The second argument to the llvm.*.with.overflow.*. /// \arg Carry The carry returned by the llvm.*.with.overflow.*. /// \returns The result (i.e. sum/product) returned by the intrinsic. static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, const llvm::Intrinsic::ID IntrinsicID, llvm::Value *X, llvm::Value *Y, llvm::Value *&Carry) { // Make sure we have integers of the same width. assert(X->getType() == Y->getType() && "Arguments must be the same type. (Did you forget to make sure both " "arguments have the same integer width?)"); llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); Carry = CGF.Builder.CreateExtractValue(Tmp, 1); return CGF.Builder.CreateExtractValue(Tmp, 0); } static Value *emitRangedBuiltin(CodeGenFunction &CGF, unsigned IntrinsicID, int low, int high) { llvm::MDBuilder MDHelper(CGF.getLLVMContext()); llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high)); Value *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); llvm::Instruction *Call = CGF.Builder.CreateCall(F); Call->setMetadata(llvm::LLVMContext::MD_range, RNode); return Call; } namespace { struct WidthAndSignedness { unsigned Width; bool Signed; }; } static WidthAndSignedness getIntegerWidthAndSignedness(const clang::ASTContext &context, const clang::QualType Type) { assert(Type->isIntegerType() && "Given type is not an integer."); unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width; bool Signed = Type->isSignedIntegerType(); return {Width, Signed}; } // Given one or more integer types, this function produces an integer type that // encompasses them: any value in one of the given types could be expressed in // the encompassing type. static struct WidthAndSignedness EncompassingIntegerType(ArrayRef Types) { assert(Types.size() > 0 && "Empty list of types."); // If any of the given types is signed, we must return a signed type. bool Signed = false; for (const auto &Type : Types) { Signed |= Type.Signed; } // The encompassing type must have a width greater than or equal to the width // of the specified types. Aditionally, if the encompassing type is signed, // its width must be strictly greater than the width of any unsigned types // given. unsigned Width = 0; for (const auto &Type : Types) { unsigned MinWidth = Type.Width + (Signed && !Type.Signed); if (Width < MinWidth) { Width = MinWidth; } } return {Width, Signed}; } Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { llvm::Type *DestType = Int8PtrTy; if (ArgValue->getType() != DestType) ArgValue = Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue); } /// Checks if using the result of __builtin_object_size(p, @p From) in place of /// __builtin_object_size(p, @p To) is correct static bool areBOSTypesCompatible(int From, int To) { // Note: Our __builtin_object_size implementation currently treats Type=0 and // Type=2 identically. Encoding this implementation detail here may make // improving __builtin_object_size difficult in the future, so it's omitted. return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); } static llvm::Value * getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true); } llvm::Value * CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, llvm::IntegerType *ResType, llvm::Value *EmittedE) { uint64_t ObjectSize; if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) return emitBuiltinObjectSize(E, Type, ResType, EmittedE); return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); } /// Returns a Value corresponding to the size of the given expression. /// This Value may be either of the following: /// - A llvm::Argument (if E is a param with the pass_object_size attribute on /// it) /// - A call to the @llvm.objectsize intrinsic /// /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null /// and we wouldn't otherwise try to reference a pass_object_size parameter, /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. llvm::Value * CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, llvm::IntegerType *ResType, llvm::Value *EmittedE) { // We need to reference an argument if the pointer is a parameter with the // pass_object_size attribute. if (auto *D = dyn_cast(E->IgnoreParenImpCasts())) { auto *Param = dyn_cast(D->getDecl()); auto *PS = D->getDecl()->getAttr(); if (Param != nullptr && PS != nullptr && areBOSTypesCompatible(PS->getType(), Type)) { auto Iter = SizeArguments.find(Param); assert(Iter != SizeArguments.end()); const ImplicitParamDecl *D = Iter->second; auto DIter = LocalDeclMap.find(D); assert(DIter != LocalDeclMap.end()); return EmitLoadOfScalar(DIter->second, /*volatile=*/false, getContext().getSizeType(), E->getLocStart()); } } // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't // evaluate E for side-effects. In either case, we shouldn't lower to // @llvm.objectsize. if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext()))) return getDefaultBuiltinObjectSizeResult(Type, ResType); Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); assert(Ptr->getType()->isPointerTy() && "Non-pointer passed to __builtin_object_size?"); Value *F = CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. Value *Min = Builder.getInt1((Type & 2) != 0); // For GCC compatability, __builtin_object_size treat NULL as unknown size. Value *NullIsUnknown = Builder.getTrue(); return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown}); } // Many of MSVC builtins are on both x64 and ARM; to avoid repeating code, we // handle them here. enum class CodeGenFunction::MSVCIntrin { _BitScanForward, _BitScanReverse, _InterlockedAnd, _InterlockedDecrement, _InterlockedExchange, _InterlockedExchangeAdd, _InterlockedExchangeSub, _InterlockedIncrement, _InterlockedOr, _InterlockedXor, _interlockedbittestandset, __fastfail, }; Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E) { switch (BuiltinID) { case MSVCIntrin::_BitScanForward: case MSVCIntrin::_BitScanReverse: { Value *ArgValue = EmitScalarExpr(E->getArg(1)); llvm::Type *ArgType = ArgValue->getType(); llvm::Type *IndexType = EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType(); llvm::Type *ResultType = ConvertType(E->getType()); Value *ArgZero = llvm::Constant::getNullValue(ArgType); Value *ResZero = llvm::Constant::getNullValue(ResultType); Value *ResOne = llvm::ConstantInt::get(ResultType, 1); BasicBlock *Begin = Builder.GetInsertBlock(); BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); Builder.SetInsertPoint(End); PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); Builder.SetInsertPoint(Begin); Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); Builder.CreateCondBr(IsZero, End, NotZero); Result->addIncoming(ResZero, Begin); Builder.SetInsertPoint(NotZero); Address IndexAddress = EmitPointerWithAlignment(E->getArg(0)); if (BuiltinID == MSVCIntrin::_BitScanForward) { Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); Builder.CreateStore(ZeroCount, IndexAddress, false); } else { unsigned ArgWidth = cast(ArgType)->getBitWidth(); Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); Builder.CreateStore(Index, IndexAddress, false); } Builder.CreateBr(End); Result->addIncoming(ResOne, NotZero); Builder.SetInsertPoint(End); return Result; } case MSVCIntrin::_InterlockedAnd: return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); case MSVCIntrin::_InterlockedExchange: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); case MSVCIntrin::_InterlockedExchangeAdd: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); case MSVCIntrin::_InterlockedExchangeSub: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); case MSVCIntrin::_InterlockedOr: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); case MSVCIntrin::_InterlockedXor: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); case MSVCIntrin::_interlockedbittestandset: { llvm::Value *Addr = EmitScalarExpr(E->getArg(0)); llvm::Value *Bit = EmitScalarExpr(E->getArg(1)); AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( AtomicRMWInst::Or, Addr, Builder.CreateShl(ConstantInt::get(Bit->getType(), 1), Bit), llvm::AtomicOrdering::SequentiallyConsistent); // Shift the relevant bit to the least significant position, truncate to // the result type, and test the low bit. llvm::Value *Shifted = Builder.CreateLShr(RMWI, Bit); llvm::Value *Truncated = Builder.CreateTrunc(Shifted, ConvertType(E->getType())); return Builder.CreateAnd(Truncated, ConstantInt::get(Truncated->getType(), 1)); } case MSVCIntrin::_InterlockedDecrement: { llvm::Type *IntTy = ConvertType(E->getType()); AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( AtomicRMWInst::Sub, EmitScalarExpr(E->getArg(0)), ConstantInt::get(IntTy, 1), llvm::AtomicOrdering::SequentiallyConsistent); return Builder.CreateSub(RMWI, ConstantInt::get(IntTy, 1)); } case MSVCIntrin::_InterlockedIncrement: { llvm::Type *IntTy = ConvertType(E->getType()); AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( AtomicRMWInst::Add, EmitScalarExpr(E->getArg(0)), ConstantInt::get(IntTy, 1), llvm::AtomicOrdering::SequentiallyConsistent); return Builder.CreateAdd(RMWI, ConstantInt::get(IntTy, 1)); } case MSVCIntrin::__fastfail: { // Request immediate process termination from the kernel. The instruction // sequences to do this are documented on MSDN: // https://msdn.microsoft.com/en-us/library/dn774154.aspx llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); StringRef Asm, Constraints; switch (ISA) { default: ErrorUnsupported(E, "__fastfail call for this architecture"); break; case llvm::Triple::x86: case llvm::Triple::x86_64: Asm = "int $$0x29"; Constraints = "{cx}"; break; case llvm::Triple::thumb: Asm = "udf #251"; Constraints = "{r0}"; break; } llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints, /*SideEffects=*/true); llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::NoReturn); CallSite CS = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); CS.setAttributes(NoReturnAttr); return CS.getInstruction(); } } llvm_unreachable("Incorrect MSVC intrinsic!"); } namespace { // ARC cleanup for __builtin_os_log_format struct CallObjCArcUse final : EHScopeStack::Cleanup { CallObjCArcUse(llvm::Value *object) : object(object) {} llvm::Value *object; void Emit(CodeGenFunction &CGF, Flags flags) override { CGF.EmitARCIntrinsicUse(object); } }; } Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind) { assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && "Unsupported builtin check kind"); Value *ArgValue = EmitScalarExpr(E); if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef()) return ArgValue; SanitizerScope SanScope(this); Value *Cond = Builder.CreateICmpNE( ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin), SanitizerHandler::InvalidBuiltin, {EmitCheckSourceLocation(E->getExprLoc()), llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, None); return ArgValue; } /// Get the argument type for arguments to os_log_helper. static CanQualType getOSLogArgType(ASTContext &C, int Size) { QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); return C.getCanonicalType(UnsignedTy); } llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( const analyze_os_log::OSLogBufferLayout &Layout, CharUnits BufferAlignment) { ASTContext &Ctx = getContext(); llvm::SmallString<64> Name; { raw_svector_ostream OS(Name); OS << "__os_log_helper"; OS << "_" << BufferAlignment.getQuantity(); OS << "_" << int(Layout.getSummaryByte()); OS << "_" << int(Layout.getNumArgsByte()); for (const auto &Item : Layout.Items) OS << "_" << int(Item.getSizeByte()) << "_" << int(Item.getDescriptorByte()); } if (llvm::Function *F = CGM.getModule().getFunction(Name)) return F; llvm::SmallVector Params; Params.emplace_back(Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy, ImplicitParamDecl::Other); for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { char Size = Layout.Items[I].getSizeByte(); if (!Size) continue; Params.emplace_back( Ctx, nullptr, SourceLocation(), &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), getOSLogArgType(Ctx, Size), ImplicitParamDecl::Other); } FunctionArgList Args; for (auto &P : Params) Args.push_back(&P); // The helper function has linkonce_odr linkage to enable the linker to merge // identical functions. To ensure the merging always happens, 'noinline' is // attached to the function when compiling with -Oz. const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); llvm::Function *Fn = llvm::Function::Create( FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); CGM.SetLLVMFunctionAttributes(nullptr, FI, Fn); CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); // Attach 'noinline' at -Oz. if (CGM.getCodeGenOpts().OptimizeSize == 2) Fn->addFnAttr(llvm::Attribute::NoInline); auto NL = ApplyDebugLocation::CreateEmpty(*this); IdentifierInfo *II = &Ctx.Idents.get(Name); FunctionDecl *FD = FunctionDecl::Create( Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, Ctx.VoidTy, nullptr, SC_PrivateExtern, false, false); StartFunction(FD, Ctx.VoidTy, Fn, FI, Args); // Create a scope with an artificial location for the body of this function. auto AL = ApplyDebugLocation::CreateArtificial(*this); CharUnits Offset; Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(&Params[0]), "buf"), BufferAlignment); Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); unsigned I = 1; for (const auto &Item : Layout.Items) { Builder.CreateStore( Builder.getInt8(Item.getDescriptorByte()), Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); Builder.CreateStore( Builder.getInt8(Item.getSizeByte()), Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); CharUnits Size = Item.size(); if (!Size.getQuantity()) continue; Address Arg = GetAddrOfLocalVar(&Params[I]); Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(), "argDataCast"); Builder.CreateStore(Builder.CreateLoad(Arg), Addr); Offset += Size; ++I; } FinishFunction(); return Fn; } RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { assert(E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"); ASTContext &Ctx = getContext(); analyze_os_log::OSLogBufferLayout Layout; analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); llvm::SmallVector RetainableOperands; // Ignore argument 1, the format string. It is not currently used. CallArgList Args; Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy); for (const auto &Item : Layout.Items) { int Size = Item.getSizeByte(); if (!Size) continue; llvm::Value *ArgVal; if (const Expr *TheExpr = Item.getExpr()) { ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); // Check if this is a retainable type. if (TheExpr->getType()->isObjCRetainableType()) { assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"); // Check if the object is constant, if not, save it in // RetainableOperands. if (!isa(ArgVal)) RetainableOperands.push_back(ArgVal); } } else { ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); } unsigned ArgValSize = CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), ArgValSize); ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); CanQualType ArgTy = getOSLogArgType(Ctx, Size); // If ArgVal has type x86_fp80, zero-extend ArgVal. ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); Args.add(RValue::get(ArgVal), ArgTy); } const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( Layout, BufAddr.getAlignment()); EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); // Push a clang.arc.use cleanup for each object in RetainableOperands. The // cleanup will cause the use to appear after the final log call, keeping // the object valid while it’s held in the log buffer. Note that if there’s // a release cleanup on the object, it will already be active; since // cleanups are emitted in reverse order, the use will occur before the // object is released. if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount && CGM.getCodeGenOpts().OptimizationLevel != 0) for (llvm::Value *Object : RetainableOperands) pushFullExprCleanup(getARCCleanupKind(), Object); return RValue::get(BufAddr.getPointer()); } RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD, unsigned BuiltinID, const CallExpr *E, ReturnValueSlot ReturnValue) { // See if we can constant fold this builtin. If so, don't emit it at all. Expr::EvalResult Result; if (E->EvaluateAsRValue(Result, CGM.getContext()) && !Result.hasSideEffects()) { if (Result.Val.isInt()) return RValue::get(llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt())); if (Result.Val.isFloat()) return RValue::get(llvm::ConstantFP::get(getLLVMContext(), Result.Val.getFloat())); } switch (BuiltinID) { default: break; // Handle intrinsics and libm functions below. case Builtin::BI__builtin___CFStringMakeConstantString: case Builtin::BI__builtin___NSStringMakeConstantString: return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); case Builtin::BI__builtin_stdarg_start: case Builtin::BI__builtin_va_start: case Builtin::BI__va_start: case Builtin::BI__builtin_va_end: return RValue::get( EmitVAStartEnd(BuiltinID == Builtin::BI__va_start ? EmitScalarExpr(E->getArg(0)) : EmitVAListRef(E->getArg(0)).getPointer(), BuiltinID != Builtin::BI__builtin_va_end)); case Builtin::BI__builtin_va_copy: { Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer(); Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer(); llvm::Type *Type = Int8PtrTy; DstPtr = Builder.CreateBitCast(DstPtr, Type); SrcPtr = Builder.CreateBitCast(SrcPtr, Type); return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), {DstPtr, SrcPtr})); } case Builtin::BI__builtin_abs: case Builtin::BI__builtin_labs: case Builtin::BI__builtin_llabs: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); Value *NegOp = Builder.CreateNeg(ArgValue, "neg"); Value *CmpResult = Builder.CreateICmpSGE(ArgValue, llvm::Constant::getNullValue(ArgValue->getType()), "abscond"); Value *Result = Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs"); return RValue::get(Result); } case Builtin::BI__builtin_fabs: case Builtin::BI__builtin_fabsf: case Builtin::BI__builtin_fabsl: { return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs)); } case Builtin::BI__builtin_fmod: case Builtin::BI__builtin_fmodf: case Builtin::BI__builtin_fmodl: { Value *Arg1 = EmitScalarExpr(E->getArg(0)); Value *Arg2 = EmitScalarExpr(E->getArg(1)); Value *Result = Builder.CreateFRem(Arg1, Arg2, "fmod"); return RValue::get(Result); } case Builtin::BI__builtin_copysign: case Builtin::BI__builtin_copysignf: case Builtin::BI__builtin_copysignl: { return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign)); } case Builtin::BI__builtin_ceil: case Builtin::BI__builtin_ceilf: case Builtin::BI__builtin_ceill: { return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil)); } case Builtin::BI__builtin_floor: case Builtin::BI__builtin_floorf: case Builtin::BI__builtin_floorl: { return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor)); } case Builtin::BI__builtin_trunc: case Builtin::BI__builtin_truncf: case Builtin::BI__builtin_truncl: { return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc)); } case Builtin::BI__builtin_rint: case Builtin::BI__builtin_rintf: case Builtin::BI__builtin_rintl: { return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint)); } case Builtin::BI__builtin_nearbyint: case Builtin::BI__builtin_nearbyintf: case Builtin::BI__builtin_nearbyintl: { return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint)); } case Builtin::BI__builtin_round: case Builtin::BI__builtin_roundf: case Builtin::BI__builtin_roundl: { return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round)); } case Builtin::BI__builtin_fmin: case Builtin::BI__builtin_fminf: case Builtin::BI__builtin_fminl: { return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum)); } case Builtin::BI__builtin_fmax: case Builtin::BI__builtin_fmaxf: case Builtin::BI__builtin_fmaxl: { return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum)); } case Builtin::BI__builtin_conj: case Builtin::BI__builtin_conjf: case Builtin::BI__builtin_conjl: { ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); Value *Real = ComplexVal.first; Value *Imag = ComplexVal.second; Value *Zero = Imag->getType()->isFPOrFPVectorTy() ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType()) : llvm::Constant::getNullValue(Imag->getType()); Imag = Builder.CreateFSub(Zero, Imag, "sub"); return RValue::getComplex(std::make_pair(Real, Imag)); } case Builtin::BI__builtin_creal: case Builtin::BI__builtin_crealf: case Builtin::BI__builtin_creall: case Builtin::BIcreal: case Builtin::BIcrealf: case Builtin::BIcreall: { ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); return RValue::get(ComplexVal.first); } case Builtin::BI__builtin_cimag: case Builtin::BI__builtin_cimagf: case Builtin::BI__builtin_cimagl: case Builtin::BIcimag: case Builtin::BIcimagf: case Builtin::BIcimagl: { ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); return RValue::get(ComplexVal.second); } case Builtin::BI__builtin_ctzs: case Builtin::BI__builtin_ctz: case Builtin::BI__builtin_ctzl: case Builtin::BI__builtin_ctzll: { Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); llvm::Type *ArgType = ArgValue->getType(); Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); llvm::Type *ResultType = ConvertType(E->getType()); Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_clzs: case Builtin::BI__builtin_clz: case Builtin::BI__builtin_clzl: case Builtin::BI__builtin_clzll: { Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); llvm::Type *ArgType = ArgValue->getType(); Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); llvm::Type *ResultType = ConvertType(E->getType()); Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_ffs: case Builtin::BI__builtin_ffsl: case Builtin::BI__builtin_ffsll: { // ffs(x) -> x ? cttz(x) + 1 : 0 Value *ArgValue = EmitScalarExpr(E->getArg(0)); llvm::Type *ArgType = ArgValue->getType(); Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); llvm::Type *ResultType = ConvertType(E->getType()); Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), llvm::ConstantInt::get(ArgType, 1)); Value *Zero = llvm::Constant::getNullValue(ArgType); Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_parity: case Builtin::BI__builtin_parityl: case Builtin::BI__builtin_parityll: { // parity(x) -> ctpop(x) & 1 Value *ArgValue = EmitScalarExpr(E->getArg(0)); llvm::Type *ArgType = ArgValue->getType(); Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); llvm::Type *ResultType = ConvertType(E->getType()); Value *Tmp = Builder.CreateCall(F, ArgValue); Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__popcnt16: case Builtin::BI__popcnt: case Builtin::BI__popcnt64: case Builtin::BI__builtin_popcount: case Builtin::BI__builtin_popcountl: case Builtin::BI__builtin_popcountll: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); llvm::Type *ArgType = ArgValue->getType(); Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); llvm::Type *ResultType = ConvertType(E->getType()); Value *Result = Builder.CreateCall(F, ArgValue); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI_rotr8: case Builtin::BI_rotr16: case Builtin::BI_rotr: case Builtin::BI_lrotr: case Builtin::BI_rotr64: { Value *Val = EmitScalarExpr(E->getArg(0)); Value *Shift = EmitScalarExpr(E->getArg(1)); llvm::Type *ArgType = Val->getType(); Shift = Builder.CreateIntCast(Shift, ArgType, false); unsigned ArgWidth = cast(ArgType)->getBitWidth(); Value *ArgTypeSize = llvm::ConstantInt::get(ArgType, ArgWidth); Value *ArgZero = llvm::Constant::getNullValue(ArgType); Value *Mask = llvm::ConstantInt::get(ArgType, ArgWidth - 1); Shift = Builder.CreateAnd(Shift, Mask); Value *LeftShift = Builder.CreateSub(ArgTypeSize, Shift); Value *RightShifted = Builder.CreateLShr(Val, Shift); Value *LeftShifted = Builder.CreateShl(Val, LeftShift); Value *Rotated = Builder.CreateOr(LeftShifted, RightShifted); Value *ShiftIsZero = Builder.CreateICmpEQ(Shift, ArgZero); Value *Result = Builder.CreateSelect(ShiftIsZero, Val, Rotated); return RValue::get(Result); } case Builtin::BI_rotl8: case Builtin::BI_rotl16: case Builtin::BI_rotl: case Builtin::BI_lrotl: case Builtin::BI_rotl64: { Value *Val = EmitScalarExpr(E->getArg(0)); Value *Shift = EmitScalarExpr(E->getArg(1)); llvm::Type *ArgType = Val->getType(); Shift = Builder.CreateIntCast(Shift, ArgType, false); unsigned ArgWidth = cast(ArgType)->getBitWidth(); Value *ArgTypeSize = llvm::ConstantInt::get(ArgType, ArgWidth); Value *ArgZero = llvm::Constant::getNullValue(ArgType); Value *Mask = llvm::ConstantInt::get(ArgType, ArgWidth - 1); Shift = Builder.CreateAnd(Shift, Mask); Value *RightShift = Builder.CreateSub(ArgTypeSize, Shift); Value *LeftShifted = Builder.CreateShl(Val, Shift); Value *RightShifted = Builder.CreateLShr(Val, RightShift); Value *Rotated = Builder.CreateOr(LeftShifted, RightShifted); Value *ShiftIsZero = Builder.CreateICmpEQ(Shift, ArgZero); Value *Result = Builder.CreateSelect(ShiftIsZero, Val, Rotated); return RValue::get(Result); } case Builtin::BI__builtin_unpredictable: { // Always return the argument of __builtin_unpredictable. LLVM does not // handle this builtin. Metadata for this builtin should be added directly // to instructions such as branches or switches that use it. return RValue::get(EmitScalarExpr(E->getArg(0))); } case Builtin::BI__builtin_expect: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); llvm::Type *ArgType = ArgValue->getType(); Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); // Don't generate llvm.expect on -O0 as the backend won't use it for // anything. // Note, we still IRGen ExpectedValue because it could have side-effects. if (CGM.getCodeGenOpts().OptimizationLevel == 0) return RValue::get(ArgValue); Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); Value *Result = Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); return RValue::get(Result); } case Builtin::BI__builtin_assume_aligned: { Value *PtrValue = EmitScalarExpr(E->getArg(0)); Value *OffsetValue = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr; Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); ConstantInt *AlignmentCI = cast(AlignmentValue); unsigned Alignment = (unsigned) AlignmentCI->getZExtValue(); EmitAlignmentAssumption(PtrValue, Alignment, OffsetValue); return RValue::get(PtrValue); } case Builtin::BI__assume: case Builtin::BI__builtin_assume: { if (E->getArg(0)->HasSideEffects(getContext())) return RValue::get(nullptr); Value *ArgValue = EmitScalarExpr(E->getArg(0)); Value *FnAssume = CGM.getIntrinsic(Intrinsic::assume); return RValue::get(Builder.CreateCall(FnAssume, ArgValue)); } case Builtin::BI__builtin_bswap16: case Builtin::BI__builtin_bswap32: case Builtin::BI__builtin_bswap64: { return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap)); } case Builtin::BI__builtin_bitreverse8: case Builtin::BI__builtin_bitreverse16: case Builtin::BI__builtin_bitreverse32: case Builtin::BI__builtin_bitreverse64: { return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse)); } case Builtin::BI__builtin_object_size: { unsigned Type = E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); auto *ResType = cast(ConvertType(E->getType())); // We pass this builtin onto the optimizer so that it can figure out the // object size in more complex cases. return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, /*EmittedE=*/nullptr)); } case Builtin::BI__builtin_prefetch: { Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); // FIXME: Technically these constants should of type 'int', yes? RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : llvm::ConstantInt::get(Int32Ty, 0); Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : llvm::ConstantInt::get(Int32Ty, 3); Value *Data = llvm::ConstantInt::get(Int32Ty, 1); Value *F = CGM.getIntrinsic(Intrinsic::prefetch); return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data})); } case Builtin::BI__builtin_readcyclecounter: { Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); return RValue::get(Builder.CreateCall(F)); } case Builtin::BI__builtin___clear_cache: { Value *Begin = EmitScalarExpr(E->getArg(0)); Value *End = EmitScalarExpr(E->getArg(1)); Value *F = CGM.getIntrinsic(Intrinsic::clear_cache); return RValue::get(Builder.CreateCall(F, {Begin, End})); } case Builtin::BI__builtin_trap: return RValue::get(EmitTrapCall(Intrinsic::trap)); case Builtin::BI__debugbreak: return RValue::get(EmitTrapCall(Intrinsic::debugtrap)); case Builtin::BI__builtin_unreachable: { if (SanOpts.has(SanitizerKind::Unreachable)) { SanitizerScope SanScope(this); EmitCheck(std::make_pair(static_cast(Builder.getFalse()), SanitizerKind::Unreachable), SanitizerHandler::BuiltinUnreachable, EmitCheckSourceLocation(E->getExprLoc()), None); } else Builder.CreateUnreachable(); // We do need to preserve an insertion point. EmitBlock(createBasicBlock("unreachable.cont")); return RValue::get(nullptr); } case Builtin::BI__builtin_powi: case Builtin::BI__builtin_powif: case Builtin::BI__builtin_powil: { Value *Base = EmitScalarExpr(E->getArg(0)); Value *Exponent = EmitScalarExpr(E->getArg(1)); llvm::Type *ArgType = Base->getType(); Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType); return RValue::get(Builder.CreateCall(F, {Base, Exponent})); } case Builtin::BI__builtin_isgreater: case Builtin::BI__builtin_isgreaterequal: case Builtin::BI__builtin_isless: case Builtin::BI__builtin_islessequal: case Builtin::BI__builtin_islessgreater: case Builtin::BI__builtin_isunordered: { // Ordered comparisons: we know the arguments to these are matching scalar // floating point values. Value *LHS = EmitScalarExpr(E->getArg(0)); Value *RHS = EmitScalarExpr(E->getArg(1)); switch (BuiltinID) { default: llvm_unreachable("Unknown ordered comparison"); case Builtin::BI__builtin_isgreater: LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_isgreaterequal: LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_isless: LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_islessequal: LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_islessgreater: LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_isunordered: LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); break; } // ZExt bool to int type. return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); } case Builtin::BI__builtin_isnan: { Value *V = EmitScalarExpr(E->getArg(0)); V = Builder.CreateFCmpUNO(V, V, "cmp"); return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); } case Builtin::BIfinite: case Builtin::BI__finite: case Builtin::BIfinitef: case Builtin::BI__finitef: case Builtin::BIfinitel: case Builtin::BI__finitel: case Builtin::BI__builtin_isinf: case Builtin::BI__builtin_isfinite: { // isinf(x) --> fabs(x) == infinity // isfinite(x) --> fabs(x) != infinity // x != NaN via the ordered compare in either case. Value *V = EmitScalarExpr(E->getArg(0)); Value *Fabs = EmitFAbs(*this, V); Constant *Infinity = ConstantFP::getInfinity(V->getType()); CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf) ? CmpInst::FCMP_OEQ : CmpInst::FCMP_ONE; Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf"); return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType()))); } case Builtin::BI__builtin_isinf_sign: { // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 Value *Arg = EmitScalarExpr(E->getArg(0)); Value *AbsArg = EmitFAbs(*this, Arg); Value *IsInf = Builder.CreateFCmpOEQ( AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); Value *IsNeg = EmitSignBit(*this, Arg); llvm::Type *IntTy = ConvertType(E->getType()); Value *Zero = Constant::getNullValue(IntTy); Value *One = ConstantInt::get(IntTy, 1); Value *NegativeOne = ConstantInt::get(IntTy, -1); Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); return RValue::get(Result); } case Builtin::BI__builtin_isnormal: { // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min Value *V = EmitScalarExpr(E->getArg(0)); Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); Value *Abs = EmitFAbs(*this, V); Value *IsLessThanInf = Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); APFloat Smallest = APFloat::getSmallestNormalized( getContext().getFloatTypeSemantics(E->getArg(0)->getType())); Value *IsNormal = Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), "isnormal"); V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); V = Builder.CreateAnd(V, IsNormal, "and"); return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); } case Builtin::BI__builtin_fpclassify: { Value *V = EmitScalarExpr(E->getArg(5)); llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); // Create Result BasicBlock *Begin = Builder.GetInsertBlock(); BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); Builder.SetInsertPoint(End); PHINode *Result = Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, "fpclassify_result"); // if (V==0) return FP_ZERO Builder.SetInsertPoint(Begin); Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), "iszero"); Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); Builder.CreateCondBr(IsZero, End, NotZero); Result->addIncoming(ZeroLiteral, Begin); // if (V != V) return FP_NAN Builder.SetInsertPoint(NotZero); Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); Value *NanLiteral = EmitScalarExpr(E->getArg(0)); BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); Builder.CreateCondBr(IsNan, End, NotNan); Result->addIncoming(NanLiteral, NotZero); // if (fabs(V) == infinity) return FP_INFINITY Builder.SetInsertPoint(NotNan); Value *VAbs = EmitFAbs(*this, V); Value *IsInf = Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), "isinf"); Value *InfLiteral = EmitScalarExpr(E->getArg(1)); BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); Builder.CreateCondBr(IsInf, End, NotInf); Result->addIncoming(InfLiteral, NotNan); // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL Builder.SetInsertPoint(NotInf); APFloat Smallest = APFloat::getSmallestNormalized( getContext().getFloatTypeSemantics(E->getArg(5)->getType())); Value *IsNormal = Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), "isnormal"); Value *NormalResult = Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3))); Builder.CreateBr(End); Result->addIncoming(NormalResult, NotInf); // return Result Builder.SetInsertPoint(End); return RValue::get(Result); } case Builtin::BIalloca: case Builtin::BI_alloca: case Builtin::BI__builtin_alloca: { Value *Size = EmitScalarExpr(E->getArg(0)); const TargetInfo &TI = getContext().getTargetInfo(); // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. unsigned SuitableAlignmentInBytes = CGM.getContext() .toCharUnitsFromBits(TI.getSuitableAlign()) .getQuantity(); AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); AI->setAlignment(SuitableAlignmentInBytes); return RValue::get(AI); } case Builtin::BI__builtin_alloca_with_align: { Value *Size = EmitScalarExpr(E->getArg(0)); Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); auto *AlignmentInBitsCI = cast(AlignmentInBitsValue); unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); unsigned AlignmentInBytes = CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity(); AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); AI->setAlignment(AlignmentInBytes); return RValue::get(AI); } case Builtin::BIbzero: case Builtin::BI__builtin_bzero: { Address Dest = EmitPointerWithAlignment(E->getArg(0)); Value *SizeVal = EmitScalarExpr(E->getArg(1)); EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); return RValue::get(Dest.getPointer()); } case Builtin::BImemcpy: case Builtin::BI__builtin_memcpy: { Address Dest = EmitPointerWithAlignment(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); Value *SizeVal = EmitScalarExpr(E->getArg(2)); EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD, 1); Builder.CreateMemCpy(Dest, Src, SizeVal, false); return RValue::get(Dest.getPointer()); } case Builtin::BI__builtin_char_memchr: BuiltinID = Builtin::BI__builtin_memchr; break; case Builtin::BI__builtin___memcpy_chk: { // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. llvm::APSInt Size, DstSize; if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) break; if (Size.ugt(DstSize)) break; Address Dest = EmitPointerWithAlignment(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); Builder.CreateMemCpy(Dest, Src, SizeVal, false); return RValue::get(Dest.getPointer()); } case Builtin::BI__builtin_objc_memmove_collectable: { Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); Value *SizeVal = EmitScalarExpr(E->getArg(2)); CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestAddr, SrcAddr, SizeVal); return RValue::get(DestAddr.getPointer()); } case Builtin::BI__builtin___memmove_chk: { // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. llvm::APSInt Size, DstSize; if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) break; if (Size.ugt(DstSize)) break; Address Dest = EmitPointerWithAlignment(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); Builder.CreateMemMove(Dest, Src, SizeVal, false); return RValue::get(Dest.getPointer()); } case Builtin::BImemmove: case Builtin::BI__builtin_memmove: { Address Dest = EmitPointerWithAlignment(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); Value *SizeVal = EmitScalarExpr(E->getArg(2)); EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD, 1); Builder.CreateMemMove(Dest, Src, SizeVal, false); return RValue::get(Dest.getPointer()); } case Builtin::BImemset: case Builtin::BI__builtin_memset: { Address Dest = EmitPointerWithAlignment(E->getArg(0)); Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty()); Value *SizeVal = EmitScalarExpr(E->getArg(2)); EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); return RValue::get(Dest.getPointer()); } case Builtin::BI__builtin___memset_chk: { // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. llvm::APSInt Size, DstSize; if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) break; if (Size.ugt(DstSize)) break; Address Dest = EmitPointerWithAlignment(E->getArg(0)); Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty()); Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); return RValue::get(Dest.getPointer()); } case Builtin::BI__builtin_dwarf_cfa: { // The offset in bytes from the first argument to the CFA. // // Why on earth is this in the frontend? Is there any reason at // all that the backend can't reasonably determine this while // lowering llvm.eh.dwarf.cfa()? // // TODO: If there's a satisfactory reason, add a target hook for // this instead of hard-coding 0, which is correct for most targets. int32_t Offset = 0; Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); return RValue::get(Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, Offset))); } case Builtin::BI__builtin_return_address: { Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), getContext().UnsignedIntTy); Value *F = CGM.getIntrinsic(Intrinsic::returnaddress); return RValue::get(Builder.CreateCall(F, Depth)); } case Builtin::BI_ReturnAddress: { Value *F = CGM.getIntrinsic(Intrinsic::returnaddress); return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); } case Builtin::BI__builtin_frame_address: { Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), getContext().UnsignedIntTy); Value *F = CGM.getIntrinsic(Intrinsic::frameaddress); return RValue::get(Builder.CreateCall(F, Depth)); } case Builtin::BI__builtin_extract_return_addr: { Value *Address = EmitScalarExpr(E->getArg(0)); Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); return RValue::get(Result); } case Builtin::BI__builtin_frob_return_addr: { Value *Address = EmitScalarExpr(E->getArg(0)); Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); return RValue::get(Result); } case Builtin::BI__builtin_dwarf_sp_column: { llvm::IntegerType *Ty = cast(ConvertType(E->getType())); int Column = getTargetHooks().getDwarfEHStackPointer(CGM); if (Column == -1) { CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); return RValue::get(llvm::UndefValue::get(Ty)); } return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); } case Builtin::BI__builtin_init_dwarf_reg_size_table: { Value *Address = EmitScalarExpr(E->getArg(0)); if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); } case Builtin::BI__builtin_eh_return: { Value *Int = EmitScalarExpr(E->getArg(0)); Value *Ptr = EmitScalarExpr(E->getArg(1)); llvm::IntegerType *IntTy = cast(Int->getType()); assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 : Intrinsic::eh_return_i64); Builder.CreateCall(F, {Int, Ptr}); Builder.CreateUnreachable(); // We do need to preserve an insertion point. EmitBlock(createBasicBlock("builtin_eh_return.cont")); return RValue::get(nullptr); } case Builtin::BI__builtin_unwind_init: { Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); return RValue::get(Builder.CreateCall(F)); } case Builtin::BI__builtin_extend_pointer: { // Extends a pointer to the size of an _Unwind_Word, which is // uint64_t on all platforms. Generally this gets poked into a // register and eventually used as an address, so if the // addressing registers are wider than pointers and the platform // doesn't implicitly ignore high-order bits when doing // addressing, we need to make sure we zext / sext based on // the platform's expectations. // // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html // Cast the pointer to intptr_t. Value *Ptr = EmitScalarExpr(E->getArg(0)); Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); // If that's 64 bits, we're done. if (IntPtrTy->getBitWidth() == 64) return RValue::get(Result); // Otherwise, ask the codegen data what to do. if (getTargetHooks().extendPointerWithSExt()) return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); else return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); } case Builtin::BI__builtin_setjmp: { // Buffer is a void**. Address Buf = EmitPointerWithAlignment(E->getArg(0)); // Store the frame pointer to the setjmp buffer. Value *FrameAddr = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress), ConstantInt::get(Int32Ty, 0)); Builder.CreateStore(FrameAddr, Buf); // Store the stack pointer to the setjmp buffer. Value *StackAddr = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2, getPointerSize()); Builder.CreateStore(StackAddr, StackSaveSlot); // Call LLVM's EH setjmp, which is lightweight. Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); Buf = Builder.CreateBitCast(Buf, Int8PtrTy); return RValue::get(Builder.CreateCall(F, Buf.getPointer())); } case Builtin::BI__builtin_longjmp: { Value *Buf = EmitScalarExpr(E->getArg(0)); Buf = Builder.CreateBitCast(Buf, Int8PtrTy); // Call LLVM's EH longjmp, which is lightweight. Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); // longjmp doesn't return; mark this as unreachable. Builder.CreateUnreachable(); // We do need to preserve an insertion point. EmitBlock(createBasicBlock("longjmp.cont")); return RValue::get(nullptr); } case Builtin::BI__sync_fetch_and_add: case Builtin::BI__sync_fetch_and_sub: case Builtin::BI__sync_fetch_and_or: case Builtin::BI__sync_fetch_and_and: case Builtin::BI__sync_fetch_and_xor: case Builtin::BI__sync_fetch_and_nand: case Builtin::BI__sync_add_and_fetch: case Builtin::BI__sync_sub_and_fetch: case Builtin::BI__sync_and_and_fetch: case Builtin::BI__sync_or_and_fetch: case Builtin::BI__sync_xor_and_fetch: case Builtin::BI__sync_nand_and_fetch: case Builtin::BI__sync_val_compare_and_swap: case Builtin::BI__sync_bool_compare_and_swap: case Builtin::BI__sync_lock_test_and_set: case Builtin::BI__sync_lock_release: case Builtin::BI__sync_swap: llvm_unreachable("Shouldn't make it through sema"); case Builtin::BI__sync_fetch_and_add_1: case Builtin::BI__sync_fetch_and_add_2: case Builtin::BI__sync_fetch_and_add_4: case Builtin::BI__sync_fetch_and_add_8: case Builtin::BI__sync_fetch_and_add_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); case Builtin::BI__sync_fetch_and_sub_1: case Builtin::BI__sync_fetch_and_sub_2: case Builtin::BI__sync_fetch_and_sub_4: case Builtin::BI__sync_fetch_and_sub_8: case Builtin::BI__sync_fetch_and_sub_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); case Builtin::BI__sync_fetch_and_or_1: case Builtin::BI__sync_fetch_and_or_2: case Builtin::BI__sync_fetch_and_or_4: case Builtin::BI__sync_fetch_and_or_8: case Builtin::BI__sync_fetch_and_or_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); case Builtin::BI__sync_fetch_and_and_1: case Builtin::BI__sync_fetch_and_and_2: case Builtin::BI__sync_fetch_and_and_4: case Builtin::BI__sync_fetch_and_and_8: case Builtin::BI__sync_fetch_and_and_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); case Builtin::BI__sync_fetch_and_xor_1: case Builtin::BI__sync_fetch_and_xor_2: case Builtin::BI__sync_fetch_and_xor_4: case Builtin::BI__sync_fetch_and_xor_8: case Builtin::BI__sync_fetch_and_xor_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); case Builtin::BI__sync_fetch_and_nand_1: case Builtin::BI__sync_fetch_and_nand_2: case Builtin::BI__sync_fetch_and_nand_4: case Builtin::BI__sync_fetch_and_nand_8: case Builtin::BI__sync_fetch_and_nand_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); // Clang extensions: not overloaded yet. case Builtin::BI__sync_fetch_and_min: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); case Builtin::BI__sync_fetch_and_max: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); case Builtin::BI__sync_fetch_and_umin: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); case Builtin::BI__sync_fetch_and_umax: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); case Builtin::BI__sync_add_and_fetch_1: case Builtin::BI__sync_add_and_fetch_2: case Builtin::BI__sync_add_and_fetch_4: case Builtin::BI__sync_add_and_fetch_8: case Builtin::BI__sync_add_and_fetch_16: return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, llvm::Instruction::Add); case Builtin::BI__sync_sub_and_fetch_1: case Builtin::BI__sync_sub_and_fetch_2: case Builtin::BI__sync_sub_and_fetch_4: case Builtin::BI__sync_sub_and_fetch_8: case Builtin::BI__sync_sub_and_fetch_16: return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, llvm::Instruction::Sub); case Builtin::BI__sync_and_and_fetch_1: case Builtin::BI__sync_and_and_fetch_2: case Builtin::BI__sync_and_and_fetch_4: case Builtin::BI__sync_and_and_fetch_8: case Builtin::BI__sync_and_and_fetch_16: return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, llvm::Instruction::And); case Builtin::BI__sync_or_and_fetch_1: case Builtin::BI__sync_or_and_fetch_2: case Builtin::BI__sync_or_and_fetch_4: case Builtin::BI__sync_or_and_fetch_8: case Builtin::BI__sync_or_and_fetch_16: return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, llvm::Instruction::Or); case Builtin::BI__sync_xor_and_fetch_1: case Builtin::BI__sync_xor_and_fetch_2: case Builtin::BI__sync_xor_and_fetch_4: case Builtin::BI__sync_xor_and_fetch_8: case Builtin::BI__sync_xor_and_fetch_16: return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, llvm::Instruction::Xor); case Builtin::BI__sync_nand_and_fetch_1: case Builtin::BI__sync_nand_and_fetch_2: case Builtin::BI__sync_nand_and_fetch_4: case Builtin::BI__sync_nand_and_fetch_8: case Builtin::BI__sync_nand_and_fetch_16: return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, llvm::Instruction::And, true); case Builtin::BI__sync_val_compare_and_swap_1: case Builtin::BI__sync_val_compare_and_swap_2: case Builtin::BI__sync_val_compare_and_swap_4: case Builtin::BI__sync_val_compare_and_swap_8: case Builtin::BI__sync_val_compare_and_swap_16: return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); case Builtin::BI__sync_bool_compare_and_swap_1: case Builtin::BI__sync_bool_compare_and_swap_2: case Builtin::BI__sync_bool_compare_and_swap_4: case Builtin::BI__sync_bool_compare_and_swap_8: case Builtin::BI__sync_bool_compare_and_swap_16: return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); case Builtin::BI__sync_swap_1: case Builtin::BI__sync_swap_2: case Builtin::BI__sync_swap_4: case Builtin::BI__sync_swap_8: case Builtin::BI__sync_swap_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); case Builtin::BI__sync_lock_test_and_set_1: case Builtin::BI__sync_lock_test_and_set_2: case Builtin::BI__sync_lock_test_and_set_4: case Builtin::BI__sync_lock_test_and_set_8: case Builtin::BI__sync_lock_test_and_set_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); case Builtin::BI__sync_lock_release_1: case Builtin::BI__sync_lock_release_2: case Builtin::BI__sync_lock_release_4: case Builtin::BI__sync_lock_release_8: case Builtin::BI__sync_lock_release_16: { Value *Ptr = EmitScalarExpr(E->getArg(0)); QualType ElTy = E->getArg(0)->getType()->getPointeeType(); CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), StoreSize.getQuantity() * 8); Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); llvm::StoreInst *Store = Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr, StoreSize); Store->setAtomic(llvm::AtomicOrdering::Release); return RValue::get(nullptr); } case Builtin::BI__sync_synchronize: { // We assume this is supposed to correspond to a C++0x-style // sequentially-consistent fence (i.e. this is only usable for // synchonization, not device I/O or anything like that). This intrinsic // is really badly designed in the sense that in theory, there isn't // any way to safely use it... but in practice, it mostly works // to use it with non-atomic loads and stores to get acquire/release // semantics. Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); return RValue::get(nullptr); } case Builtin::BI__builtin_nontemporal_load: return RValue::get(EmitNontemporalLoad(*this, E)); case Builtin::BI__builtin_nontemporal_store: return RValue::get(EmitNontemporalStore(*this, E)); case Builtin::BI__c11_atomic_is_lock_free: case Builtin::BI__atomic_is_lock_free: { // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since // _Atomic(T) is always properly-aligned. const char *LibCallName = "__atomic_is_lock_free"; CallArgList Args; Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), getContext().getSizeType()); if (BuiltinID == Builtin::BI__atomic_is_lock_free) Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), getContext().VoidPtrTy); else Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), getContext().VoidPtrTy); const CGFunctionInfo &FuncInfo = CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); return EmitCall(FuncInfo, CGCallee::forDirect(Func), ReturnValueSlot(), Args); } case Builtin::BI__atomic_test_and_set: { // Look at the argument type to determine whether this is a volatile // operation. The parameter type is always volatile. QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); bool Volatile = PtrTy->castAs()->getPointeeType().isVolatileQualified(); Value *Ptr = EmitScalarExpr(E->getArg(0)); unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); Value *NewVal = Builder.getInt8(1); Value *Order = EmitScalarExpr(E->getArg(1)); if (isa(Order)) { int ord = cast(Order)->getZExtValue(); AtomicRMWInst *Result = nullptr; switch (ord) { case 0: // memory_order_relaxed default: // invalid order Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, llvm::AtomicOrdering::Monotonic); break; case 1: // memory_order_consume case 2: // memory_order_acquire Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, llvm::AtomicOrdering::Acquire); break; case 3: // memory_order_release Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, llvm::AtomicOrdering::Release); break; case 4: // memory_order_acq_rel Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, llvm::AtomicOrdering::AcquireRelease); break; case 5: // memory_order_seq_cst Result = Builder.CreateAtomicRMW( llvm::AtomicRMWInst::Xchg, Ptr, NewVal, llvm::AtomicOrdering::SequentiallyConsistent); break; } Result->setVolatile(Volatile); return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); } llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); llvm::BasicBlock *BBs[5] = { createBasicBlock("monotonic", CurFn), createBasicBlock("acquire", CurFn), createBasicBlock("release", CurFn), createBasicBlock("acqrel", CurFn), createBasicBlock("seqcst", CurFn) }; llvm::AtomicOrdering Orders[5] = { llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire, llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease, llvm::AtomicOrdering::SequentiallyConsistent}; Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); Builder.SetInsertPoint(ContBB); PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); for (unsigned i = 0; i < 5; ++i) { Builder.SetInsertPoint(BBs[i]); AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, Orders[i]); RMW->setVolatile(Volatile); Result->addIncoming(RMW, BBs[i]); Builder.CreateBr(ContBB); } SI->addCase(Builder.getInt32(0), BBs[0]); SI->addCase(Builder.getInt32(1), BBs[1]); SI->addCase(Builder.getInt32(2), BBs[1]); SI->addCase(Builder.getInt32(3), BBs[2]); SI->addCase(Builder.getInt32(4), BBs[3]); SI->addCase(Builder.getInt32(5), BBs[4]); Builder.SetInsertPoint(ContBB); return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); } case Builtin::BI__atomic_clear: { QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); bool Volatile = PtrTy->castAs()->getPointeeType().isVolatileQualified(); Address Ptr = EmitPointerWithAlignment(E->getArg(0)); unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace(); Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); Value *NewVal = Builder.getInt8(0); Value *Order = EmitScalarExpr(E->getArg(1)); if (isa(Order)) { int ord = cast(Order)->getZExtValue(); StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); switch (ord) { case 0: // memory_order_relaxed default: // invalid order Store->setOrdering(llvm::AtomicOrdering::Monotonic); break; case 3: // memory_order_release Store->setOrdering(llvm::AtomicOrdering::Release); break; case 5: // memory_order_seq_cst Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent); break; } return RValue::get(nullptr); } llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); llvm::BasicBlock *BBs[3] = { createBasicBlock("monotonic", CurFn), createBasicBlock("release", CurFn), createBasicBlock("seqcst", CurFn) }; llvm::AtomicOrdering Orders[3] = { llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release, llvm::AtomicOrdering::SequentiallyConsistent}; Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); for (unsigned i = 0; i < 3; ++i) { Builder.SetInsertPoint(BBs[i]); StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); Store->setOrdering(Orders[i]); Builder.CreateBr(ContBB); } SI->addCase(Builder.getInt32(0), BBs[0]); SI->addCase(Builder.getInt32(3), BBs[1]); SI->addCase(Builder.getInt32(5), BBs[2]); Builder.SetInsertPoint(ContBB); return RValue::get(nullptr); } case Builtin::BI__atomic_thread_fence: case Builtin::BI__atomic_signal_fence: case Builtin::BI__c11_atomic_thread_fence: case Builtin::BI__c11_atomic_signal_fence: { llvm::SyncScope::ID SSID; if (BuiltinID == Builtin::BI__atomic_signal_fence || BuiltinID == Builtin::BI__c11_atomic_signal_fence) SSID = llvm::SyncScope::SingleThread; else SSID = llvm::SyncScope::System; Value *Order = EmitScalarExpr(E->getArg(0)); if (isa(Order)) { int ord = cast(Order)->getZExtValue(); switch (ord) { case 0: // memory_order_relaxed default: // invalid order break; case 1: // memory_order_consume case 2: // memory_order_acquire Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); break; case 3: // memory_order_release Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); break; case 4: // memory_order_acq_rel Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); break; case 5: // memory_order_seq_cst Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); break; } return RValue::get(nullptr); } llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; AcquireBB = createBasicBlock("acquire", CurFn); ReleaseBB = createBasicBlock("release", CurFn); AcqRelBB = createBasicBlock("acqrel", CurFn); SeqCstBB = createBasicBlock("seqcst", CurFn); llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); Builder.SetInsertPoint(AcquireBB); Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); Builder.CreateBr(ContBB); SI->addCase(Builder.getInt32(1), AcquireBB); SI->addCase(Builder.getInt32(2), AcquireBB); Builder.SetInsertPoint(ReleaseBB); Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); Builder.CreateBr(ContBB); SI->addCase(Builder.getInt32(3), ReleaseBB); Builder.SetInsertPoint(AcqRelBB); Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); Builder.CreateBr(ContBB); SI->addCase(Builder.getInt32(4), AcqRelBB); Builder.SetInsertPoint(SeqCstBB); Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); Builder.CreateBr(ContBB); SI->addCase(Builder.getInt32(5), SeqCstBB); Builder.SetInsertPoint(ContBB); return RValue::get(nullptr); } case Builtin::BIsqrt: case Builtin::BIsqrtf: case Builtin::BIsqrtl: // Builtins have the same semantics as library functions. The LLVM intrinsic // has the same semantics as the library function except it does not set // errno. Thus, we can transform either sqrt or __builtin_sqrt to @llvm.sqrt // if the call is 'const' (the call must not set errno). // // FIXME: The builtin cases are not here because they are marked 'const' in // Builtins.def. So that means they are wrongly defined to have different // semantics than the library functions. If we included them here, we would // turn them into LLVM intrinsics regardless of whether -fmath-errno was on. if (FD->hasAttr()) return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt)); break; case Builtin::BI__builtin_pow: case Builtin::BI__builtin_powf: case Builtin::BI__builtin_powl: case Builtin::BIpow: case Builtin::BIpowf: case Builtin::BIpowl: { // Transform a call to pow* into a @llvm.pow.* intrinsic call. if (!FD->hasAttr()) break; Value *Base = EmitScalarExpr(E->getArg(0)); Value *Exponent = EmitScalarExpr(E->getArg(1)); llvm::Type *ArgType = Base->getType(); Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType); return RValue::get(Builder.CreateCall(F, {Base, Exponent})); } case Builtin::BIfma: case Builtin::BIfmaf: case Builtin::BIfmal: case Builtin::BI__builtin_fma: case Builtin::BI__builtin_fmaf: case Builtin::BI__builtin_fmal: { // Rewrite fma to intrinsic. Value *FirstArg = EmitScalarExpr(E->getArg(0)); llvm::Type *ArgType = FirstArg->getType(); Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType); return RValue::get( Builder.CreateCall(F, {FirstArg, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))})); } case Builtin::BI__builtin_signbit: case Builtin::BI__builtin_signbitf: case Builtin::BI__builtin_signbitl: { return RValue::get( Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), ConvertType(E->getType()))); } case Builtin::BI__annotation: { // Re-encode each wide string to UTF8 and make an MDString. SmallVector Strings; for (const Expr *Arg : E->arguments()) { const auto *Str = cast(Arg->IgnoreParenCasts()); assert(Str->getCharByteWidth() == 2); StringRef WideBytes = Str->getBytes(); std::string StrUtf8; if (!convertUTF16ToUTF8String( makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); continue; } Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); } // Build and MDTuple of MDStrings and emit the intrinsic call. llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); return RValue::getIgnored(); } case Builtin::BI__builtin_annotation: { llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, AnnVal->getType()); // Get the annotation string, go through casts. Sema requires this to be a // non-wide string literal, potentially casted, so the cast<> is safe. const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); StringRef Str = cast(AnnotationStrExpr)->getString(); return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc())); } case Builtin::BI__builtin_addcb: case Builtin::BI__builtin_addcs: case Builtin::BI__builtin_addc: case Builtin::BI__builtin_addcl: case Builtin::BI__builtin_addcll: case Builtin::BI__builtin_subcb: case Builtin::BI__builtin_subcs: case Builtin::BI__builtin_subc: case Builtin::BI__builtin_subcl: case Builtin::BI__builtin_subcll: { // We translate all of these builtins from expressions of the form: // int x = ..., y = ..., carryin = ..., carryout, result; // result = __builtin_addc(x, y, carryin, &carryout); // // to LLVM IR of the form: // // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 // %carry1 = extractvalue {i32, i1} %tmp1, 1 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, // i32 %carryin) // %result = extractvalue {i32, i1} %tmp2, 0 // %carry2 = extractvalue {i32, i1} %tmp2, 1 // %tmp3 = or i1 %carry1, %carry2 // %tmp4 = zext i1 %tmp3 to i32 // store i32 %tmp4, i32* %carryout // Scalarize our inputs. llvm::Value *X = EmitScalarExpr(E->getArg(0)); llvm::Value *Y = EmitScalarExpr(E->getArg(1)); llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. llvm::Intrinsic::ID IntrinsicId; switch (BuiltinID) { default: llvm_unreachable("Unknown multiprecision builtin id."); case Builtin::BI__builtin_addcb: case Builtin::BI__builtin_addcs: case Builtin::BI__builtin_addc: case Builtin::BI__builtin_addcl: case Builtin::BI__builtin_addcll: IntrinsicId = llvm::Intrinsic::uadd_with_overflow; break; case Builtin::BI__builtin_subcb: case Builtin::BI__builtin_subcs: case Builtin::BI__builtin_subc: case Builtin::BI__builtin_subcl: case Builtin::BI__builtin_subcll: IntrinsicId = llvm::Intrinsic::usub_with_overflow; break; } // Construct our resulting LLVM IR expression. llvm::Value *Carry1; llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry1); llvm::Value *Carry2; llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, Sum1, Carryin, Carry2); llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), X->getType()); Builder.CreateStore(CarryOut, CarryOutPtr); return RValue::get(Sum2); } case Builtin::BI__builtin_add_overflow: case Builtin::BI__builtin_sub_overflow: case Builtin::BI__builtin_mul_overflow: { const clang::Expr *LeftArg = E->getArg(0); const clang::Expr *RightArg = E->getArg(1); const clang::Expr *ResultArg = E->getArg(2); clang::QualType ResultQTy = ResultArg->getType()->castAs()->getPointeeType(); WidthAndSignedness LeftInfo = getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); WidthAndSignedness RightInfo = getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); WidthAndSignedness ResultInfo = getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); WidthAndSignedness EncompassingInfo = EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); llvm::Type *EncompassingLLVMTy = llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); llvm::Intrinsic::ID IntrinsicId; switch (BuiltinID) { default: llvm_unreachable("Unknown overflow builtin id."); case Builtin::BI__builtin_add_overflow: IntrinsicId = EncompassingInfo.Signed ? llvm::Intrinsic::sadd_with_overflow : llvm::Intrinsic::uadd_with_overflow; break; case Builtin::BI__builtin_sub_overflow: IntrinsicId = EncompassingInfo.Signed ? llvm::Intrinsic::ssub_with_overflow : llvm::Intrinsic::usub_with_overflow; break; case Builtin::BI__builtin_mul_overflow: IntrinsicId = EncompassingInfo.Signed ? llvm::Intrinsic::smul_with_overflow : llvm::Intrinsic::umul_with_overflow; break; } llvm::Value *Left = EmitScalarExpr(LeftArg); llvm::Value *Right = EmitScalarExpr(RightArg); Address ResultPtr = EmitPointerWithAlignment(ResultArg); // Extend each operand to the encompassing type. Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); // Perform the operation on the extended values. llvm::Value *Overflow, *Result; Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); if (EncompassingInfo.Width > ResultInfo.Width) { // The encompassing type is wider than the result type, so we need to // truncate it. llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); // To see if the truncation caused an overflow, we will extend // the result and then compare it to the original result. llvm::Value *ResultTruncExt = Builder.CreateIntCast( ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); llvm::Value *TruncationOverflow = Builder.CreateICmpNE(Result, ResultTruncExt); Overflow = Builder.CreateOr(Overflow, TruncationOverflow); Result = ResultTrunc; } // Finally, store the result using the pointer. bool isVolatile = ResultArg->getType()->getPointeeType().isVolatileQualified(); Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); return RValue::get(Overflow); } case Builtin::BI__builtin_uadd_overflow: case Builtin::BI__builtin_uaddl_overflow: case Builtin::BI__builtin_uaddll_overflow: case Builtin::BI__builtin_usub_overflow: case Builtin::BI__builtin_usubl_overflow: case Builtin::BI__builtin_usubll_overflow: case Builtin::BI__builtin_umul_overflow: case Builtin::BI__builtin_umull_overflow: case Builtin::BI__builtin_umulll_overflow: case Builtin::BI__builtin_sadd_overflow: case Builtin::BI__builtin_saddl_overflow: case Builtin::BI__builtin_saddll_overflow: case Builtin::BI__builtin_ssub_overflow: case Builtin::BI__builtin_ssubl_overflow: case Builtin::BI__builtin_ssubll_overflow: case Builtin::BI__builtin_smul_overflow: case Builtin::BI__builtin_smull_overflow: case Builtin::BI__builtin_smulll_overflow: { // We translate all of these builtins directly to the relevant llvm IR node. // Scalarize our inputs. llvm::Value *X = EmitScalarExpr(E->getArg(0)); llvm::Value *Y = EmitScalarExpr(E->getArg(1)); Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); // Decide which of the overflow intrinsics we are lowering to: llvm::Intrinsic::ID IntrinsicId; switch (BuiltinID) { default: llvm_unreachable("Unknown overflow builtin id."); case Builtin::BI__builtin_uadd_overflow: case Builtin::BI__builtin_uaddl_overflow: case Builtin::BI__builtin_uaddll_overflow: IntrinsicId = llvm::Intrinsic::uadd_with_overflow; break; case Builtin::BI__builtin_usub_overflow: case Builtin::BI__builtin_usubl_overflow: case Builtin::BI__builtin_usubll_overflow: IntrinsicId = llvm::Intrinsic::usub_with_overflow; break; case Builtin::BI__builtin_umul_overflow: case Builtin::BI__builtin_umull_overflow: case Builtin::BI__builtin_umulll_overflow: IntrinsicId = llvm::Intrinsic::umul_with_overflow; break; case Builtin::BI__builtin_sadd_overflow: case Builtin::BI__builtin_saddl_overflow: case Builtin::BI__builtin_saddll_overflow: IntrinsicId = llvm::Intrinsic::sadd_with_overflow; break; case Builtin::BI__builtin_ssub_overflow: case Builtin::BI__builtin_ssubl_overflow: case Builtin::BI__builtin_ssubll_overflow: IntrinsicId = llvm::Intrinsic::ssub_with_overflow; break; case Builtin::BI__builtin_smul_overflow: case Builtin::BI__builtin_smull_overflow: case Builtin::BI__builtin_smulll_overflow: IntrinsicId = llvm::Intrinsic::smul_with_overflow; break; } llvm::Value *Carry; llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); Builder.CreateStore(Sum, SumOutPtr); return RValue::get(Carry); } case Builtin::BI__builtin_addressof: return RValue::get(EmitLValue(E->getArg(0)).getPointer()); case Builtin::BI__builtin_operator_new: return EmitBuiltinNewDeleteCall(FD->getType()->castAs(), E->getArg(0), false); case Builtin::BI__builtin_operator_delete: return EmitBuiltinNewDeleteCall(FD->getType()->castAs(), E->getArg(0), true); case Builtin::BI__noop: // __noop always evaluates to an integer literal zero. return RValue::get(ConstantInt::get(IntTy, 0)); case Builtin::BI__builtin_call_with_static_chain: { const CallExpr *Call = cast(E->getArg(0)); const Expr *Chain = E->getArg(1); return EmitCall(Call->getCallee()->getType(), EmitCallee(Call->getCallee()), Call, ReturnValue, EmitScalarExpr(Chain)); } case Builtin::BI_InterlockedExchange8: case Builtin::BI_InterlockedExchange16: case Builtin::BI_InterlockedExchange: case Builtin::BI_InterlockedExchangePointer: return RValue::get( EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); case Builtin::BI_InterlockedCompareExchangePointer: { llvm::Type *RTy; llvm::IntegerType *IntType = IntegerType::get(getLLVMContext(), getContext().getTypeSize(E->getType())); llvm::Type *IntPtrType = IntType->getPointerTo(); llvm::Value *Destination = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); RTy = Exchange->getType(); Exchange = Builder.CreatePtrToInt(Exchange, IntType); llvm::Value *Comparand = Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, AtomicOrdering::SequentiallyConsistent, AtomicOrdering::SequentiallyConsistent); Result->setVolatile(true); return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, 0), RTy)); } case Builtin::BI_InterlockedCompareExchange8: case Builtin::BI_InterlockedCompareExchange16: case Builtin::BI_InterlockedCompareExchange: case Builtin::BI_InterlockedCompareExchange64: { AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg( EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(1)), AtomicOrdering::SequentiallyConsistent, AtomicOrdering::SequentiallyConsistent); CXI->setVolatile(true); return RValue::get(Builder.CreateExtractValue(CXI, 0)); } case Builtin::BI_InterlockedIncrement16: case Builtin::BI_InterlockedIncrement: return RValue::get( EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); case Builtin::BI_InterlockedDecrement16: case Builtin::BI_InterlockedDecrement: return RValue::get( EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); case Builtin::BI_InterlockedAnd8: case Builtin::BI_InterlockedAnd16: case Builtin::BI_InterlockedAnd: return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); case Builtin::BI_InterlockedExchangeAdd8: case Builtin::BI_InterlockedExchangeAdd16: case Builtin::BI_InterlockedExchangeAdd: return RValue::get( EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); case Builtin::BI_InterlockedExchangeSub8: case Builtin::BI_InterlockedExchangeSub16: case Builtin::BI_InterlockedExchangeSub: return RValue::get( EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); case Builtin::BI_InterlockedOr8: case Builtin::BI_InterlockedOr16: case Builtin::BI_InterlockedOr: return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); case Builtin::BI_InterlockedXor8: case Builtin::BI_InterlockedXor16: case Builtin::BI_InterlockedXor: return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); case Builtin::BI_interlockedbittestandset: return RValue::get( EmitMSVCBuiltinExpr(MSVCIntrin::_interlockedbittestandset, E)); case Builtin::BI__exception_code: case Builtin::BI_exception_code: return RValue::get(EmitSEHExceptionCode()); case Builtin::BI__exception_info: case Builtin::BI_exception_info: return RValue::get(EmitSEHExceptionInfo()); case Builtin::BI__abnormal_termination: case Builtin::BI_abnormal_termination: return RValue::get(EmitSEHAbnormalTermination()); case Builtin::BI_setjmpex: { if (getTarget().getTriple().isOSMSVCRT()) { llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy}; llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::ReturnsTwice); llvm::Constant *SetJmpEx = CGM.CreateRuntimeFunction( llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false), "_setjmpex", ReturnsTwiceAttr, /*Local=*/true); llvm::Value *Buf = Builder.CreateBitOrPointerCast( EmitScalarExpr(E->getArg(0)), Int8PtrTy); llvm::Value *FrameAddr = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress), ConstantInt::get(Int32Ty, 0)); llvm::Value *Args[] = {Buf, FrameAddr}; llvm::CallSite CS = EmitRuntimeCallOrInvoke(SetJmpEx, Args); CS.setAttributes(ReturnsTwiceAttr); return RValue::get(CS.getInstruction()); } break; } case Builtin::BI_setjmp: { if (getTarget().getTriple().isOSMSVCRT()) { llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::ReturnsTwice); llvm::Value *Buf = Builder.CreateBitOrPointerCast( EmitScalarExpr(E->getArg(0)), Int8PtrTy); llvm::CallSite CS; if (getTarget().getTriple().getArch() == llvm::Triple::x86) { llvm::Type *ArgTypes[] = {Int8PtrTy, IntTy}; llvm::Constant *SetJmp3 = CGM.CreateRuntimeFunction( llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/true), "_setjmp3", ReturnsTwiceAttr, /*Local=*/true); llvm::Value *Count = ConstantInt::get(IntTy, 0); llvm::Value *Args[] = {Buf, Count}; CS = EmitRuntimeCallOrInvoke(SetJmp3, Args); } else { llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy}; llvm::Constant *SetJmp = CGM.CreateRuntimeFunction( llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false), "_setjmp", ReturnsTwiceAttr, /*Local=*/true); llvm::Value *FrameAddr = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress), ConstantInt::get(Int32Ty, 0)); llvm::Value *Args[] = {Buf, FrameAddr}; CS = EmitRuntimeCallOrInvoke(SetJmp, Args); } CS.setAttributes(ReturnsTwiceAttr); return RValue::get(CS.getInstruction()); } break; } case Builtin::BI__GetExceptionInfo: { if (llvm::GlobalVariable *GV = CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy)); break; } case Builtin::BI__fastfail: return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); case Builtin::BI__builtin_coro_size: { auto & Context = getContext(); auto SizeTy = Context.getSizeType(); auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); Value *F = CGM.getIntrinsic(Intrinsic::coro_size, T); return RValue::get(Builder.CreateCall(F)); } case Builtin::BI__builtin_coro_id: return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); case Builtin::BI__builtin_coro_promise: return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); case Builtin::BI__builtin_coro_resume: return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); case Builtin::BI__builtin_coro_frame: return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); case Builtin::BI__builtin_coro_free: return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); case Builtin::BI__builtin_coro_destroy: return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); case Builtin::BI__builtin_coro_done: return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); case Builtin::BI__builtin_coro_alloc: return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); case Builtin::BI__builtin_coro_begin: return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); case Builtin::BI__builtin_coro_end: return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); case Builtin::BI__builtin_coro_suspend: return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); case Builtin::BI__builtin_coro_param: return EmitCoroutineIntrinsic(E, Intrinsic::coro_param); // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions case Builtin::BIread_pipe: case Builtin::BIwrite_pipe: { Value *Arg0 = EmitScalarExpr(E->getArg(0)), *Arg1 = EmitScalarExpr(E->getArg(1)); CGOpenCLRuntime OpenCLRT(CGM); Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); // Type of the generic packet parameter. unsigned GenericAS = getContext().getTargetAddressSpace(LangAS::opencl_generic); llvm::Type *I8PTy = llvm::PointerType::get( llvm::Type::getInt8Ty(getLLVMContext()), GenericAS); // Testing which overloaded version we should generate the call for. if (2U == E->getNumArgs()) { const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" : "__write_pipe_2"; // Creating a generic function type to be able to call with any builtin or // user defined type. llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy); return RValue::get( Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), {Arg0, BCast, PacketSize, PacketAlign})); } else { assert(4 == E->getNumArgs() && "Illegal number of parameters to pipe function"); const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" : "__write_pipe_4"; llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, Int32Ty, Int32Ty}; Value *Arg2 = EmitScalarExpr(E->getArg(2)), *Arg3 = EmitScalarExpr(E->getArg(3)); llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy); // We know the third argument is an integer type, but we may need to cast // it to i32. if (Arg2->getType() != Int32Ty) Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); return RValue::get(Builder.CreateCall( CGM.CreateRuntimeFunction(FTy, Name), {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign})); } } // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write // functions case Builtin::BIreserve_read_pipe: case Builtin::BIreserve_write_pipe: case Builtin::BIwork_group_reserve_read_pipe: case Builtin::BIwork_group_reserve_write_pipe: case Builtin::BIsub_group_reserve_read_pipe: case Builtin::BIsub_group_reserve_write_pipe: { // Composing the mangled name for the function. const char *Name; if (BuiltinID == Builtin::BIreserve_read_pipe) Name = "__reserve_read_pipe"; else if (BuiltinID == Builtin::BIreserve_write_pipe) Name = "__reserve_write_pipe"; else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) Name = "__work_group_reserve_read_pipe"; else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) Name = "__work_group_reserve_write_pipe"; else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) Name = "__sub_group_reserve_read_pipe"; else Name = "__sub_group_reserve_write_pipe"; Value *Arg0 = EmitScalarExpr(E->getArg(0)), *Arg1 = EmitScalarExpr(E->getArg(1)); llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); CGOpenCLRuntime OpenCLRT(CGM); Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); // Building the generic function prototype. llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; llvm::FunctionType *FTy = llvm::FunctionType::get( ReservedIDTy, llvm::ArrayRef(ArgTys), false); // We know the second argument is an integer type, but we may need to cast // it to i32. if (Arg1->getType() != Int32Ty) Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); return RValue::get( Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), {Arg0, Arg1, PacketSize, PacketAlign})); } // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write // functions case Builtin::BIcommit_read_pipe: case Builtin::BIcommit_write_pipe: case Builtin::BIwork_group_commit_read_pipe: case Builtin::BIwork_group_commit_write_pipe: case Builtin::BIsub_group_commit_read_pipe: case Builtin::BIsub_group_commit_write_pipe: { const char *Name; if (BuiltinID == Builtin::BIcommit_read_pipe) Name = "__commit_read_pipe"; else if (BuiltinID == Builtin::BIcommit_write_pipe) Name = "__commit_write_pipe"; else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) Name = "__work_group_commit_read_pipe"; else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) Name = "__work_group_commit_write_pipe"; else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) Name = "__sub_group_commit_read_pipe"; else Name = "__sub_group_commit_write_pipe"; Value *Arg0 = EmitScalarExpr(E->getArg(0)), *Arg1 = EmitScalarExpr(E->getArg(1)); CGOpenCLRuntime OpenCLRT(CGM); Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); // Building the generic function prototype. llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), llvm::ArrayRef(ArgTys), false); return RValue::get( Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), {Arg0, Arg1, PacketSize, PacketAlign})); } // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions case Builtin::BIget_pipe_num_packets: case Builtin::BIget_pipe_max_packets: { const char *Name; if (BuiltinID == Builtin::BIget_pipe_num_packets) Name = "__get_pipe_num_packets"; else Name = "__get_pipe_max_packets"; // Building the generic function prototype. Value *Arg0 = EmitScalarExpr(E->getArg(0)); CGOpenCLRuntime OpenCLRT(CGM); Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), {Arg0, PacketSize, PacketAlign})); } // OpenCL v2.0 s6.13.9 - Address space qualifier functions. case Builtin::BIto_global: case Builtin::BIto_local: case Builtin::BIto_private: { auto Arg0 = EmitScalarExpr(E->getArg(0)); auto NewArgT = llvm::PointerType::get(Int8Ty, CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); auto NewRetT = llvm::PointerType::get(Int8Ty, CGM.getContext().getTargetAddressSpace( E->getType()->getPointeeType().getAddressSpace())); auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); llvm::Value *NewArg; if (Arg0->getType()->getPointerAddressSpace() != NewArgT->getPointerAddressSpace()) NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); else NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); auto NewCall = Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); return RValue::get(Builder.CreateBitOrPointerCast(NewCall, ConvertType(E->getType()))); } // OpenCL v2.0, s6.13.17 - Enqueue kernel function. // It contains four different overload formats specified in Table 6.13.17.1. case Builtin::BIenqueue_kernel: { StringRef Name; // Generated function call name unsigned NumArgs = E->getNumArgs(); llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( getContext().getTargetAddressSpace(LangAS::opencl_generic)); llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); llvm::Value *Range = NDRangeL.getAddress().getPointer(); llvm::Type *RangeTy = NDRangeL.getAddress().getType(); if (NumArgs == 4) { // The most basic form of the call with parameters: // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) Name = "__enqueue_kernel_basic"; llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, GenericVoidPtrTy}; llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); auto Info = CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); llvm::Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); llvm::Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); AttrBuilder B; B.addAttribute(Attribute::ByVal); llvm::AttributeList ByValAttrSet = llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B); auto RTCall = Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet), {Queue, Flags, Range, Kernel, Block}); RTCall->setAttributes(ByValAttrSet); return RValue::get(RTCall); } assert(NumArgs >= 5 && "Invalid enqueue_kernel signature"); // Create a temporary array to hold the sizes of local pointer arguments // for the block. \p First is the position of the first size argument. auto CreateArrayForSizeVar = [=](unsigned First) { auto *AT = llvm::ArrayType::get(SizeTy, NumArgs - First); auto *Arr = Builder.CreateAlloca(AT); llvm::Value *Ptr; // Each of the following arguments specifies the size of the corresponding // argument passed to the enqueued block. auto *Zero = llvm::ConstantInt::get(IntTy, 0); for (unsigned I = First; I < NumArgs; ++I) { auto *Index = llvm::ConstantInt::get(IntTy, I - First); auto *GEP = Builder.CreateGEP(Arr, {Zero, Index}); if (I == First) Ptr = GEP; auto *V = Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); Builder.CreateAlignedStore( V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy)); } return Ptr; }; // Could have events and/or vaargs. if (E->getArg(3)->getType()->isBlockPointerType()) { // No events passed, but has variadic arguments. Name = "__enqueue_kernel_vaargs"; auto Info = CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); llvm::Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); auto *PtrToSizeArray = CreateArrayForSizeVar(4); // Create a vector of the arguments, as well as a constant value to // express to the runtime the number of variadic arguments. std::vector Args = { Queue, Flags, Range, Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4), PtrToSizeArray}; std::vector ArgTys = { QueueTy, IntTy, RangeTy, GenericVoidPtrTy, GenericVoidPtrTy, IntTy, PtrToSizeArray->getType()}; llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); return RValue::get( Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), llvm::ArrayRef(Args))); } // Any calls now have event arguments passed. if (NumArgs >= 7) { llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy); llvm::Type *EventPtrTy = EventTy->getPointerTo( CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); llvm::Value *NumEvents = Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); llvm::Value *EventList = E->getArg(4)->getType()->isArrayType() ? EmitArrayToPointerDecay(E->getArg(4)).getPointer() : EmitScalarExpr(E->getArg(4)); llvm::Value *ClkEvent = EmitScalarExpr(E->getArg(5)); // Convert to generic address space. EventList = Builder.CreatePointerCast(EventList, EventPtrTy); ClkEvent = Builder.CreatePointerCast(ClkEvent, EventPtrTy); auto Info = CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); llvm::Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); llvm::Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); std::vector ArgTys = { QueueTy, Int32Ty, RangeTy, Int32Ty, EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; std::vector Args = {Queue, Flags, Range, NumEvents, EventList, ClkEvent, Kernel, Block}; if (NumArgs == 7) { // Has events but no variadics. Name = "__enqueue_kernel_basic_events"; llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); return RValue::get( Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), llvm::ArrayRef(Args))); } // Has event info and variadics // Pass the number of variadics to the runtime function too. Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); ArgTys.push_back(Int32Ty); Name = "__enqueue_kernel_events_vaargs"; auto *PtrToSizeArray = CreateArrayForSizeVar(7); Args.push_back(PtrToSizeArray); ArgTys.push_back(PtrToSizeArray->getType()); llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); return RValue::get( Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), llvm::ArrayRef(Args))); } LLVM_FALLTHROUGH; } // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block // parameter. case Builtin::BIget_kernel_work_group_size: { llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( getContext().getTargetAddressSpace(LangAS::opencl_generic)); auto Info = CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); return RValue::get(Builder.CreateCall( CGM.CreateRuntimeFunction( llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, false), "__get_kernel_work_group_size_impl"), {Kernel, Arg})); } case Builtin::BIget_kernel_preferred_work_group_size_multiple: { llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( getContext().getTargetAddressSpace(LangAS::opencl_generic)); auto Info = CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); return RValue::get(Builder.CreateCall( CGM.CreateRuntimeFunction( llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, false), "__get_kernel_preferred_work_group_multiple_impl"), {Kernel, Arg})); } case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: case Builtin::BIget_kernel_sub_group_count_for_ndrange: { llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( getContext().getTargetAddressSpace(LangAS::opencl_generic)); LValue NDRangeL = EmitAggExprToLValue(E->getArg(0)); llvm::Value *NDRange = NDRangeL.getAddress().getPointer(); auto Info = CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1)); Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); const char *Name = BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange ? "__get_kernel_max_sub_group_size_for_ndrange_impl" : "__get_kernel_sub_group_count_for_ndrange_impl"; return RValue::get(Builder.CreateCall( CGM.CreateRuntimeFunction( llvm::FunctionType::get( IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, false), Name), {NDRange, Kernel, Block})); } case Builtin::BI__builtin_store_half: case Builtin::BI__builtin_store_halff: { Value *Val = EmitScalarExpr(E->getArg(0)); Address Address = EmitPointerWithAlignment(E->getArg(1)); Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy()); return RValue::get(Builder.CreateStore(HalfVal, Address)); } case Builtin::BI__builtin_load_half: { Address Address = EmitPointerWithAlignment(E->getArg(0)); Value *HalfVal = Builder.CreateLoad(Address); return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy())); } case Builtin::BI__builtin_load_halff: { Address Address = EmitPointerWithAlignment(E->getArg(0)); Value *HalfVal = Builder.CreateLoad(Address); return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy())); } case Builtin::BIprintf: if (getTarget().getTriple().isNVPTX()) return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue); break; case Builtin::BI__builtin_canonicalize: case Builtin::BI__builtin_canonicalizef: case Builtin::BI__builtin_canonicalizel: return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize)); case Builtin::BI__builtin_thread_pointer: { if (!getContext().getTargetInfo().isTLSSupported()) CGM.ErrorUnsupported(E, "__builtin_thread_pointer"); // Fall through - it's already mapped to the intrinsic by GCCBuiltin. break; } case Builtin::BI__builtin_os_log_format: return emitBuiltinOSLogFormat(*E); case Builtin::BI__builtin_os_log_format_buffer_size: { analyze_os_log::OSLogBufferLayout Layout; analyze_os_log::computeOSLogBufferLayout(CGM.getContext(), E, Layout); return RValue::get(ConstantInt::get(ConvertType(E->getType()), Layout.size().getQuantity())); } case Builtin::BI__xray_customevent: { if (!ShouldXRayInstrumentFunction()) return RValue::getIgnored(); if (const auto *XRayAttr = CurFuncDecl->getAttr()) { if (XRayAttr->neverXRayInstrument()) return RValue::getIgnored(); } Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent); auto FTy = F->getFunctionType(); auto Arg0 = E->getArg(0); auto Arg0Val = EmitScalarExpr(Arg0); auto Arg0Ty = Arg0->getType(); auto PTy0 = FTy->getParamType(0); if (PTy0 != Arg0Val->getType()) { if (Arg0Ty->isArrayType()) Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer(); else Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0); } auto Arg1 = EmitScalarExpr(E->getArg(1)); auto PTy1 = FTy->getParamType(1); if (PTy1 != Arg1->getType()) Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1); return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1})); } case Builtin::BI__builtin_ms_va_start: case Builtin::BI__builtin_ms_va_end: return RValue::get( EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(), BuiltinID == Builtin::BI__builtin_ms_va_start)); case Builtin::BI__builtin_ms_va_copy: { // Lower this manually. We can't reliably determine whether or not any // given va_copy() is for a Win64 va_list from the calling convention // alone, because it's legal to do this from a System V ABI function. // With opaque pointer types, we won't have enough information in LLVM // IR to determine this from the argument types, either. Best to do it // now, while we have enough information. Address DestAddr = EmitMSVAListRef(E->getArg(0)); Address SrcAddr = EmitMSVAListRef(E->getArg(1)); llvm::Type *BPP = Int8PtrPtrTy; DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"), DestAddr.getAlignment()); SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"), SrcAddr.getAlignment()); Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val"); return RValue::get(Builder.CreateStore(ArgPtr, DestAddr)); } } // If this is an alias for a lib function (e.g. __builtin_sin), emit // the call using the normal call path, but using the unmangled // version of the function name. if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) return emitLibraryCall(*this, FD, E, CGM.getBuiltinLibFunction(FD, BuiltinID)); // If this is a predefined lib function (e.g. malloc), emit the call // using exactly the normal call path. if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) return emitLibraryCall(*this, FD, E, cast(EmitScalarExpr(E->getCallee()))); // Check that a call to a target specific builtin has the correct target // features. // This is down here to avoid non-target specific builtins, however, if // generic builtins start to require generic target features then we // can move this up to the beginning of the function. checkTargetFeatures(E, FD); // See if we have a target specific intrinsic. const char *Name = getContext().BuiltinInfo.getName(BuiltinID); Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; StringRef Prefix = llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()); if (!Prefix.empty()) { IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name); // NOTE we dont need to perform a compatibility flag check here since the // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. if (IntrinsicID == Intrinsic::not_intrinsic) IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name); } if (IntrinsicID != Intrinsic::not_intrinsic) { SmallVector Args; // Find out if any arguments are required to be integer constant // expressions. unsigned ICEArguments = 0; ASTContext::GetBuiltinTypeError Error; getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); assert(Error == ASTContext::GE_None && "Should not codegen an error"); Function *F = CGM.getIntrinsic(IntrinsicID); llvm::FunctionType *FTy = F->getFunctionType(); for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { Value *ArgValue; // If this is a normal argument, just emit it as a scalar. if ((ICEArguments & (1 << i)) == 0) { ArgValue = EmitScalarExpr(E->getArg(i)); } else { // If this is required to be a constant, constant fold it so that we // know that the generated intrinsic gets a ConstantInt. llvm::APSInt Result; bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext()); assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result); } // If the intrinsic arg type is different from the builtin arg type // we need to do a bit cast. llvm::Type *PTy = FTy->getParamType(i); if (PTy != ArgValue->getType()) { assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && "Must be able to losslessly bit cast to param"); ArgValue = Builder.CreateBitCast(ArgValue, PTy); } Args.push_back(ArgValue); } Value *V = Builder.CreateCall(F, Args); QualType BuiltinRetType = E->getType(); llvm::Type *RetTy = VoidTy; if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType); if (RetTy != V->getType()) { assert(V->getType()->canLosslesslyBitCastTo(RetTy) && "Must be able to losslessly bit cast result type"); V = Builder.CreateBitCast(V, RetTy); } return RValue::get(V); } // See if we have a target specific builtin that needs to be lowered. if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E)) return RValue::get(V); ErrorUnsupported(E, "builtin function"); // Unknown builtin, for now just dump it out and return undef. return GetUndefRValue(E->getType()); } static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, unsigned BuiltinID, const CallExpr *E, llvm::Triple::ArchType Arch) { switch (Arch) { case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: return CGF->EmitARMBuiltinExpr(BuiltinID, E); case llvm::Triple::aarch64: case llvm::Triple::aarch64_be: return CGF->EmitAArch64BuiltinExpr(BuiltinID, E); case llvm::Triple::x86: case llvm::Triple::x86_64: return CGF->EmitX86BuiltinExpr(BuiltinID, E); case llvm::Triple::ppc: case llvm::Triple::ppc64: case llvm::Triple::ppc64le: return CGF->EmitPPCBuiltinExpr(BuiltinID, E); case llvm::Triple::r600: case llvm::Triple::amdgcn: return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); case llvm::Triple::systemz: return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); case llvm::Triple::nvptx: case llvm::Triple::nvptx64: return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); case llvm::Triple::wasm32: case llvm::Triple::wasm64: return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); default: return nullptr; } } Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) { assert(getContext().getAuxTargetInfo() && "Missing aux target info"); return EmitTargetArchBuiltinExpr( this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E, getContext().getAuxTargetInfo()->getTriple().getArch()); } return EmitTargetArchBuiltinExpr(this, BuiltinID, E, getTarget().getTriple().getArch()); } static llvm::VectorType *GetNeonType(CodeGenFunction *CGF, NeonTypeFlags TypeFlags, bool V1Ty=false) { int IsQuad = TypeFlags.isQuad(); switch (TypeFlags.getEltType()) { case NeonTypeFlags::Int8: case NeonTypeFlags::Poly8: return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); case NeonTypeFlags::Int16: case NeonTypeFlags::Poly16: case NeonTypeFlags::Float16: return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); case NeonTypeFlags::Int32: return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); case NeonTypeFlags::Int64: case NeonTypeFlags::Poly64: return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); case NeonTypeFlags::Poly128: // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. // There is a lot of i128 and f128 API missing. // so we use v16i8 to represent poly128 and get pattern matched. return llvm::VectorType::get(CGF->Int8Ty, 16); case NeonTypeFlags::Float32: return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); case NeonTypeFlags::Float64: return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); } llvm_unreachable("Unknown vector element type!"); } static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF, NeonTypeFlags IntTypeFlags) { int IsQuad = IntTypeFlags.isQuad(); switch (IntTypeFlags.getEltType()) { case NeonTypeFlags::Int32: return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad)); case NeonTypeFlags::Int64: return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad)); default: llvm_unreachable("Type can't be converted to floating-point!"); } } Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { unsigned nElts = V->getType()->getVectorNumElements(); Value* SV = llvm::ConstantVector::getSplat(nElts, C); return Builder.CreateShuffleVector(V, V, SV, "lane"); } Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl &Ops, const char *name, unsigned shift, bool rightshift) { unsigned j = 0; for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); ai != ae; ++ai, ++j) if (shift > 0 && shift == j) Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); else Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); return Builder.CreateCall(F, Ops, name); } Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, bool neg) { int SV = cast(V)->getSExtValue(); return ConstantInt::get(Ty, neg ? -SV : SV); } // \brief Right-shift a vector by a constant. Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, llvm::Type *Ty, bool usgn, const char *name) { llvm::VectorType *VTy = cast(Ty); int ShiftAmt = cast(Shift)->getSExtValue(); int EltSize = VTy->getScalarSizeInBits(); Vec = Builder.CreateBitCast(Vec, Ty); // lshr/ashr are undefined when the shift amount is equal to the vector // element size. if (ShiftAmt == EltSize) { if (usgn) { // Right-shifting an unsigned value by its size yields 0. return llvm::ConstantAggregateZero::get(VTy); } else { // Right-shifting a signed value by its size is equivalent // to a shift of size-1. --ShiftAmt; Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); } } Shift = EmitNeonShiftVector(Shift, Ty, false); if (usgn) return Builder.CreateLShr(Vec, Shift, name); else return Builder.CreateAShr(Vec, Shift, name); } enum { AddRetType = (1 << 0), Add1ArgType = (1 << 1), Add2ArgTypes = (1 << 2), VectorizeRetType = (1 << 3), VectorizeArgTypes = (1 << 4), InventFloatType = (1 << 5), UnsignedAlts = (1 << 6), Use64BitVectors = (1 << 7), Use128BitVectors = (1 << 8), Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, VectorRet = AddRetType | VectorizeRetType, VectorRetGetArgs01 = AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, FpCmpzModifiers = AddRetType | VectorizeRetType | Add1ArgType | InventFloatType }; namespace { struct NeonIntrinsicInfo { const char *NameHint; unsigned BuiltinID; unsigned LLVMIntrinsic; unsigned AltLLVMIntrinsic; unsigned TypeModifier; bool operator<(unsigned RHSBuiltinID) const { return BuiltinID < RHSBuiltinID; } bool operator<(const NeonIntrinsicInfo &TE) const { return BuiltinID < TE.BuiltinID; } }; } // end anonymous namespace #define NEONMAP0(NameBase) \ { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 } #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ Intrinsic::LLVMIntrinsic, 0, TypeModifier } #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ TypeModifier } static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = { NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), NEONMAP1(vabs_v, arm_neon_vabs, 0), NEONMAP1(vabsq_v, arm_neon_vabs, 0), NEONMAP0(vaddhn_v), NEONMAP1(vaesdq_v, arm_neon_aesd, 0), NEONMAP1(vaeseq_v, arm_neon_aese, 0), NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), NEONMAP1(vcage_v, arm_neon_vacge, 0), NEONMAP1(vcageq_v, arm_neon_vacge, 0), NEONMAP1(vcagt_v, arm_neon_vacgt, 0), NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), NEONMAP1(vcale_v, arm_neon_vacge, 0), NEONMAP1(vcaleq_v, arm_neon_vacge, 0), NEONMAP1(vcalt_v, arm_neon_vacgt, 0), NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), NEONMAP1(vclz_v, ctlz, Add1ArgType), NEONMAP1(vclzq_v, ctlz, Add1ArgType), NEONMAP1(vcnt_v, ctpop, Add1ArgType), NEONMAP1(vcntq_v, ctpop, Add1ArgType), NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0), NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), NEONMAP0(vcvt_f32_v), NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), NEONMAP0(vcvt_s32_v), NEONMAP0(vcvt_s64_v), NEONMAP0(vcvt_u32_v), NEONMAP0(vcvt_u64_v), NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), NEONMAP0(vcvtq_f32_v), NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), NEONMAP0(vcvtq_s32_v), NEONMAP0(vcvtq_s64_v), NEONMAP0(vcvtq_u32_v), NEONMAP0(vcvtq_u64_v), NEONMAP0(vext_v), NEONMAP0(vextq_v), NEONMAP0(vfma_v), NEONMAP0(vfmaq_v), NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), NEONMAP0(vld1_dup_v), NEONMAP1(vld1_v, arm_neon_vld1, 0), NEONMAP0(vld1q_dup_v), NEONMAP1(vld1q_v, arm_neon_vld1, 0), NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), NEONMAP1(vld2_v, arm_neon_vld2, 0), NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), NEONMAP1(vld2q_v, arm_neon_vld2, 0), NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), NEONMAP1(vld3_v, arm_neon_vld3, 0), NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), NEONMAP1(vld3q_v, arm_neon_vld3, 0), NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), NEONMAP1(vld4_v, arm_neon_vld4, 0), NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), NEONMAP1(vld4q_v, arm_neon_vld4, 0), NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType), NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType), NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType), NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType), NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), NEONMAP0(vmovl_v), NEONMAP0(vmovn_v), NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), NEONMAP0(vmull_v), NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts), NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts), NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0), NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0), NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0), NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0), NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts), NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts), NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType), NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType), NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType), NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType), NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType), NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType), NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType), NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType), NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType), NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType), NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType), NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType), NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0), NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0), NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0), NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0), NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0), NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0), NEONMAP0(vshl_n_v), NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), NEONMAP0(vshll_n_v), NEONMAP0(vshlq_n_v), NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), NEONMAP0(vshr_n_v), NEONMAP0(vshrn_n_v), NEONMAP0(vshrq_n_v), NEONMAP1(vst1_v, arm_neon_vst1, 0), NEONMAP1(vst1q_v, arm_neon_vst1, 0), NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), NEONMAP1(vst2_v, arm_neon_vst2, 0), NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), NEONMAP1(vst2q_v, arm_neon_vst2, 0), NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), NEONMAP1(vst3_v, arm_neon_vst3, 0), NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), NEONMAP1(vst3q_v, arm_neon_vst3, 0), NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), NEONMAP1(vst4_v, arm_neon_vst4, 0), NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), NEONMAP1(vst4q_v, arm_neon_vst4, 0), NEONMAP0(vsubhn_v), NEONMAP0(vtrn_v), NEONMAP0(vtrnq_v), NEONMAP0(vtst_v), NEONMAP0(vtstq_v), NEONMAP0(vuzp_v), NEONMAP0(vuzpq_v), NEONMAP0(vzip_v), NEONMAP0(vzipq_v) }; static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = { NEONMAP1(vabs_v, aarch64_neon_abs, 0), NEONMAP1(vabsq_v, aarch64_neon_abs, 0), NEONMAP0(vaddhn_v), NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0), NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0), NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0), NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0), NEONMAP1(vcage_v, aarch64_neon_facge, 0), NEONMAP1(vcageq_v, aarch64_neon_facge, 0), NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), NEONMAP1(vcale_v, aarch64_neon_facge, 0), NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), NEONMAP1(vclz_v, ctlz, Add1ArgType), NEONMAP1(vclzq_v, ctlz, Add1ArgType), NEONMAP1(vcnt_v, ctpop, Add1ArgType), NEONMAP1(vcntq_v, ctpop, Add1ArgType), NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0), NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), NEONMAP0(vcvt_f32_v), NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), NEONMAP0(vcvtq_f32_v), NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), NEONMAP0(vext_v), NEONMAP0(vextq_v), NEONMAP0(vfma_v), NEONMAP0(vfmaq_v), NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), NEONMAP0(vmovl_v), NEONMAP0(vmovn_v), NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0), NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0), NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0), NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0), NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0), NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0), NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0), NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0), NEONMAP0(vshl_n_v), NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), NEONMAP0(vshll_n_v), NEONMAP0(vshlq_n_v), NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), NEONMAP0(vshr_n_v), NEONMAP0(vshrn_n_v), NEONMAP0(vshrq_n_v), NEONMAP0(vsubhn_v), NEONMAP0(vtst_v), NEONMAP0(vtstq_v), }; static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = { NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType), NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType), NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType), NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType), NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType), NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType), NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType), NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType), NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType), NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType), NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType), NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType), NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType), NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType), NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType), NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType), NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType), NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType), NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType), NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType), NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType), NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType), NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType), NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType), NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType), NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType), NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType), NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType), NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType), NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType), NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType), NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType), NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType), NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType), NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType), NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType), NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0), NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0), NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0), NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0), NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType), NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType), NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType), NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType), NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType), NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType), NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType), NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType), NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType), NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType), }; #undef NEONMAP0 #undef NEONMAP1 #undef NEONMAP2 static bool NEONSIMDIntrinsicsProvenSorted = false; static bool AArch64SIMDIntrinsicsProvenSorted = false; static bool AArch64SISDIntrinsicsProvenSorted = false; static const NeonIntrinsicInfo * findNeonIntrinsicInMap(ArrayRef IntrinsicMap, unsigned BuiltinID, bool &MapProvenSorted) { #ifndef NDEBUG if (!MapProvenSorted) { assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap))); MapProvenSorted = true; } #endif const NeonIntrinsicInfo *Builtin = std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID); if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID) return Builtin; return nullptr; } Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID, unsigned Modifier, llvm::Type *ArgType, const CallExpr *E) { int VectorSize = 0; if (Modifier & Use64BitVectors) VectorSize = 64; else if (Modifier & Use128BitVectors) VectorSize = 128; // Return type. SmallVector Tys; if (Modifier & AddRetType) { llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); if (Modifier & VectorizeRetType) Ty = llvm::VectorType::get( Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1); Tys.push_back(Ty); } // Arguments. if (Modifier & VectorizeArgTypes) { int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1; ArgType = llvm::VectorType::get(ArgType, Elts); } if (Modifier & (Add1ArgType | Add2ArgTypes)) Tys.push_back(ArgType); if (Modifier & Add2ArgTypes) Tys.push_back(ArgType); if (Modifier & InventFloatType) Tys.push_back(FloatTy); return CGM.getIntrinsic(IntrinsicID, Tys); } static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF, const NeonIntrinsicInfo &SISDInfo, SmallVectorImpl &Ops, const CallExpr *E) { unsigned BuiltinID = SISDInfo.BuiltinID; unsigned int Int = SISDInfo.LLVMIntrinsic; unsigned Modifier = SISDInfo.TypeModifier; const char *s = SISDInfo.NameHint; switch (BuiltinID) { case NEON::BI__builtin_neon_vcled_s64: case NEON::BI__builtin_neon_vcled_u64: case NEON::BI__builtin_neon_vcles_f32: case NEON::BI__builtin_neon_vcled_f64: case NEON::BI__builtin_neon_vcltd_s64: case NEON::BI__builtin_neon_vcltd_u64: case NEON::BI__builtin_neon_vclts_f32: case NEON::BI__builtin_neon_vcltd_f64: case NEON::BI__builtin_neon_vcales_f32: case NEON::BI__builtin_neon_vcaled_f64: case NEON::BI__builtin_neon_vcalts_f32: case NEON::BI__builtin_neon_vcaltd_f64: // Only one direction of comparisons actually exist, cmle is actually a cmge // with swapped operands. The table gives us the right intrinsic but we // still need to do the swap. std::swap(Ops[0], Ops[1]); break; } assert(Int && "Generic code assumes a valid intrinsic"); // Determine the type(s) of this overloaded AArch64 intrinsic. const Expr *Arg = E->getArg(0); llvm::Type *ArgTy = CGF.ConvertType(Arg->getType()); Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E); int j = 0; ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0); for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); ai != ae; ++ai, ++j) { llvm::Type *ArgTy = ai->getType(); if (Ops[j]->getType()->getPrimitiveSizeInBits() == ArgTy->getPrimitiveSizeInBits()) continue; assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()); // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate // it before inserting. Ops[j] = CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType()); Ops[j] = CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0); } Value *Result = CGF.EmitNeonCall(F, Ops, s); llvm::Type *ResultType = CGF.ConvertType(E->getType()); if (ResultType->getPrimitiveSizeInBits() < Result->getType()->getPrimitiveSizeInBits()) return CGF.Builder.CreateExtractElement(Result, C0); return CGF.Builder.CreateBitCast(Result, ResultType, s); } Value *CodeGenFunction::EmitCommonNeonBuiltinExpr( unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, const char *NameHint, unsigned Modifier, const CallExpr *E, SmallVectorImpl &Ops, Address PtrOp0, Address PtrOp1) { // Get the last argument, which specifies the vector type. llvm::APSInt NeonTypeConst; const Expr *Arg = E->getArg(E->getNumArgs() - 1); if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext())) return nullptr; // Determine the type of this overloaded NEON intrinsic. NeonTypeFlags Type(NeonTypeConst.getZExtValue()); bool Usgn = Type.isUnsigned(); bool Quad = Type.isQuad(); llvm::VectorType *VTy = GetNeonType(this, Type); llvm::Type *Ty = VTy; if (!Ty) return nullptr; auto getAlignmentValue32 = [&](Address addr) -> Value* { return Builder.getInt32(addr.getAlignment().getQuantity()); }; unsigned Int = LLVMIntrinsic; if ((Modifier & UnsignedAlts) && !Usgn) Int = AltLLVMIntrinsic; switch (BuiltinID) { default: break; case NEON::BI__builtin_neon_vabs_v: case NEON::BI__builtin_neon_vabsq_v: if (VTy->getElementType()->isFloatingPointTy()) return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs"); return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs"); case NEON::BI__builtin_neon_vaddhn_v: { llvm::VectorType *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy); // %sum = add <4 x i32> %lhs, %rhs Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn"); // %high = lshr <4 x i32> %sum, Constant *ShiftAmt = ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn"); // %res = trunc <4 x i32> %high to <4 x i16> return Builder.CreateTrunc(Ops[0], VTy, "vaddhn"); } case NEON::BI__builtin_neon_vcale_v: case NEON::BI__builtin_neon_vcaleq_v: case NEON::BI__builtin_neon_vcalt_v: case NEON::BI__builtin_neon_vcaltq_v: std::swap(Ops[0], Ops[1]); LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vcage_v: case NEON::BI__builtin_neon_vcageq_v: case NEON::BI__builtin_neon_vcagt_v: case NEON::BI__builtin_neon_vcagtq_v: { llvm::Type *VecFlt = llvm::VectorType::get( VTy->getScalarSizeInBits() == 32 ? FloatTy : DoubleTy, VTy->getNumElements()); llvm::Type *Tys[] = { VTy, VecFlt }; Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); return EmitNeonCall(F, Ops, NameHint); } case NEON::BI__builtin_neon_vclz_v: case NEON::BI__builtin_neon_vclzq_v: // We generate target-independent intrinsic, which needs a second argument // for whether or not clz of zero is undefined; on ARM it isn't. Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef())); break; case NEON::BI__builtin_neon_vcvt_f32_v: case NEON::BI__builtin_neon_vcvtq_f32_v: Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad)); return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); case NEON::BI__builtin_neon_vcvt_n_f32_v: case NEON::BI__builtin_neon_vcvt_n_f64_v: case NEON::BI__builtin_neon_vcvtq_n_f32_v: case NEON::BI__builtin_neon_vcvtq_n_f64_v: { llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty }; Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; Function *F = CGM.getIntrinsic(Int, Tys); return EmitNeonCall(F, Ops, "vcvt_n"); } case NEON::BI__builtin_neon_vcvt_n_s32_v: case NEON::BI__builtin_neon_vcvt_n_u32_v: case NEON::BI__builtin_neon_vcvt_n_s64_v: case NEON::BI__builtin_neon_vcvt_n_u64_v: case NEON::BI__builtin_neon_vcvtq_n_s32_v: case NEON::BI__builtin_neon_vcvtq_n_u32_v: case NEON::BI__builtin_neon_vcvtq_n_s64_v: case NEON::BI__builtin_neon_vcvtq_n_u64_v: { llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); return EmitNeonCall(F, Ops, "vcvt_n"); } case NEON::BI__builtin_neon_vcvt_s32_v: case NEON::BI__builtin_neon_vcvt_u32_v: case NEON::BI__builtin_neon_vcvt_s64_v: case NEON::BI__builtin_neon_vcvt_u64_v: case NEON::BI__builtin_neon_vcvtq_s32_v: case NEON::BI__builtin_neon_vcvtq_u32_v: case NEON::BI__builtin_neon_vcvtq_s64_v: case NEON::BI__builtin_neon_vcvtq_u64_v: { Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") : Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); } case NEON::BI__builtin_neon_vcvta_s32_v: case NEON::BI__builtin_neon_vcvta_s64_v: case NEON::BI__builtin_neon_vcvta_u32_v: case NEON::BI__builtin_neon_vcvta_u64_v: case NEON::BI__builtin_neon_vcvtaq_s32_v: case NEON::BI__builtin_neon_vcvtaq_s64_v: case NEON::BI__builtin_neon_vcvtaq_u32_v: case NEON::BI__builtin_neon_vcvtaq_u64_v: case NEON::BI__builtin_neon_vcvtn_s32_v: case NEON::BI__builtin_neon_vcvtn_s64_v: case NEON::BI__builtin_neon_vcvtn_u32_v: case NEON::BI__builtin_neon_vcvtn_u64_v: case NEON::BI__builtin_neon_vcvtnq_s32_v: case NEON::BI__builtin_neon_vcvtnq_s64_v: case NEON::BI__builtin_neon_vcvtnq_u32_v: case NEON::BI__builtin_neon_vcvtnq_u64_v: case NEON::BI__builtin_neon_vcvtp_s32_v: case NEON::BI__builtin_neon_vcvtp_s64_v: case NEON::BI__builtin_neon_vcvtp_u32_v: case NEON::BI__builtin_neon_vcvtp_u64_v: case NEON::BI__builtin_neon_vcvtpq_s32_v: case NEON::BI__builtin_neon_vcvtpq_s64_v: case NEON::BI__builtin_neon_vcvtpq_u32_v: case NEON::BI__builtin_neon_vcvtpq_u64_v: case NEON::BI__builtin_neon_vcvtm_s32_v: case NEON::BI__builtin_neon_vcvtm_s64_v: case NEON::BI__builtin_neon_vcvtm_u32_v: case NEON::BI__builtin_neon_vcvtm_u64_v: case NEON::BI__builtin_neon_vcvtmq_s32_v: case NEON::BI__builtin_neon_vcvtmq_s64_v: case NEON::BI__builtin_neon_vcvtmq_u32_v: case NEON::BI__builtin_neon_vcvtmq_u64_v: { llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); } case NEON::BI__builtin_neon_vext_v: case NEON::BI__builtin_neon_vextq_v: { int CV = cast(Ops[2])->getSExtValue(); SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) Indices.push_back(i+CV); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext"); } case NEON::BI__builtin_neon_vfma_v: case NEON::BI__builtin_neon_vfmaq_v: { Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); // NEON intrinsic puts accumulator first, unlike the LLVM fma. return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]}); } case NEON::BI__builtin_neon_vld1_v: case NEON::BI__builtin_neon_vld1q_v: { llvm::Type *Tys[] = {Ty, Int8PtrTy}; Ops.push_back(getAlignmentValue32(PtrOp0)); return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1"); } case NEON::BI__builtin_neon_vld2_v: case NEON::BI__builtin_neon_vld2q_v: case NEON::BI__builtin_neon_vld3_v: case NEON::BI__builtin_neon_vld3q_v: case NEON::BI__builtin_neon_vld4_v: case NEON::BI__builtin_neon_vld4q_v: { llvm::Type *Tys[] = {Ty, Int8PtrTy}; Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); Value *Align = getAlignmentValue32(PtrOp1); Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld1_dup_v: case NEON::BI__builtin_neon_vld1q_dup_v: { Value *V = UndefValue::get(Ty); Ty = llvm::PointerType::getUnqual(VTy->getElementType()); PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty); LoadInst *Ld = Builder.CreateLoad(PtrOp0); llvm::Constant *CI = ConstantInt::get(SizeTy, 0); Ops[0] = Builder.CreateInsertElement(V, Ld, CI); return EmitNeonSplat(Ops[0], CI); } case NEON::BI__builtin_neon_vld2_lane_v: case NEON::BI__builtin_neon_vld2q_lane_v: case NEON::BI__builtin_neon_vld3_lane_v: case NEON::BI__builtin_neon_vld3q_lane_v: case NEON::BI__builtin_neon_vld4_lane_v: case NEON::BI__builtin_neon_vld4q_lane_v: { llvm::Type *Tys[] = {Ty, Int8PtrTy}; Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); for (unsigned I = 2; I < Ops.size() - 1; ++I) Ops[I] = Builder.CreateBitCast(Ops[I], Ty); Ops.push_back(getAlignmentValue32(PtrOp1)); Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vmovl_v: { llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy); Ops[0] = Builder.CreateBitCast(Ops[0], DTy); if (Usgn) return Builder.CreateZExt(Ops[0], Ty, "vmovl"); return Builder.CreateSExt(Ops[0], Ty, "vmovl"); } case NEON::BI__builtin_neon_vmovn_v: { llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy); Ops[0] = Builder.CreateBitCast(Ops[0], QTy); return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); } case NEON::BI__builtin_neon_vmull_v: // FIXME: the integer vmull operations could be emitted in terms of pure // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of // hoisting the exts outside loops. Until global ISel comes along that can // see through such movement this leads to bad CodeGen. So we need an // intrinsic for now. Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); case NEON::BI__builtin_neon_vpadal_v: case NEON::BI__builtin_neon_vpadalq_v: { // The source operand type has twice as many elements of half the size. unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); llvm::Type *NarrowTy = llvm::VectorType::get(EltTy, VTy->getNumElements() * 2); llvm::Type *Tys[2] = { Ty, NarrowTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); } case NEON::BI__builtin_neon_vpaddl_v: case NEON::BI__builtin_neon_vpaddlq_v: { // The source operand type has twice as many elements of half the size. unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); llvm::Type *NarrowTy = llvm::VectorType::get(EltTy, VTy->getNumElements() * 2); llvm::Type *Tys[2] = { Ty, NarrowTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); } case NEON::BI__builtin_neon_vqdmlal_v: case NEON::BI__builtin_neon_vqdmlsl_v: { SmallVector MulOps(Ops.begin() + 1, Ops.end()); Ops[1] = EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal"); Ops.resize(2); return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint); } case NEON::BI__builtin_neon_vqshl_n_v: case NEON::BI__builtin_neon_vqshlq_n_v: return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", 1, false); case NEON::BI__builtin_neon_vqshlu_n_v: case NEON::BI__builtin_neon_vqshluq_n_v: return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n", 1, false); case NEON::BI__builtin_neon_vrecpe_v: case NEON::BI__builtin_neon_vrecpeq_v: case NEON::BI__builtin_neon_vrsqrte_v: case NEON::BI__builtin_neon_vrsqrteq_v: Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); case NEON::BI__builtin_neon_vrshr_n_v: case NEON::BI__builtin_neon_vrshrq_n_v: return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true); case NEON::BI__builtin_neon_vshl_n_v: case NEON::BI__builtin_neon_vshlq_n_v: Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], "vshl_n"); case NEON::BI__builtin_neon_vshll_n_v: { llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy); Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); if (Usgn) Ops[0] = Builder.CreateZExt(Ops[0], VTy); else Ops[0] = Builder.CreateSExt(Ops[0], VTy); Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false); return Builder.CreateShl(Ops[0], Ops[1], "vshll_n"); } case NEON::BI__builtin_neon_vshrn_n_v: { llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy); Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false); if (Usgn) Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]); else Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]); return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n"); } case NEON::BI__builtin_neon_vshr_n_v: case NEON::BI__builtin_neon_vshrq_n_v: return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n"); case NEON::BI__builtin_neon_vst1_v: case NEON::BI__builtin_neon_vst1q_v: case NEON::BI__builtin_neon_vst2_v: case NEON::BI__builtin_neon_vst2q_v: case NEON::BI__builtin_neon_vst3_v: case NEON::BI__builtin_neon_vst3q_v: case NEON::BI__builtin_neon_vst4_v: case NEON::BI__builtin_neon_vst4q_v: case NEON::BI__builtin_neon_vst2_lane_v: case NEON::BI__builtin_neon_vst2q_lane_v: case NEON::BI__builtin_neon_vst3_lane_v: case NEON::BI__builtin_neon_vst3q_lane_v: case NEON::BI__builtin_neon_vst4_lane_v: case NEON::BI__builtin_neon_vst4q_lane_v: { llvm::Type *Tys[] = {Int8PtrTy, Ty}; Ops.push_back(getAlignmentValue32(PtrOp0)); return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, ""); } case NEON::BI__builtin_neon_vsubhn_v: { llvm::VectorType *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy); // %sum = add <4 x i32> %lhs, %rhs Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn"); // %high = lshr <4 x i32> %sum, Constant *ShiftAmt = ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn"); // %res = trunc <4 x i32> %high to <4 x i16> return Builder.CreateTrunc(Ops[0], VTy, "vsubhn"); } case NEON::BI__builtin_neon_vtrn_v: case NEON::BI__builtin_neon_vtrnq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Value *SV = nullptr; for (unsigned vi = 0; vi != 2; ++vi) { SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { Indices.push_back(i+vi); Indices.push_back(i+e+vi); } Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); SV = Builder.CreateDefaultAlignedStore(SV, Addr); } return SV; } case NEON::BI__builtin_neon_vtst_v: case NEON::BI__builtin_neon_vtstq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], ConstantAggregateZero::get(Ty)); return Builder.CreateSExt(Ops[0], Ty, "vtst"); } case NEON::BI__builtin_neon_vuzp_v: case NEON::BI__builtin_neon_vuzpq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Value *SV = nullptr; for (unsigned vi = 0; vi != 2; ++vi) { SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) Indices.push_back(2*i+vi); Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); SV = Builder.CreateDefaultAlignedStore(SV, Addr); } return SV; } case NEON::BI__builtin_neon_vzip_v: case NEON::BI__builtin_neon_vzipq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Value *SV = nullptr; for (unsigned vi = 0; vi != 2; ++vi) { SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { Indices.push_back((i + vi*e) >> 1); Indices.push_back(((i + vi*e) >> 1)+e); } Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); SV = Builder.CreateDefaultAlignedStore(SV, Addr); } return SV; } } assert(Int && "Expected valid intrinsic number"); // Determine the type(s) of this overloaded AArch64 intrinsic. Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E); Value *Result = EmitNeonCall(F, Ops, NameHint); llvm::Type *ResultType = ConvertType(E->getType()); // AArch64 intrinsic one-element vector type cast to // scalar type expected by the builtin return Builder.CreateBitCast(Result, ResultType, NameHint); } Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr( Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp, const CmpInst::Predicate Ip, const Twine &Name) { llvm::Type *OTy = Op->getType(); // FIXME: this is utterly horrific. We should not be looking at previous // codegen context to find out what needs doing. Unfortunately TableGen // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32 // (etc). if (BitCastInst *BI = dyn_cast(Op)) OTy = BI->getOperand(0)->getType(); Op = Builder.CreateBitCast(Op, OTy); if (OTy->getScalarType()->isFloatingPointTy()) { Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy)); } else { Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy)); } return Builder.CreateSExt(Op, Ty, Name); } static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef Ops, Value *ExtOp, Value *IndexOp, llvm::Type *ResTy, unsigned IntID, const char *Name) { SmallVector TblOps; if (ExtOp) TblOps.push_back(ExtOp); // Build a vector containing sequential number like (0, 1, 2, ..., 15) SmallVector Indices; llvm::VectorType *TblTy = cast(Ops[0]->getType()); for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) { Indices.push_back(2*i); Indices.push_back(2*i+1); } int PairPos = 0, End = Ops.size() - 1; while (PairPos < End) { TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], Ops[PairPos+1], Indices, Name)); PairPos += 2; } // If there's an odd number of 64-bit lookup table, fill the high 64-bit // of the 128-bit lookup table with zero. if (PairPos == End) { Value *ZeroTbl = ConstantAggregateZero::get(TblTy); TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], ZeroTbl, Indices, Name)); } Function *TblF; TblOps.push_back(IndexOp); TblF = CGF.CGM.getIntrinsic(IntID, ResTy); return CGF.EmitNeonCall(TblF, TblOps, Name); } Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) { unsigned Value; switch (BuiltinID) { default: return nullptr; case ARM::BI__builtin_arm_nop: Value = 0; break; case ARM::BI__builtin_arm_yield: case ARM::BI__yield: Value = 1; break; case ARM::BI__builtin_arm_wfe: case ARM::BI__wfe: Value = 2; break; case ARM::BI__builtin_arm_wfi: case ARM::BI__wfi: Value = 3; break; case ARM::BI__builtin_arm_sev: case ARM::BI__sev: Value = 4; break; case ARM::BI__builtin_arm_sevl: case ARM::BI__sevl: Value = 5; break; } return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint), llvm::ConstantInt::get(Int32Ty, Value)); } // Generates the IR for the read/write special register builtin, // ValueType is the type of the value that is to be written or read, // RegisterType is the type of the register being written to or read from. static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF, const CallExpr *E, llvm::Type *RegisterType, llvm::Type *ValueType, bool IsRead, StringRef SysReg = "") { // write and register intrinsics only support 32 and 64 bit operations. assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && "Unsupported size for register."); CodeGen::CGBuilderTy &Builder = CGF.Builder; CodeGen::CodeGenModule &CGM = CGF.CGM; LLVMContext &Context = CGM.getLLVMContext(); if (SysReg.empty()) { const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts(); SysReg = cast(SysRegStrExpr)->getString(); } llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) }; llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); llvm::Type *Types[] = { RegisterType }; bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32); assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"); if (IsRead) { llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); llvm::Value *Call = Builder.CreateCall(F, Metadata); if (MixedTypes) // Read into 64 bit register and then truncate result to 32 bit. return Builder.CreateTrunc(Call, ValueType); if (ValueType->isPointerTy()) // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*). return Builder.CreateIntToPtr(Call, ValueType); return Call; } llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1)); if (MixedTypes) { // Extend 32 bit write value to 64 bit to pass to write. ArgValue = Builder.CreateZExt(ArgValue, RegisterType); return Builder.CreateCall(F, { Metadata, ArgValue }); } if (ValueType->isPointerTy()) { // Have VoidPtrTy ArgValue but want to return an i32/i64. ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType); return Builder.CreateCall(F, { Metadata, ArgValue }); } return Builder.CreateCall(F, { Metadata, ArgValue }); } /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra /// argument that specifies the vector type. static bool HasExtraNeonArgument(unsigned BuiltinID) { switch (BuiltinID) { default: break; case NEON::BI__builtin_neon_vget_lane_i8: case NEON::BI__builtin_neon_vget_lane_i16: case NEON::BI__builtin_neon_vget_lane_i32: case NEON::BI__builtin_neon_vget_lane_i64: case NEON::BI__builtin_neon_vget_lane_f32: case NEON::BI__builtin_neon_vgetq_lane_i8: case NEON::BI__builtin_neon_vgetq_lane_i16: case NEON::BI__builtin_neon_vgetq_lane_i32: case NEON::BI__builtin_neon_vgetq_lane_i64: case NEON::BI__builtin_neon_vgetq_lane_f32: case NEON::BI__builtin_neon_vset_lane_i8: case NEON::BI__builtin_neon_vset_lane_i16: case NEON::BI__builtin_neon_vset_lane_i32: case NEON::BI__builtin_neon_vset_lane_i64: case NEON::BI__builtin_neon_vset_lane_f32: case NEON::BI__builtin_neon_vsetq_lane_i8: case NEON::BI__builtin_neon_vsetq_lane_i16: case NEON::BI__builtin_neon_vsetq_lane_i32: case NEON::BI__builtin_neon_vsetq_lane_i64: case NEON::BI__builtin_neon_vsetq_lane_f32: case NEON::BI__builtin_neon_vsha1h_u32: case NEON::BI__builtin_neon_vsha1cq_u32: case NEON::BI__builtin_neon_vsha1pq_u32: case NEON::BI__builtin_neon_vsha1mq_u32: case ARM::BI_MoveToCoprocessor: case ARM::BI_MoveToCoprocessor2: return false; } return true; } Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { if (auto Hint = GetValueForARMHint(BuiltinID)) return Hint; if (BuiltinID == ARM::BI__emit) { bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb; llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, /*Variadic=*/false); APSInt Value; if (!E->getArg(0)->EvaluateAsInt(Value, CGM.getContext())) llvm_unreachable("Sema will ensure that the parameter is constant"); uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue(); llvm::InlineAsm *Emit = IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "", /*SideEffects=*/true) : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "", /*SideEffects=*/true); return Builder.CreateCall(Emit); } if (BuiltinID == ARM::BI__builtin_arm_dbg) { Value *Option = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option); } if (BuiltinID == ARM::BI__builtin_arm_prefetch) { Value *Address = EmitScalarExpr(E->getArg(0)); Value *RW = EmitScalarExpr(E->getArg(1)); Value *IsData = EmitScalarExpr(E->getArg(2)); // Locality is not supported on ARM target Value *Locality = llvm::ConstantInt::get(Int32Ty, 3); Value *F = CGM.getIntrinsic(Intrinsic::prefetch); return Builder.CreateCall(F, {Address, RW, Locality, IsData}); } if (BuiltinID == ARM::BI__builtin_arm_rbit) { llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); } if (BuiltinID == ARM::BI__clear_cache) { assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); const FunctionDecl *FD = E->getDirectCallee(); Value *Ops[2]; for (unsigned i = 0; i < 2; i++) Ops[i] = EmitScalarExpr(E->getArg(i)); llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); llvm::FunctionType *FTy = cast(Ty); StringRef Name = FD->getName(); return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); } if (BuiltinID == ARM::BI__builtin_arm_mcrr || BuiltinID == ARM::BI__builtin_arm_mcrr2) { Function *F; switch (BuiltinID) { default: llvm_unreachable("unexpected builtin"); case ARM::BI__builtin_arm_mcrr: F = CGM.getIntrinsic(Intrinsic::arm_mcrr); break; case ARM::BI__builtin_arm_mcrr2: F = CGM.getIntrinsic(Intrinsic::arm_mcrr2); break; } // MCRR{2} instruction has 5 operands but // the intrinsic has 4 because Rt and Rt2 // are represented as a single unsigned 64 // bit integer in the intrinsic definition // but internally it's represented as 2 32 // bit integers. Value *Coproc = EmitScalarExpr(E->getArg(0)); Value *Opc1 = EmitScalarExpr(E->getArg(1)); Value *RtAndRt2 = EmitScalarExpr(E->getArg(2)); Value *CRm = EmitScalarExpr(E->getArg(3)); Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty); Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1); Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty); return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm}); } if (BuiltinID == ARM::BI__builtin_arm_mrrc || BuiltinID == ARM::BI__builtin_arm_mrrc2) { Function *F; switch (BuiltinID) { default: llvm_unreachable("unexpected builtin"); case ARM::BI__builtin_arm_mrrc: F = CGM.getIntrinsic(Intrinsic::arm_mrrc); break; case ARM::BI__builtin_arm_mrrc2: F = CGM.getIntrinsic(Intrinsic::arm_mrrc2); break; } Value *Coproc = EmitScalarExpr(E->getArg(0)); Value *Opc1 = EmitScalarExpr(E->getArg(1)); Value *CRm = EmitScalarExpr(E->getArg(2)); Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm}); // Returns an unsigned 64 bit integer, represented // as two 32 bit integers. Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1); Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0); Rt = Builder.CreateZExt(Rt, Int64Ty); Rt1 = Builder.CreateZExt(Rt1, Int64Ty); Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32); RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true); RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1); return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType())); } if (BuiltinID == ARM::BI__builtin_arm_ldrexd || ((BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex) && getContext().getTypeSize(E->getType()) == 64) || BuiltinID == ARM::BI__ldrexd) { Function *F; switch (BuiltinID) { default: llvm_unreachable("unexpected builtin"); case ARM::BI__builtin_arm_ldaex: F = CGM.getIntrinsic(Intrinsic::arm_ldaexd); break; case ARM::BI__builtin_arm_ldrexd: case ARM::BI__builtin_arm_ldrex: case ARM::BI__ldrexd: F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); break; } Value *LdPtr = EmitScalarExpr(E->getArg(0)); Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), "ldrexd"); Value *Val0 = Builder.CreateExtractValue(Val, 1); Value *Val1 = Builder.CreateExtractValue(Val, 0); Val0 = Builder.CreateZExt(Val0, Int64Ty); Val1 = Builder.CreateZExt(Val1, Int64Ty); Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); Val = Builder.CreateOr(Val, Val1); return Builder.CreateBitCast(Val, ConvertType(E->getType())); } if (BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex) { Value *LoadAddr = EmitScalarExpr(E->getArg(0)); QualType Ty = E->getType(); llvm::Type *RealResTy = ConvertType(Ty); llvm::Type *PtrTy = llvm::IntegerType::get( getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex, PtrTy); Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex"); if (RealResTy->isPointerTy()) return Builder.CreateIntToPtr(Val, RealResTy); else { llvm::Type *IntResTy = llvm::IntegerType::get( getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); Val = Builder.CreateTruncOrBitCast(Val, IntResTy); return Builder.CreateBitCast(Val, RealResTy); } } if (BuiltinID == ARM::BI__builtin_arm_strexd || ((BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == ARM::BI__builtin_arm_strex) && getContext().getTypeSize(E->getArg(0)->getType()) == 64)) { Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd); llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty); Address Tmp = CreateMemTemp(E->getArg(0)->getType()); Value *Val = EmitScalarExpr(E->getArg(0)); Builder.CreateStore(Val, Tmp); Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); Val = Builder.CreateLoad(LdPtr); Value *Arg0 = Builder.CreateExtractValue(Val, 0); Value *Arg1 = Builder.CreateExtractValue(Val, 1); Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd"); } if (BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex) { Value *StoreVal = EmitScalarExpr(E->getArg(0)); Value *StoreAddr = EmitScalarExpr(E->getArg(1)); QualType Ty = E->getArg(0)->getType(); llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty)); StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); if (StoreVal->getType()->isPointerTy()) StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty); else { llvm::Type *IntTy = llvm::IntegerType::get( getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); StoreVal = Builder.CreateBitCast(StoreVal, IntTy); StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty); } Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlex : Intrinsic::arm_strex, StoreAddr->getType()); return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex"); } switch (BuiltinID) { case ARM::BI__iso_volatile_load8: case ARM::BI__iso_volatile_load16: case ARM::BI__iso_volatile_load32: case ARM::BI__iso_volatile_load64: { Value *Ptr = EmitScalarExpr(E->getArg(0)); QualType ElTy = E->getArg(0)->getType()->getPointeeType(); CharUnits LoadSize = getContext().getTypeSizeInChars(ElTy); llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), LoadSize.getQuantity() * 8); Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); llvm::LoadInst *Load = Builder.CreateAlignedLoad(Ptr, LoadSize); Load->setVolatile(true); return Load; } case ARM::BI__iso_volatile_store8: case ARM::BI__iso_volatile_store16: case ARM::BI__iso_volatile_store32: case ARM::BI__iso_volatile_store64: { Value *Ptr = EmitScalarExpr(E->getArg(0)); Value *Value = EmitScalarExpr(E->getArg(1)); QualType ElTy = E->getArg(0)->getType()->getPointeeType(); CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), StoreSize.getQuantity() * 8); Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); llvm::StoreInst *Store = Builder.CreateAlignedStore(Value, Ptr, StoreSize); Store->setVolatile(true); return Store; } } if (BuiltinID == ARM::BI__builtin_arm_clrex) { Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex); return Builder.CreateCall(F); } // CRC32 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; switch (BuiltinID) { case ARM::BI__builtin_arm_crc32b: CRCIntrinsicID = Intrinsic::arm_crc32b; break; case ARM::BI__builtin_arm_crc32cb: CRCIntrinsicID = Intrinsic::arm_crc32cb; break; case ARM::BI__builtin_arm_crc32h: CRCIntrinsicID = Intrinsic::arm_crc32h; break; case ARM::BI__builtin_arm_crc32ch: CRCIntrinsicID = Intrinsic::arm_crc32ch; break; case ARM::BI__builtin_arm_crc32w: case ARM::BI__builtin_arm_crc32d: CRCIntrinsicID = Intrinsic::arm_crc32w; break; case ARM::BI__builtin_arm_crc32cw: case ARM::BI__builtin_arm_crc32cd: CRCIntrinsicID = Intrinsic::arm_crc32cw; break; } if (CRCIntrinsicID != Intrinsic::not_intrinsic) { Value *Arg0 = EmitScalarExpr(E->getArg(0)); Value *Arg1 = EmitScalarExpr(E->getArg(1)); // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w // intrinsics, hence we need different codegen for these cases. if (BuiltinID == ARM::BI__builtin_arm_crc32d || BuiltinID == ARM::BI__builtin_arm_crc32cd) { Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty); Value *Arg1b = Builder.CreateLShr(Arg1, C1); Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty); Function *F = CGM.getIntrinsic(CRCIntrinsicID); Value *Res = Builder.CreateCall(F, {Arg0, Arg1a}); return Builder.CreateCall(F, {Res, Arg1b}); } else { Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty); Function *F = CGM.getIntrinsic(CRCIntrinsicID); return Builder.CreateCall(F, {Arg0, Arg1}); } } if (BuiltinID == ARM::BI__builtin_arm_rsr || BuiltinID == ARM::BI__builtin_arm_rsr64 || BuiltinID == ARM::BI__builtin_arm_rsrp || BuiltinID == ARM::BI__builtin_arm_wsr || BuiltinID == ARM::BI__builtin_arm_wsr64 || BuiltinID == ARM::BI__builtin_arm_wsrp) { bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr || BuiltinID == ARM::BI__builtin_arm_rsr64 || BuiltinID == ARM::BI__builtin_arm_rsrp; bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp || BuiltinID == ARM::BI__builtin_arm_wsrp; bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 || BuiltinID == ARM::BI__builtin_arm_wsr64; llvm::Type *ValueType; llvm::Type *RegisterType; if (IsPointerBuiltin) { ValueType = VoidPtrTy; RegisterType = Int32Ty; } else if (Is64Bit) { ValueType = RegisterType = Int64Ty; } else { ValueType = RegisterType = Int32Ty; } return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead); } // Find out if any arguments are required to be integer constant // expressions. unsigned ICEArguments = 0; ASTContext::GetBuiltinTypeError Error; getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); assert(Error == ASTContext::GE_None && "Should not codegen an error"); auto getAlignmentValue32 = [&](Address addr) -> Value* { return Builder.getInt32(addr.getAlignment().getQuantity()); }; Address PtrOp0 = Address::invalid(); Address PtrOp1 = Address::invalid(); SmallVector Ops; bool HasExtraArg = HasExtraNeonArgument(BuiltinID); unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0); for (unsigned i = 0, e = NumArgs; i != e; i++) { if (i == 0) { switch (BuiltinID) { case NEON::BI__builtin_neon_vld1_v: case NEON::BI__builtin_neon_vld1q_v: case NEON::BI__builtin_neon_vld1q_lane_v: case NEON::BI__builtin_neon_vld1_lane_v: case NEON::BI__builtin_neon_vld1_dup_v: case NEON::BI__builtin_neon_vld1q_dup_v: case NEON::BI__builtin_neon_vst1_v: case NEON::BI__builtin_neon_vst1q_v: case NEON::BI__builtin_neon_vst1q_lane_v: case NEON::BI__builtin_neon_vst1_lane_v: case NEON::BI__builtin_neon_vst2_v: case NEON::BI__builtin_neon_vst2q_v: case NEON::BI__builtin_neon_vst2_lane_v: case NEON::BI__builtin_neon_vst2q_lane_v: case NEON::BI__builtin_neon_vst3_v: case NEON::BI__builtin_neon_vst3q_v: case NEON::BI__builtin_neon_vst3_lane_v: case NEON::BI__builtin_neon_vst3q_lane_v: case NEON::BI__builtin_neon_vst4_v: case NEON::BI__builtin_neon_vst4q_v: case NEON::BI__builtin_neon_vst4_lane_v: case NEON::BI__builtin_neon_vst4q_lane_v: // Get the alignment for the argument in addition to the value; // we'll use it later. PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); Ops.push_back(PtrOp0.getPointer()); continue; } } if (i == 1) { switch (BuiltinID) { case NEON::BI__builtin_neon_vld2_v: case NEON::BI__builtin_neon_vld2q_v: case NEON::BI__builtin_neon_vld3_v: case NEON::BI__builtin_neon_vld3q_v: case NEON::BI__builtin_neon_vld4_v: case NEON::BI__builtin_neon_vld4q_v: case NEON::BI__builtin_neon_vld2_lane_v: case NEON::BI__builtin_neon_vld2q_lane_v: case NEON::BI__builtin_neon_vld3_lane_v: case NEON::BI__builtin_neon_vld3q_lane_v: case NEON::BI__builtin_neon_vld4_lane_v: case NEON::BI__builtin_neon_vld4q_lane_v: case NEON::BI__builtin_neon_vld2_dup_v: case NEON::BI__builtin_neon_vld3_dup_v: case NEON::BI__builtin_neon_vld4_dup_v: // Get the alignment for the argument in addition to the value; // we'll use it later. PtrOp1 = EmitPointerWithAlignment(E->getArg(1)); Ops.push_back(PtrOp1.getPointer()); continue; } } if ((ICEArguments & (1 << i)) == 0) { Ops.push_back(EmitScalarExpr(E->getArg(i))); } else { // If this is required to be a constant, constant fold it so that we know // that the generated intrinsic gets a ConstantInt. llvm::APSInt Result; bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); } } switch (BuiltinID) { default: break; case NEON::BI__builtin_neon_vget_lane_i8: case NEON::BI__builtin_neon_vget_lane_i16: case NEON::BI__builtin_neon_vget_lane_i32: case NEON::BI__builtin_neon_vget_lane_i64: case NEON::BI__builtin_neon_vget_lane_f32: case NEON::BI__builtin_neon_vgetq_lane_i8: case NEON::BI__builtin_neon_vgetq_lane_i16: case NEON::BI__builtin_neon_vgetq_lane_i32: case NEON::BI__builtin_neon_vgetq_lane_i64: case NEON::BI__builtin_neon_vgetq_lane_f32: return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane"); case NEON::BI__builtin_neon_vset_lane_i8: case NEON::BI__builtin_neon_vset_lane_i16: case NEON::BI__builtin_neon_vset_lane_i32: case NEON::BI__builtin_neon_vset_lane_i64: case NEON::BI__builtin_neon_vset_lane_f32: case NEON::BI__builtin_neon_vsetq_lane_i8: case NEON::BI__builtin_neon_vsetq_lane_i16: case NEON::BI__builtin_neon_vsetq_lane_i32: case NEON::BI__builtin_neon_vsetq_lane_i64: case NEON::BI__builtin_neon_vsetq_lane_f32: return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); case NEON::BI__builtin_neon_vsha1h_u32: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops, "vsha1h"); case NEON::BI__builtin_neon_vsha1cq_u32: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops, "vsha1h"); case NEON::BI__builtin_neon_vsha1pq_u32: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops, "vsha1h"); case NEON::BI__builtin_neon_vsha1mq_u32: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops, "vsha1h"); // The ARM _MoveToCoprocessor builtins put the input register value as // the first argument, but the LLVM intrinsic expects it as the third one. case ARM::BI_MoveToCoprocessor: case ARM::BI_MoveToCoprocessor2: { Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ? Intrinsic::arm_mcr : Intrinsic::arm_mcr2); return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0], Ops[3], Ops[4], Ops[5]}); } case ARM::BI_BitScanForward: case ARM::BI_BitScanForward64: return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); case ARM::BI_BitScanReverse: case ARM::BI_BitScanReverse64: return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); case ARM::BI_InterlockedAnd64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); case ARM::BI_InterlockedExchange64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); case ARM::BI_InterlockedExchangeAdd64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); case ARM::BI_InterlockedExchangeSub64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); case ARM::BI_InterlockedOr64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); case ARM::BI_InterlockedXor64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); case ARM::BI_InterlockedDecrement64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); case ARM::BI_InterlockedIncrement64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); } // Get the last argument, which specifies the vector type. assert(HasExtraArg); llvm::APSInt Result; const Expr *Arg = E->getArg(E->getNumArgs()-1); if (!Arg->isIntegerConstantExpr(Result, getContext())) return nullptr; if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f || BuiltinID == ARM::BI__builtin_arm_vcvtr_d) { // Determine the overloaded type of this builtin. llvm::Type *Ty; if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f) Ty = FloatTy; else Ty = DoubleTy; // Determine whether this is an unsigned conversion or not. bool usgn = Result.getZExtValue() == 1; unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; // Call the appropriate intrinsic. Function *F = CGM.getIntrinsic(Int, Ty); return Builder.CreateCall(F, Ops, "vcvtr"); } // Determine the type of this overloaded NEON intrinsic. NeonTypeFlags Type(Result.getZExtValue()); bool usgn = Type.isUnsigned(); bool rightShift = false; llvm::VectorType *VTy = GetNeonType(this, Type); llvm::Type *Ty = VTy; if (!Ty) return nullptr; // Many NEON builtins have identical semantics and uses in ARM and // AArch64. Emit these in a single function. auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap); const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap( IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted); if (Builtin) return EmitCommonNeonBuiltinExpr( Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1); unsigned Int; switch (BuiltinID) { default: return nullptr; case NEON::BI__builtin_neon_vld1q_lane_v: // Handle 64-bit integer elements as a special case. Use shuffles of // one-element vectors to avoid poor code for i64 in the backend. if (VTy->getElementType()->isIntegerTy(64)) { // Extract the other lane. Ops[1] = Builder.CreateBitCast(Ops[1], Ty); uint32_t Lane = cast(Ops[2])->getZExtValue(); Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); // Load the value as a one-element vector. Ty = llvm::VectorType::get(VTy->getElementType(), 1); llvm::Type *Tys[] = {Ty, Int8PtrTy}; Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys); Value *Align = getAlignmentValue32(PtrOp0); Value *Ld = Builder.CreateCall(F, {Ops[0], Align}); // Combine them. uint32_t Indices[] = {1 - Lane, Lane}; SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices); return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane"); } // fall through case NEON::BI__builtin_neon_vld1_lane_v: { Ops[1] = Builder.CreateBitCast(Ops[1], Ty); PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType()); Value *Ld = Builder.CreateLoad(PtrOp0); return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); } case NEON::BI__builtin_neon_vld2_dup_v: case NEON::BI__builtin_neon_vld3_dup_v: case NEON::BI__builtin_neon_vld4_dup_v: { // Handle 64-bit elements as a special-case. There is no "dup" needed. if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) { switch (BuiltinID) { case NEON::BI__builtin_neon_vld2_dup_v: Int = Intrinsic::arm_neon_vld2; break; case NEON::BI__builtin_neon_vld3_dup_v: Int = Intrinsic::arm_neon_vld3; break; case NEON::BI__builtin_neon_vld4_dup_v: Int = Intrinsic::arm_neon_vld4; break; default: llvm_unreachable("unknown vld_dup intrinsic?"); } llvm::Type *Tys[] = {Ty, Int8PtrTy}; Function *F = CGM.getIntrinsic(Int, Tys); llvm::Value *Align = getAlignmentValue32(PtrOp1); Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, "vld_dup"); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } switch (BuiltinID) { case NEON::BI__builtin_neon_vld2_dup_v: Int = Intrinsic::arm_neon_vld2lane; break; case NEON::BI__builtin_neon_vld3_dup_v: Int = Intrinsic::arm_neon_vld3lane; break; case NEON::BI__builtin_neon_vld4_dup_v: Int = Intrinsic::arm_neon_vld4lane; break; default: llvm_unreachable("unknown vld_dup intrinsic?"); } llvm::Type *Tys[] = {Ty, Int8PtrTy}; Function *F = CGM.getIntrinsic(Int, Tys); llvm::StructType *STy = cast(F->getReturnType()); SmallVector Args; Args.push_back(Ops[1]); Args.append(STy->getNumElements(), UndefValue::get(Ty)); llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); Args.push_back(CI); Args.push_back(getAlignmentValue32(PtrOp1)); Ops[1] = Builder.CreateCall(F, Args, "vld_dup"); // splat lane 0 to all elts in each vector of the result. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { Value *Val = Builder.CreateExtractValue(Ops[1], i); Value *Elt = Builder.CreateBitCast(Val, Ty); Elt = EmitNeonSplat(Elt, CI); Elt = Builder.CreateBitCast(Elt, Val->getType()); Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i); } Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vqrshrn_n_v: Int = usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", 1, true); case NEON::BI__builtin_neon_vqrshrun_n_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), Ops, "vqrshrun_n", 1, true); case NEON::BI__builtin_neon_vqshrn_n_v: Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", 1, true); case NEON::BI__builtin_neon_vqshrun_n_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), Ops, "vqshrun_n", 1, true); case NEON::BI__builtin_neon_vrecpe_v: case NEON::BI__builtin_neon_vrecpeq_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), Ops, "vrecpe"); case NEON::BI__builtin_neon_vrshrn_n_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), Ops, "vrshrn_n", 1, true); case NEON::BI__builtin_neon_vrsra_n_v: case NEON::BI__builtin_neon_vrsraq_n_v: Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]}); return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); case NEON::BI__builtin_neon_vsri_n_v: case NEON::BI__builtin_neon_vsriq_n_v: rightShift = true; LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vsli_n_v: case NEON::BI__builtin_neon_vsliq_n_v: Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), Ops, "vsli_n"); case NEON::BI__builtin_neon_vsra_n_v: case NEON::BI__builtin_neon_vsraq_n_v: Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); return Builder.CreateAdd(Ops[0], Ops[1]); case NEON::BI__builtin_neon_vst1q_lane_v: // Handle 64-bit integer elements as a special case. Use a shuffle to get // a one-element vector and avoid poor code for i64 in the backend. if (VTy->getElementType()->isIntegerTy(64)) { Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Value *SV = llvm::ConstantVector::get(cast(Ops[2])); Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); Ops[2] = getAlignmentValue32(PtrOp0); llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()}; return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Tys), Ops); } // fall through case NEON::BI__builtin_neon_vst1_lane_v: { Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty)); return St; } case NEON::BI__builtin_neon_vtbl1_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), Ops, "vtbl1"); case NEON::BI__builtin_neon_vtbl2_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), Ops, "vtbl2"); case NEON::BI__builtin_neon_vtbl3_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), Ops, "vtbl3"); case NEON::BI__builtin_neon_vtbl4_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), Ops, "vtbl4"); case NEON::BI__builtin_neon_vtbx1_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), Ops, "vtbx1"); case NEON::BI__builtin_neon_vtbx2_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), Ops, "vtbx2"); case NEON::BI__builtin_neon_vtbx3_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), Ops, "vtbx3"); case NEON::BI__builtin_neon_vtbx4_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), Ops, "vtbx4"); } } static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID, const CallExpr *E, SmallVectorImpl &Ops) { unsigned int Int = 0; const char *s = nullptr; switch (BuiltinID) { default: return nullptr; case NEON::BI__builtin_neon_vtbl1_v: case NEON::BI__builtin_neon_vqtbl1_v: case NEON::BI__builtin_neon_vqtbl1q_v: case NEON::BI__builtin_neon_vtbl2_v: case NEON::BI__builtin_neon_vqtbl2_v: case NEON::BI__builtin_neon_vqtbl2q_v: case NEON::BI__builtin_neon_vtbl3_v: case NEON::BI__builtin_neon_vqtbl3_v: case NEON::BI__builtin_neon_vqtbl3q_v: case NEON::BI__builtin_neon_vtbl4_v: case NEON::BI__builtin_neon_vqtbl4_v: case NEON::BI__builtin_neon_vqtbl4q_v: break; case NEON::BI__builtin_neon_vtbx1_v: case NEON::BI__builtin_neon_vqtbx1_v: case NEON::BI__builtin_neon_vqtbx1q_v: case NEON::BI__builtin_neon_vtbx2_v: case NEON::BI__builtin_neon_vqtbx2_v: case NEON::BI__builtin_neon_vqtbx2q_v: case NEON::BI__builtin_neon_vtbx3_v: case NEON::BI__builtin_neon_vqtbx3_v: case NEON::BI__builtin_neon_vqtbx3q_v: case NEON::BI__builtin_neon_vtbx4_v: case NEON::BI__builtin_neon_vqtbx4_v: case NEON::BI__builtin_neon_vqtbx4q_v: break; } assert(E->getNumArgs() >= 3); // Get the last argument, which specifies the vector type. llvm::APSInt Result; const Expr *Arg = E->getArg(E->getNumArgs() - 1); if (!Arg->isIntegerConstantExpr(Result, CGF.getContext())) return nullptr; // Determine the type of this overloaded NEON intrinsic. NeonTypeFlags Type(Result.getZExtValue()); llvm::VectorType *Ty = GetNeonType(&CGF, Type); if (!Ty) return nullptr; CodeGen::CGBuilderTy &Builder = CGF.Builder; // AArch64 scalar builtins are not overloaded, they do not have an extra // argument that specifies the vector type, need to handle each case. switch (BuiltinID) { case NEON::BI__builtin_neon_vtbl1_v: { return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr, Ops[1], Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); } case NEON::BI__builtin_neon_vtbl2_v: { return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr, Ops[2], Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); } case NEON::BI__builtin_neon_vtbl3_v: { return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr, Ops[3], Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); } case NEON::BI__builtin_neon_vtbl4_v: { return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr, Ops[4], Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); } case NEON::BI__builtin_neon_vtbx1_v: { Value *TblRes = packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2], Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); llvm::Constant *EightV = ConstantInt::get(Ty, 8); Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV); CmpRes = Builder.CreateSExt(CmpRes, Ty); Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); } case NEON::BI__builtin_neon_vtbx2_v: { return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0], Ops[3], Ty, Intrinsic::aarch64_neon_tbx1, "vtbx1"); } case NEON::BI__builtin_neon_vtbx3_v: { Value *TblRes = packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4], Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24); Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4], TwentyFourV); CmpRes = Builder.CreateSExt(CmpRes, Ty); Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); } case NEON::BI__builtin_neon_vtbx4_v: { return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0], Ops[5], Ty, Intrinsic::aarch64_neon_tbx2, "vtbx2"); } case NEON::BI__builtin_neon_vqtbl1_v: case NEON::BI__builtin_neon_vqtbl1q_v: Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break; case NEON::BI__builtin_neon_vqtbl2_v: case NEON::BI__builtin_neon_vqtbl2q_v: { Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break; case NEON::BI__builtin_neon_vqtbl3_v: case NEON::BI__builtin_neon_vqtbl3q_v: Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break; case NEON::BI__builtin_neon_vqtbl4_v: case NEON::BI__builtin_neon_vqtbl4q_v: Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break; case NEON::BI__builtin_neon_vqtbx1_v: case NEON::BI__builtin_neon_vqtbx1q_v: Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break; case NEON::BI__builtin_neon_vqtbx2_v: case NEON::BI__builtin_neon_vqtbx2q_v: Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break; case NEON::BI__builtin_neon_vqtbx3_v: case NEON::BI__builtin_neon_vqtbx3q_v: Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break; case NEON::BI__builtin_neon_vqtbx4_v: case NEON::BI__builtin_neon_vqtbx4q_v: Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break; } } if (!Int) return nullptr; Function *F = CGF.CGM.getIntrinsic(Int, Ty); return CGF.EmitNeonCall(F, Ops, s); } Value *CodeGenFunction::vectorWrapScalar16(Value *Op) { llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4); Op = Builder.CreateBitCast(Op, Int16Ty); Value *V = UndefValue::get(VTy); llvm::Constant *CI = ConstantInt::get(SizeTy, 0); Op = Builder.CreateInsertElement(V, Op, CI); return Op; } Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E) { unsigned HintID = static_cast(-1); switch (BuiltinID) { default: break; case AArch64::BI__builtin_arm_nop: HintID = 0; break; case AArch64::BI__builtin_arm_yield: HintID = 1; break; case AArch64::BI__builtin_arm_wfe: HintID = 2; break; case AArch64::BI__builtin_arm_wfi: HintID = 3; break; case AArch64::BI__builtin_arm_sev: HintID = 4; break; case AArch64::BI__builtin_arm_sevl: HintID = 5; break; } if (HintID != static_cast(-1)) { Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint); return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID)); } if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { Value *Address = EmitScalarExpr(E->getArg(0)); Value *RW = EmitScalarExpr(E->getArg(1)); Value *CacheLevel = EmitScalarExpr(E->getArg(2)); Value *RetentionPolicy = EmitScalarExpr(E->getArg(3)); Value *IsData = EmitScalarExpr(E->getArg(4)); Value *Locality = nullptr; if (cast(RetentionPolicy)->isZero()) { // Temporal fetch, needs to convert cache level to locality. Locality = llvm::ConstantInt::get(Int32Ty, -cast(CacheLevel)->getValue() + 3); } else { // Streaming fetch. Locality = llvm::ConstantInt::get(Int32Ty, 0); } // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify // PLDL3STRM or PLDL2STRM. Value *F = CGM.getIntrinsic(Intrinsic::prefetch); return Builder.CreateCall(F, {Address, RW, Locality, IsData}); } if (BuiltinID == AArch64::BI__builtin_arm_rbit) { assert((getContext().getTypeSize(E->getType()) == 32) && "rbit of unusual size!"); llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); } if (BuiltinID == AArch64::BI__builtin_arm_rbit64) { assert((getContext().getTypeSize(E->getType()) == 64) && "rbit of unusual size!"); llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); } if (BuiltinID == AArch64::BI__clear_cache) { assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); const FunctionDecl *FD = E->getDirectCallee(); Value *Ops[2]; for (unsigned i = 0; i < 2; i++) Ops[i] = EmitScalarExpr(E->getArg(i)); llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); llvm::FunctionType *FTy = cast(Ty); StringRef Name = FD->getName(); return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); } if ((BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex) && getContext().getTypeSize(E->getType()) == 128) { Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp); Value *LdPtr = EmitScalarExpr(E->getArg(0)); Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), "ldxp"); Value *Val0 = Builder.CreateExtractValue(Val, 1); Value *Val1 = Builder.CreateExtractValue(Val, 0); llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); Val0 = Builder.CreateZExt(Val0, Int128Ty); Val1 = Builder.CreateZExt(Val1, Int128Ty); Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64); Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); Val = Builder.CreateOr(Val, Val1); return Builder.CreateBitCast(Val, ConvertType(E->getType())); } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex) { Value *LoadAddr = EmitScalarExpr(E->getArg(0)); QualType Ty = E->getType(); llvm::Type *RealResTy = ConvertType(Ty); llvm::Type *PtrTy = llvm::IntegerType::get( getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr, PtrTy); Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr"); if (RealResTy->isPointerTy()) return Builder.CreateIntToPtr(Val, RealResTy); llvm::Type *IntResTy = llvm::IntegerType::get( getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); Val = Builder.CreateTruncOrBitCast(Val, IntResTy); return Builder.CreateBitCast(Val, RealResTy); } if ((BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && getContext().getTypeSize(E->getArg(0)->getType()) == 128) { Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp); llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty); Address Tmp = CreateMemTemp(E->getArg(0)->getType()); EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true); Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy)); llvm::Value *Val = Builder.CreateLoad(Tmp); Value *Arg0 = Builder.CreateExtractValue(Val, 0); Value *Arg1 = Builder.CreateExtractValue(Val, 1); Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp"); } if (BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) { Value *StoreVal = EmitScalarExpr(E->getArg(0)); Value *StoreAddr = EmitScalarExpr(E->getArg(1)); QualType Ty = E->getArg(0)->getType(); llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty)); StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); if (StoreVal->getType()->isPointerTy()) StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty); else { llvm::Type *IntTy = llvm::IntegerType::get( getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); StoreVal = Builder.CreateBitCast(StoreVal, IntTy); StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty); } Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr, StoreAddr->getType()); return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr"); } if (BuiltinID == AArch64::BI__builtin_arm_clrex) { Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex); return Builder.CreateCall(F); } // CRC32 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; switch (BuiltinID) { case AArch64::BI__builtin_arm_crc32b: CRCIntrinsicID = Intrinsic::aarch64_crc32b; break; case AArch64::BI__builtin_arm_crc32cb: CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break; case AArch64::BI__builtin_arm_crc32h: CRCIntrinsicID = Intrinsic::aarch64_crc32h; break; case AArch64::BI__builtin_arm_crc32ch: CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break; case AArch64::BI__builtin_arm_crc32w: CRCIntrinsicID = Intrinsic::aarch64_crc32w; break; case AArch64::BI__builtin_arm_crc32cw: CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break; case AArch64::BI__builtin_arm_crc32d: CRCIntrinsicID = Intrinsic::aarch64_crc32x; break; case AArch64::BI__builtin_arm_crc32cd: CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break; } if (CRCIntrinsicID != Intrinsic::not_intrinsic) { Value *Arg0 = EmitScalarExpr(E->getArg(0)); Value *Arg1 = EmitScalarExpr(E->getArg(1)); Function *F = CGM.getIntrinsic(CRCIntrinsicID); llvm::Type *DataTy = F->getFunctionType()->getParamType(1); Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy); return Builder.CreateCall(F, {Arg0, Arg1}); } if (BuiltinID == AArch64::BI__builtin_arm_rsr || BuiltinID == AArch64::BI__builtin_arm_rsr64 || BuiltinID == AArch64::BI__builtin_arm_rsrp || BuiltinID == AArch64::BI__builtin_arm_wsr || BuiltinID == AArch64::BI__builtin_arm_wsr64 || BuiltinID == AArch64::BI__builtin_arm_wsrp) { bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr || BuiltinID == AArch64::BI__builtin_arm_rsr64 || BuiltinID == AArch64::BI__builtin_arm_rsrp; bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp || BuiltinID == AArch64::BI__builtin_arm_wsrp; bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr && BuiltinID != AArch64::BI__builtin_arm_wsr; llvm::Type *ValueType; llvm::Type *RegisterType = Int64Ty; if (IsPointerBuiltin) { ValueType = VoidPtrTy; } else if (Is64Bit) { ValueType = Int64Ty; } else { ValueType = Int32Ty; } return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead); } // Find out if any arguments are required to be integer constant // expressions. unsigned ICEArguments = 0; ASTContext::GetBuiltinTypeError Error; getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); assert(Error == ASTContext::GE_None && "Should not codegen an error"); llvm::SmallVector Ops; for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) { if ((ICEArguments & (1 << i)) == 0) { Ops.push_back(EmitScalarExpr(E->getArg(i))); } else { // If this is required to be a constant, constant fold it so that we know // that the generated intrinsic gets a ConstantInt. llvm::APSInt Result; bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); } } auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap); const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap( SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted); if (Builtin) { Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1))); Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E); assert(Result && "SISD intrinsic should have been handled"); return Result; } llvm::APSInt Result; const Expr *Arg = E->getArg(E->getNumArgs()-1); NeonTypeFlags Type(0); if (Arg->isIntegerConstantExpr(Result, getContext())) // Determine the type of this overloaded NEON intrinsic. Type = NeonTypeFlags(Result.getZExtValue()); bool usgn = Type.isUnsigned(); bool quad = Type.isQuad(); // Handle non-overloaded intrinsics first. switch (BuiltinID) { default: break; case NEON::BI__builtin_neon_vldrq_p128: { llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0); Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy); return Builder.CreateAlignedLoad(Int128Ty, Ptr, CharUnits::fromQuantity(16)); } case NEON::BI__builtin_neon_vstrq_p128: { llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128); Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy); return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr); } case NEON::BI__builtin_neon_vcvts_u32_f32: case NEON::BI__builtin_neon_vcvtd_u64_f64: usgn = true; // FALL THROUGH case NEON::BI__builtin_neon_vcvts_s32_f32: case NEON::BI__builtin_neon_vcvtd_s64_f64: { Ops.push_back(EmitScalarExpr(E->getArg(0))); bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; Ops[0] = Builder.CreateBitCast(Ops[0], FTy); if (usgn) return Builder.CreateFPToUI(Ops[0], InTy); return Builder.CreateFPToSI(Ops[0], InTy); } case NEON::BI__builtin_neon_vcvts_f32_u32: case NEON::BI__builtin_neon_vcvtd_f64_u64: usgn = true; // FALL THROUGH case NEON::BI__builtin_neon_vcvts_f32_s32: case NEON::BI__builtin_neon_vcvtd_f64_s64: { Ops.push_back(EmitScalarExpr(E->getArg(0))); bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; Ops[0] = Builder.CreateBitCast(Ops[0], InTy); if (usgn) return Builder.CreateUIToFP(Ops[0], FTy); return Builder.CreateSIToFP(Ops[0], FTy); } case NEON::BI__builtin_neon_vpaddd_s64: { llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2); Value *Vec = EmitScalarExpr(E->getArg(0)); // The vector is v2f64, so make sure it's bitcast to that. Vec = Builder.CreateBitCast(Vec, Ty, "v2i64"); llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); // Pairwise addition of a v2f64 into a scalar f64. return Builder.CreateAdd(Op0, Op1, "vpaddd"); } case NEON::BI__builtin_neon_vpaddd_f64: { llvm::Type *Ty = llvm::VectorType::get(DoubleTy, 2); Value *Vec = EmitScalarExpr(E->getArg(0)); // The vector is v2f64, so make sure it's bitcast to that. Vec = Builder.CreateBitCast(Vec, Ty, "v2f64"); llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); // Pairwise addition of a v2f64 into a scalar f64. return Builder.CreateFAdd(Op0, Op1, "vpaddd"); } case NEON::BI__builtin_neon_vpadds_f32: { llvm::Type *Ty = llvm::VectorType::get(FloatTy, 2); Value *Vec = EmitScalarExpr(E->getArg(0)); // The vector is v2f32, so make sure it's bitcast to that. Vec = Builder.CreateBitCast(Vec, Ty, "v2f32"); llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); // Pairwise addition of a v2f32 into a scalar f32. return Builder.CreateFAdd(Op0, Op1, "vpaddd"); } case NEON::BI__builtin_neon_vceqzd_s64: case NEON::BI__builtin_neon_vceqzd_f64: case NEON::BI__builtin_neon_vceqzs_f32: Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitAArch64CompareBuiltinExpr( Ops[0], ConvertType(E->getCallReturnType(getContext())), ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); case NEON::BI__builtin_neon_vcgezd_s64: case NEON::BI__builtin_neon_vcgezd_f64: case NEON::BI__builtin_neon_vcgezs_f32: Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitAArch64CompareBuiltinExpr( Ops[0], ConvertType(E->getCallReturnType(getContext())), ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); case NEON::BI__builtin_neon_vclezd_s64: case NEON::BI__builtin_neon_vclezd_f64: case NEON::BI__builtin_neon_vclezs_f32: Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitAArch64CompareBuiltinExpr( Ops[0], ConvertType(E->getCallReturnType(getContext())), ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); case NEON::BI__builtin_neon_vcgtzd_s64: case NEON::BI__builtin_neon_vcgtzd_f64: case NEON::BI__builtin_neon_vcgtzs_f32: Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitAArch64CompareBuiltinExpr( Ops[0], ConvertType(E->getCallReturnType(getContext())), ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); case NEON::BI__builtin_neon_vcltzd_s64: case NEON::BI__builtin_neon_vcltzd_f64: case NEON::BI__builtin_neon_vcltzs_f32: Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitAArch64CompareBuiltinExpr( Ops[0], ConvertType(E->getCallReturnType(getContext())), ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); case NEON::BI__builtin_neon_vceqzd_u64: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); Ops[0] = Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty)); return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd"); } case NEON::BI__builtin_neon_vceqd_f64: case NEON::BI__builtin_neon_vcled_f64: case NEON::BI__builtin_neon_vcltd_f64: case NEON::BI__builtin_neon_vcged_f64: case NEON::BI__builtin_neon_vcgtd_f64: { llvm::CmpInst::Predicate P; switch (BuiltinID) { default: llvm_unreachable("missing builtin ID in switch!"); case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break; case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break; case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break; case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break; case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break; } Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd"); } case NEON::BI__builtin_neon_vceqs_f32: case NEON::BI__builtin_neon_vcles_f32: case NEON::BI__builtin_neon_vclts_f32: case NEON::BI__builtin_neon_vcges_f32: case NEON::BI__builtin_neon_vcgts_f32: { llvm::CmpInst::Predicate P; switch (BuiltinID) { default: llvm_unreachable("missing builtin ID in switch!"); case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break; case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break; case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break; case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break; case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break; } Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy); Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd"); } case NEON::BI__builtin_neon_vceqd_s64: case NEON::BI__builtin_neon_vceqd_u64: case NEON::BI__builtin_neon_vcgtd_s64: case NEON::BI__builtin_neon_vcgtd_u64: case NEON::BI__builtin_neon_vcltd_s64: case NEON::BI__builtin_neon_vcltd_u64: case NEON::BI__builtin_neon_vcged_u64: case NEON::BI__builtin_neon_vcged_s64: case NEON::BI__builtin_neon_vcled_u64: case NEON::BI__builtin_neon_vcled_s64: { llvm::CmpInst::Predicate P; switch (BuiltinID) { default: llvm_unreachable("missing builtin ID in switch!"); case NEON::BI__builtin_neon_vceqd_s64: case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break; case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break; case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break; case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break; case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break; case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break; case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break; case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break; case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break; } Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]); return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd"); } case NEON::BI__builtin_neon_vtstd_s64: case NEON::BI__builtin_neon_vtstd_u64: { Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], llvm::Constant::getNullValue(Int64Ty)); return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd"); } case NEON::BI__builtin_neon_vset_lane_i8: case NEON::BI__builtin_neon_vset_lane_i16: case NEON::BI__builtin_neon_vset_lane_i32: case NEON::BI__builtin_neon_vset_lane_i64: case NEON::BI__builtin_neon_vset_lane_f32: case NEON::BI__builtin_neon_vsetq_lane_i8: case NEON::BI__builtin_neon_vsetq_lane_i16: case NEON::BI__builtin_neon_vsetq_lane_i32: case NEON::BI__builtin_neon_vsetq_lane_i64: case NEON::BI__builtin_neon_vsetq_lane_f32: Ops.push_back(EmitScalarExpr(E->getArg(2))); return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); case NEON::BI__builtin_neon_vset_lane_f64: // The vector type needs a cast for the v1f64 variant. Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(DoubleTy, 1)); Ops.push_back(EmitScalarExpr(E->getArg(2))); return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); case NEON::BI__builtin_neon_vsetq_lane_f64: // The vector type needs a cast for the v2f64 variant. Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(DoubleTy, 2)); Ops.push_back(EmitScalarExpr(E->getArg(2))); return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); case NEON::BI__builtin_neon_vget_lane_i8: case NEON::BI__builtin_neon_vdupb_lane_i8: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); case NEON::BI__builtin_neon_vgetq_lane_i8: case NEON::BI__builtin_neon_vdupb_laneq_i8: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); case NEON::BI__builtin_neon_vget_lane_i16: case NEON::BI__builtin_neon_vduph_lane_i16: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); case NEON::BI__builtin_neon_vgetq_lane_i16: case NEON::BI__builtin_neon_vduph_laneq_i16: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); case NEON::BI__builtin_neon_vget_lane_i32: case NEON::BI__builtin_neon_vdups_lane_i32: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); case NEON::BI__builtin_neon_vdups_lane_f32: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(FloatTy, 2)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vdups_lane"); case NEON::BI__builtin_neon_vgetq_lane_i32: case NEON::BI__builtin_neon_vdups_laneq_i32: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); case NEON::BI__builtin_neon_vget_lane_i64: case NEON::BI__builtin_neon_vdupd_lane_i64: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); case NEON::BI__builtin_neon_vdupd_lane_f64: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(DoubleTy, 1)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vdupd_lane"); case NEON::BI__builtin_neon_vgetq_lane_i64: case NEON::BI__builtin_neon_vdupd_laneq_i64: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); case NEON::BI__builtin_neon_vget_lane_f32: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(FloatTy, 2)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); case NEON::BI__builtin_neon_vget_lane_f64: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(DoubleTy, 1)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); case NEON::BI__builtin_neon_vgetq_lane_f32: case NEON::BI__builtin_neon_vdups_laneq_f32: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(FloatTy, 4)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); case NEON::BI__builtin_neon_vgetq_lane_f64: case NEON::BI__builtin_neon_vdupd_laneq_f64: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(DoubleTy, 2)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); case NEON::BI__builtin_neon_vaddd_s64: case NEON::BI__builtin_neon_vaddd_u64: return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd"); case NEON::BI__builtin_neon_vsubd_s64: case NEON::BI__builtin_neon_vsubd_u64: return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd"); case NEON::BI__builtin_neon_vqdmlalh_s16: case NEON::BI__builtin_neon_vqdmlslh_s16: { SmallVector ProductOps; ProductOps.push_back(vectorWrapScalar16(Ops[1])); ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2)))); llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4); Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), ProductOps, "vqdmlXl"); Constant *CI = ConstantInt::get(SizeTy, 0); Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16 ? Intrinsic::aarch64_neon_sqadd : Intrinsic::aarch64_neon_sqsub; return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl"); } case NEON::BI__builtin_neon_vqshlud_n_s64: { Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty), Ops, "vqshlu_n"); } case NEON::BI__builtin_neon_vqshld_n_u64: case NEON::BI__builtin_neon_vqshld_n_s64: { unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64 ? Intrinsic::aarch64_neon_uqshl : Intrinsic::aarch64_neon_sqshl; Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n"); } case NEON::BI__builtin_neon_vrshrd_n_u64: case NEON::BI__builtin_neon_vrshrd_n_s64: { unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64 ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; Ops.push_back(EmitScalarExpr(E->getArg(1))); int SV = cast(Ops[1])->getSExtValue(); Ops[1] = ConstantInt::get(Int64Ty, -SV); return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n"); } case NEON::BI__builtin_neon_vrsrad_n_u64: case NEON::BI__builtin_neon_vrsrad_n_s64: { unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64 ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2)))); Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty), {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)}); return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty)); } case NEON::BI__builtin_neon_vshld_n_s64: case NEON::BI__builtin_neon_vshld_n_u64: { llvm::ConstantInt *Amt = cast(EmitScalarExpr(E->getArg(1))); return Builder.CreateShl( Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n"); } case NEON::BI__builtin_neon_vshrd_n_s64: { llvm::ConstantInt *Amt = cast(EmitScalarExpr(E->getArg(1))); return Builder.CreateAShr( Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast(63), Amt->getZExtValue())), "shrd_n"); } case NEON::BI__builtin_neon_vshrd_n_u64: { llvm::ConstantInt *Amt = cast(EmitScalarExpr(E->getArg(1))); uint64_t ShiftAmt = Amt->getZExtValue(); // Right-shifting an unsigned value by its size yields 0. if (ShiftAmt == 64) return ConstantInt::get(Int64Ty, 0); return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt), "shrd_n"); } case NEON::BI__builtin_neon_vsrad_n_s64: { llvm::ConstantInt *Amt = cast(EmitScalarExpr(E->getArg(2))); Ops[1] = Builder.CreateAShr( Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast(63), Amt->getZExtValue())), "shrd_n"); return Builder.CreateAdd(Ops[0], Ops[1]); } case NEON::BI__builtin_neon_vsrad_n_u64: { llvm::ConstantInt *Amt = cast(EmitScalarExpr(E->getArg(2))); uint64_t ShiftAmt = Amt->getZExtValue(); // Right-shifting an unsigned value by its size yields 0. // As Op + 0 = Op, return Ops[0] directly. if (ShiftAmt == 64) return Ops[0]; Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt), "shrd_n"); return Builder.CreateAdd(Ops[0], Ops[1]); } case NEON::BI__builtin_neon_vqdmlalh_lane_s16: case NEON::BI__builtin_neon_vqdmlalh_laneq_s16: case NEON::BI__builtin_neon_vqdmlslh_lane_s16: case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: { Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), "lane"); SmallVector ProductOps; ProductOps.push_back(vectorWrapScalar16(Ops[1])); ProductOps.push_back(vectorWrapScalar16(Ops[2])); llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4); Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), ProductOps, "vqdmlXl"); Constant *CI = ConstantInt::get(SizeTy, 0); Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); Ops.pop_back(); unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 || BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16) ? Intrinsic::aarch64_neon_sqadd : Intrinsic::aarch64_neon_sqsub; return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl"); } case NEON::BI__builtin_neon_vqdmlals_s32: case NEON::BI__builtin_neon_vqdmlsls_s32: { SmallVector ProductOps; ProductOps.push_back(Ops[1]); ProductOps.push_back(EmitScalarExpr(E->getArg(2))); Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), ProductOps, "vqdmlXl"); unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32 ? Intrinsic::aarch64_neon_sqadd : Intrinsic::aarch64_neon_sqsub; return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl"); } case NEON::BI__builtin_neon_vqdmlals_lane_s32: case NEON::BI__builtin_neon_vqdmlals_laneq_s32: case NEON::BI__builtin_neon_vqdmlsls_lane_s32: case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: { Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), "lane"); SmallVector ProductOps; ProductOps.push_back(Ops[1]); ProductOps.push_back(Ops[2]); Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), ProductOps, "vqdmlXl"); Ops.pop_back(); unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 || BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32) ? Intrinsic::aarch64_neon_sqadd : Intrinsic::aarch64_neon_sqsub; return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl"); } } llvm::VectorType *VTy = GetNeonType(this, Type); llvm::Type *Ty = VTy; if (!Ty) return nullptr; // Not all intrinsics handled by the common case work for AArch64 yet, so only // defer to common code if it's been added to our special map. Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID, AArch64SIMDIntrinsicsProvenSorted); if (Builtin) return EmitCommonNeonBuiltinExpr( Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, Builtin->NameHint, Builtin->TypeModifier, E, Ops, /*never use addresses*/ Address::invalid(), Address::invalid()); if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops)) return V; unsigned Int; switch (BuiltinID) { default: return nullptr; case NEON::BI__builtin_neon_vbsl_v: case NEON::BI__builtin_neon_vbslq_v: { llvm::Type *BitTy = llvm::VectorType::getInteger(VTy); Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl"); Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl"); Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl"); Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl"); Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl"); Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl"); return Builder.CreateBitCast(Ops[0], Ty); } case NEON::BI__builtin_neon_vfma_lane_v: case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types // The ARM builtins (and instructions) have the addend as the first // operand, but the 'fma' intrinsics have it last. Swap it around here. Value *Addend = Ops[0]; Value *Multiplicand = Ops[1]; Value *LaneSource = Ops[2]; Ops[0] = Multiplicand; Ops[1] = LaneSource; Ops[2] = Addend; // Now adjust things to handle the lane access. llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ? llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) : VTy; llvm::Constant *cst = cast(Ops[3]); Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst); Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy); Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane"); Ops.pop_back(); Int = Intrinsic::fma; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla"); } case NEON::BI__builtin_neon_vfma_laneq_v: { llvm::VectorType *VTy = cast(Ty); // v1f64 fma should be mapped to Neon scalar f64 fma if (VTy && VTy->getElementType() == DoubleTy) { Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); llvm::Type *VTy = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true)); Ops[2] = Builder.CreateBitCast(Ops[2], VTy); Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy); Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]}); return Builder.CreateBitCast(Result, Ty); } Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() * 2); Ops[2] = Builder.CreateBitCast(Ops[2], STy); Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cast(Ops[3])); Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane"); return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]}); } case NEON::BI__builtin_neon_vfmaq_laneq_v: { Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Ops[2] = EmitNeonSplat(Ops[2], cast(Ops[3])); return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]}); } case NEON::BI__builtin_neon_vfmas_lane_f32: case NEON::BI__builtin_neon_vfmas_laneq_f32: case NEON::BI__builtin_neon_vfmad_lane_f64: case NEON::BI__builtin_neon_vfmad_laneq_f64: { Ops.push_back(EmitScalarExpr(E->getArg(3))); llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty); Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]}); } case NEON::BI__builtin_neon_vmull_v: // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull; if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); case NEON::BI__builtin_neon_vmax_v: case NEON::BI__builtin_neon_vmaxq_v: // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax; if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); case NEON::BI__builtin_neon_vmin_v: case NEON::BI__builtin_neon_vminq_v: // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin; if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); case NEON::BI__builtin_neon_vabd_v: case NEON::BI__builtin_neon_vabdq_v: // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd; if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); case NEON::BI__builtin_neon_vpadal_v: case NEON::BI__builtin_neon_vpadalq_v: { unsigned ArgElts = VTy->getNumElements(); llvm::IntegerType *EltTy = cast(VTy->getElementType()); unsigned BitWidth = EltTy->getBitWidth(); llvm::Type *ArgTy = llvm::VectorType::get( llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts); llvm::Type* Tys[2] = { VTy, ArgTy }; Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp; SmallVector TmpOps; TmpOps.push_back(Ops[1]); Function *F = CGM.getIntrinsic(Int, Tys); llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal"); llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType()); return Builder.CreateAdd(tmp, addend); } case NEON::BI__builtin_neon_vpmin_v: case NEON::BI__builtin_neon_vpminq_v: // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp; if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); case NEON::BI__builtin_neon_vpmax_v: case NEON::BI__builtin_neon_vpmaxq_v: // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp; if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); case NEON::BI__builtin_neon_vminnm_v: case NEON::BI__builtin_neon_vminnmq_v: Int = Intrinsic::aarch64_neon_fminnm; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm"); case NEON::BI__builtin_neon_vmaxnm_v: case NEON::BI__builtin_neon_vmaxnmq_v: Int = Intrinsic::aarch64_neon_fmaxnm; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm"); case NEON::BI__builtin_neon_vrecpss_f32: { Ops.push_back(EmitScalarExpr(E->getArg(1))); return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy), Ops, "vrecps"); } case NEON::BI__builtin_neon_vrecpsd_f64: { Ops.push_back(EmitScalarExpr(E->getArg(1))); return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy), Ops, "vrecps"); } case NEON::BI__builtin_neon_vqshrun_n_v: Int = Intrinsic::aarch64_neon_sqshrun; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n"); case NEON::BI__builtin_neon_vqrshrun_n_v: Int = Intrinsic::aarch64_neon_sqrshrun; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n"); case NEON::BI__builtin_neon_vqshrn_n_v: Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n"); case NEON::BI__builtin_neon_vrshrn_n_v: Int = Intrinsic::aarch64_neon_rshrn; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n"); case NEON::BI__builtin_neon_vqrshrn_n_v: Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n"); case NEON::BI__builtin_neon_vrnda_v: case NEON::BI__builtin_neon_vrndaq_v: { Int = Intrinsic::round; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda"); } case NEON::BI__builtin_neon_vrndi_v: case NEON::BI__builtin_neon_vrndiq_v: { Int = Intrinsic::nearbyint; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi"); } case NEON::BI__builtin_neon_vrndm_v: case NEON::BI__builtin_neon_vrndmq_v: { Int = Intrinsic::floor; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm"); } case NEON::BI__builtin_neon_vrndn_v: case NEON::BI__builtin_neon_vrndnq_v: { Int = Intrinsic::aarch64_neon_frintn; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn"); } case NEON::BI__builtin_neon_vrndp_v: case NEON::BI__builtin_neon_vrndpq_v: { Int = Intrinsic::ceil; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp"); } case NEON::BI__builtin_neon_vrndx_v: case NEON::BI__builtin_neon_vrndxq_v: { Int = Intrinsic::rint; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx"); } case NEON::BI__builtin_neon_vrnd_v: case NEON::BI__builtin_neon_vrndq_v: { Int = Intrinsic::trunc; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz"); } case NEON::BI__builtin_neon_vceqz_v: case NEON::BI__builtin_neon_vceqzq_v: return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); case NEON::BI__builtin_neon_vcgez_v: case NEON::BI__builtin_neon_vcgezq_v: return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); case NEON::BI__builtin_neon_vclez_v: case NEON::BI__builtin_neon_vclezq_v: return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); case NEON::BI__builtin_neon_vcgtz_v: case NEON::BI__builtin_neon_vcgtzq_v: return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); case NEON::BI__builtin_neon_vcltz_v: case NEON::BI__builtin_neon_vcltzq_v: return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); case NEON::BI__builtin_neon_vcvt_f64_v: case NEON::BI__builtin_neon_vcvtq_f64_v: Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad)); return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); case NEON::BI__builtin_neon_vcvt_f64_f32: { assert(Type.getEltType() == NeonTypeFlags::Float64 && quad && "unexpected vcvt_f64_f32 builtin"); NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false); Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); return Builder.CreateFPExt(Ops[0], Ty, "vcvt"); } case NEON::BI__builtin_neon_vcvt_f32_f64: { assert(Type.getEltType() == NeonTypeFlags::Float32 && "unexpected vcvt_f32_f64 builtin"); NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true); Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt"); } case NEON::BI__builtin_neon_vcvt_s32_v: case NEON::BI__builtin_neon_vcvt_u32_v: case NEON::BI__builtin_neon_vcvt_s64_v: case NEON::BI__builtin_neon_vcvt_u64_v: case NEON::BI__builtin_neon_vcvtq_s32_v: case NEON::BI__builtin_neon_vcvtq_u32_v: case NEON::BI__builtin_neon_vcvtq_s64_v: case NEON::BI__builtin_neon_vcvtq_u64_v: { Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); if (usgn) return Builder.CreateFPToUI(Ops[0], Ty); return Builder.CreateFPToSI(Ops[0], Ty); } case NEON::BI__builtin_neon_vcvta_s32_v: case NEON::BI__builtin_neon_vcvtaq_s32_v: case NEON::BI__builtin_neon_vcvta_u32_v: case NEON::BI__builtin_neon_vcvtaq_u32_v: case NEON::BI__builtin_neon_vcvta_s64_v: case NEON::BI__builtin_neon_vcvtaq_s64_v: case NEON::BI__builtin_neon_vcvta_u64_v: case NEON::BI__builtin_neon_vcvtaq_u64_v: { Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas; llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta"); } case NEON::BI__builtin_neon_vcvtm_s32_v: case NEON::BI__builtin_neon_vcvtmq_s32_v: case NEON::BI__builtin_neon_vcvtm_u32_v: case NEON::BI__builtin_neon_vcvtmq_u32_v: case NEON::BI__builtin_neon_vcvtm_s64_v: case NEON::BI__builtin_neon_vcvtmq_s64_v: case NEON::BI__builtin_neon_vcvtm_u64_v: case NEON::BI__builtin_neon_vcvtmq_u64_v: { Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms; llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm"); } case NEON::BI__builtin_neon_vcvtn_s32_v: case NEON::BI__builtin_neon_vcvtnq_s32_v: case NEON::BI__builtin_neon_vcvtn_u32_v: case NEON::BI__builtin_neon_vcvtnq_u32_v: case NEON::BI__builtin_neon_vcvtn_s64_v: case NEON::BI__builtin_neon_vcvtnq_s64_v: case NEON::BI__builtin_neon_vcvtn_u64_v: case NEON::BI__builtin_neon_vcvtnq_u64_v: { Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns; llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn"); } case NEON::BI__builtin_neon_vcvtp_s32_v: case NEON::BI__builtin_neon_vcvtpq_s32_v: case NEON::BI__builtin_neon_vcvtp_u32_v: case NEON::BI__builtin_neon_vcvtpq_u32_v: case NEON::BI__builtin_neon_vcvtp_s64_v: case NEON::BI__builtin_neon_vcvtpq_s64_v: case NEON::BI__builtin_neon_vcvtp_u64_v: case NEON::BI__builtin_neon_vcvtpq_u64_v: { Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps; llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp"); } case NEON::BI__builtin_neon_vmulx_v: case NEON::BI__builtin_neon_vmulxq_v: { Int = Intrinsic::aarch64_neon_fmulx; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx"); } case NEON::BI__builtin_neon_vmul_lane_v: case NEON::BI__builtin_neon_vmul_laneq_v: { // v1f64 vmul_lane should be mapped to Neon scalar mul lane bool Quad = false; if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v) Quad = true; Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); llvm::Type *VTy = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad)); Ops[1] = Builder.CreateBitCast(Ops[1], VTy); Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); Value *Result = Builder.CreateFMul(Ops[0], Ops[1]); return Builder.CreateBitCast(Result, Ty); } case NEON::BI__builtin_neon_vnegd_s64: return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd"); case NEON::BI__builtin_neon_vpmaxnm_v: case NEON::BI__builtin_neon_vpmaxnmq_v: { Int = Intrinsic::aarch64_neon_fmaxnmp; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm"); } case NEON::BI__builtin_neon_vpminnm_v: case NEON::BI__builtin_neon_vpminnmq_v: { Int = Intrinsic::aarch64_neon_fminnmp; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm"); } case NEON::BI__builtin_neon_vsqrt_v: case NEON::BI__builtin_neon_vsqrtq_v: { Int = Intrinsic::sqrt; Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt"); } case NEON::BI__builtin_neon_vrbit_v: case NEON::BI__builtin_neon_vrbitq_v: { Int = Intrinsic::aarch64_neon_rbit; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit"); } case NEON::BI__builtin_neon_vaddv_u8: // FIXME: These are handled by the AArch64 scalar code. usgn = true; // FALLTHROUGH case NEON::BI__builtin_neon_vaddv_s8: { Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vaddv_u16: usgn = true; // FALLTHROUGH case NEON::BI__builtin_neon_vaddv_s16: { Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vaddvq_u8: usgn = true; // FALLTHROUGH case NEON::BI__builtin_neon_vaddvq_s8: { Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vaddvq_u16: usgn = true; // FALLTHROUGH case NEON::BI__builtin_neon_vaddvq_s16: { Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vmaxv_u8: { Int = Intrinsic::aarch64_neon_umaxv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vmaxv_u16: { Int = Intrinsic::aarch64_neon_umaxv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vmaxvq_u8: { Int = Intrinsic::aarch64_neon_umaxv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vmaxvq_u16: { Int = Intrinsic::aarch64_neon_umaxv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vmaxv_s8: { Int = Intrinsic::aarch64_neon_smaxv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vmaxv_s16: { Int = Intrinsic::aarch64_neon_smaxv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vmaxvq_s8: { Int = Intrinsic::aarch64_neon_smaxv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vmaxvq_s16: { Int = Intrinsic::aarch64_neon_smaxv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vminv_u8: { Int = Intrinsic::aarch64_neon_uminv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vminv_u16: { Int = Intrinsic::aarch64_neon_uminv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vminvq_u8: { Int = Intrinsic::aarch64_neon_uminv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vminvq_u16: { Int = Intrinsic::aarch64_neon_uminv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vminv_s8: { Int = Intrinsic::aarch64_neon_sminv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vminv_s16: { Int = Intrinsic::aarch64_neon_sminv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vminvq_s8: { Int = Intrinsic::aarch64_neon_sminv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vminvq_s16: { Int = Intrinsic::aarch64_neon_sminv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vmul_n_f64: { Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy); return Builder.CreateFMul(Ops[0], RHS); } case NEON::BI__builtin_neon_vaddlv_u8: { Int = Intrinsic::aarch64_neon_uaddlv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vaddlv_u16: { Int = Intrinsic::aarch64_neon_uaddlv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); } case NEON::BI__builtin_neon_vaddlvq_u8: { Int = Intrinsic::aarch64_neon_uaddlv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vaddlvq_u16: { Int = Intrinsic::aarch64_neon_uaddlv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); } case NEON::BI__builtin_neon_vaddlv_s8: { Int = Intrinsic::aarch64_neon_saddlv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vaddlv_s16: { Int = Intrinsic::aarch64_neon_saddlv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); } case NEON::BI__builtin_neon_vaddlvq_s8: { Int = Intrinsic::aarch64_neon_saddlv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vaddlvq_s16: { Int = Intrinsic::aarch64_neon_saddlv; Ty = Int32Ty; VTy = llvm::VectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); } case NEON::BI__builtin_neon_vsri_n_v: case NEON::BI__builtin_neon_vsriq_n_v: { Int = Intrinsic::aarch64_neon_vsri; llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); return EmitNeonCall(Intrin, Ops, "vsri_n"); } case NEON::BI__builtin_neon_vsli_n_v: case NEON::BI__builtin_neon_vsliq_n_v: { Int = Intrinsic::aarch64_neon_vsli; llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); return EmitNeonCall(Intrin, Ops, "vsli_n"); } case NEON::BI__builtin_neon_vsra_n_v: case NEON::BI__builtin_neon_vsraq_n_v: Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); return Builder.CreateAdd(Ops[0], Ops[1]); case NEON::BI__builtin_neon_vrsra_n_v: case NEON::BI__builtin_neon_vrsraq_n_v: { Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; SmallVector TmpOps; TmpOps.push_back(Ops[1]); TmpOps.push_back(Ops[2]); Function* F = CGM.getIntrinsic(Int, Ty); llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true); Ops[0] = Builder.CreateBitCast(Ops[0], VTy); return Builder.CreateAdd(Ops[0], tmp); } // FIXME: Sharing loads & stores with 32-bit is complicated by the absence // of an Align parameter here. case NEON::BI__builtin_neon_vld1_x2_v: case NEON::BI__builtin_neon_vld1q_x2_v: case NEON::BI__builtin_neon_vld1_x3_v: case NEON::BI__builtin_neon_vld1q_x3_v: case NEON::BI__builtin_neon_vld1_x4_v: case NEON::BI__builtin_neon_vld1q_x4_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType()); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; unsigned Int; switch (BuiltinID) { case NEON::BI__builtin_neon_vld1_x2_v: case NEON::BI__builtin_neon_vld1q_x2_v: Int = Intrinsic::aarch64_neon_ld1x2; break; case NEON::BI__builtin_neon_vld1_x3_v: case NEON::BI__builtin_neon_vld1q_x3_v: Int = Intrinsic::aarch64_neon_ld1x3; break; case NEON::BI__builtin_neon_vld1_x4_v: case NEON::BI__builtin_neon_vld1q_x4_v: Int = Intrinsic::aarch64_neon_ld1x4; break; } Function *F = CGM.getIntrinsic(Int, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN"); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vst1_x2_v: case NEON::BI__builtin_neon_vst1q_x2_v: case NEON::BI__builtin_neon_vst1_x3_v: case NEON::BI__builtin_neon_vst1q_x3_v: case NEON::BI__builtin_neon_vst1_x4_v: case NEON::BI__builtin_neon_vst1q_x4_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType()); llvm::Type *Tys[2] = { VTy, PTy }; unsigned Int; switch (BuiltinID) { case NEON::BI__builtin_neon_vst1_x2_v: case NEON::BI__builtin_neon_vst1q_x2_v: Int = Intrinsic::aarch64_neon_st1x2; break; case NEON::BI__builtin_neon_vst1_x3_v: case NEON::BI__builtin_neon_vst1q_x3_v: Int = Intrinsic::aarch64_neon_st1x3; break; case NEON::BI__builtin_neon_vst1_x4_v: case NEON::BI__builtin_neon_vst1q_x4_v: Int = Intrinsic::aarch64_neon_st1x4; break; } std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, ""); } case NEON::BI__builtin_neon_vld1_v: case NEON::BI__builtin_neon_vld1q_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); auto Alignment = CharUnits::fromQuantity( BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16); return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment); } case NEON::BI__builtin_neon_vst1_v: case NEON::BI__builtin_neon_vst1q_v: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); Ops[1] = Builder.CreateBitCast(Ops[1], VTy); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); case NEON::BI__builtin_neon_vld1_lane_v: case NEON::BI__builtin_neon_vld1q_lane_v: { Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ty = llvm::PointerType::getUnqual(VTy->getElementType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); auto Alignment = CharUnits::fromQuantity( BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16); Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment); return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane"); } case NEON::BI__builtin_neon_vld1_dup_v: case NEON::BI__builtin_neon_vld1q_dup_v: { Value *V = UndefValue::get(Ty); Ty = llvm::PointerType::getUnqual(VTy->getElementType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); auto Alignment = CharUnits::fromQuantity( BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16); Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment); llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI); return EmitNeonSplat(Ops[0], CI); } case NEON::BI__builtin_neon_vst1_lane_v: case NEON::BI__builtin_neon_vst1q_lane_v: Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); return Builder.CreateDefaultAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty)); case NEON::BI__builtin_neon_vld2_v: case NEON::BI__builtin_neon_vld2q_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld3_v: case NEON::BI__builtin_neon_vld3q_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld4_v: case NEON::BI__builtin_neon_vld4q_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld2_dup_v: case NEON::BI__builtin_neon_vld2q_dup_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld3_dup_v: case NEON::BI__builtin_neon_vld3q_dup_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld4_dup_v: case NEON::BI__builtin_neon_vld4q_dup_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld2_lane_v: case NEON::BI__builtin_neon_vld2q_lane_v: { llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys); Ops.push_back(Ops[1]); Ops.erase(Ops.begin()+1); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane"); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld3_lane_v: case NEON::BI__builtin_neon_vld3q_lane_v: { llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys); Ops.push_back(Ops[1]); Ops.erase(Ops.begin()+1); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Ops[3] = Builder.CreateBitCast(Ops[3], Ty); Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane"); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld4_lane_v: case NEON::BI__builtin_neon_vld4q_lane_v: { llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys); Ops.push_back(Ops[1]); Ops.erase(Ops.begin()+1); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Ops[3] = Builder.CreateBitCast(Ops[3], Ty); Ops[4] = Builder.CreateBitCast(Ops[4], Ty); Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty); Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane"); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vst2_v: case NEON::BI__builtin_neon_vst2q_v: { Ops.push_back(Ops[0]); Ops.erase(Ops.begin()); llvm::Type *Tys[2] = { VTy, Ops[2]->getType() }; return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys), Ops, ""); } case NEON::BI__builtin_neon_vst2_lane_v: case NEON::BI__builtin_neon_vst2q_lane_v: { Ops.push_back(Ops[0]); Ops.erase(Ops.begin()); Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys), Ops, ""); } case NEON::BI__builtin_neon_vst3_v: case NEON::BI__builtin_neon_vst3q_v: { Ops.push_back(Ops[0]); Ops.erase(Ops.begin()); llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys), Ops, ""); } case NEON::BI__builtin_neon_vst3_lane_v: case NEON::BI__builtin_neon_vst3q_lane_v: { Ops.push_back(Ops[0]); Ops.erase(Ops.begin()); Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys), Ops, ""); } case NEON::BI__builtin_neon_vst4_v: case NEON::BI__builtin_neon_vst4q_v: { Ops.push_back(Ops[0]); Ops.erase(Ops.begin()); llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys), Ops, ""); } case NEON::BI__builtin_neon_vst4_lane_v: case NEON::BI__builtin_neon_vst4q_lane_v: { Ops.push_back(Ops[0]); Ops.erase(Ops.begin()); Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); llvm::Type *Tys[2] = { VTy, Ops[5]->getType() }; return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys), Ops, ""); } case NEON::BI__builtin_neon_vtrn_v: case NEON::BI__builtin_neon_vtrnq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Value *SV = nullptr; for (unsigned vi = 0; vi != 2; ++vi) { SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { Indices.push_back(i+vi); Indices.push_back(i+e+vi); } Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); SV = Builder.CreateDefaultAlignedStore(SV, Addr); } return SV; } case NEON::BI__builtin_neon_vuzp_v: case NEON::BI__builtin_neon_vuzpq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Value *SV = nullptr; for (unsigned vi = 0; vi != 2; ++vi) { SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) Indices.push_back(2*i+vi); Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); SV = Builder.CreateDefaultAlignedStore(SV, Addr); } return SV; } case NEON::BI__builtin_neon_vzip_v: case NEON::BI__builtin_neon_vzipq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Value *SV = nullptr; for (unsigned vi = 0; vi != 2; ++vi) { SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { Indices.push_back((i + vi*e) >> 1); Indices.push_back(((i + vi*e) >> 1)+e); } Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); SV = Builder.CreateDefaultAlignedStore(SV, Addr); } return SV; } case NEON::BI__builtin_neon_vqtbl1q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty), Ops, "vtbl1"); } case NEON::BI__builtin_neon_vqtbl2q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty), Ops, "vtbl2"); } case NEON::BI__builtin_neon_vqtbl3q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty), Ops, "vtbl3"); } case NEON::BI__builtin_neon_vqtbl4q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty), Ops, "vtbl4"); } case NEON::BI__builtin_neon_vqtbx1q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty), Ops, "vtbx1"); } case NEON::BI__builtin_neon_vqtbx2q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty), Ops, "vtbx2"); } case NEON::BI__builtin_neon_vqtbx3q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty), Ops, "vtbx3"); } case NEON::BI__builtin_neon_vqtbx4q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty), Ops, "vtbx4"); } case NEON::BI__builtin_neon_vsqadd_v: case NEON::BI__builtin_neon_vsqaddq_v: { Int = Intrinsic::aarch64_neon_usqadd; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd"); } case NEON::BI__builtin_neon_vuqadd_v: case NEON::BI__builtin_neon_vuqaddq_v: { Int = Intrinsic::aarch64_neon_suqadd; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd"); } } } llvm::Value *CodeGenFunction:: BuildVector(ArrayRef Ops) { assert((Ops.size() & (Ops.size() - 1)) == 0 && "Not a power-of-two sized vector!"); bool AllConstants = true; for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i) AllConstants &= isa(Ops[i]); // If this is a constant vector, create a ConstantVector. if (AllConstants) { SmallVector CstOps; for (unsigned i = 0, e = Ops.size(); i != e; ++i) CstOps.push_back(cast(Ops[i])); return llvm::ConstantVector::get(CstOps); } // Otherwise, insertelement the values to build the vector. Value *Result = llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size())); for (unsigned i = 0, e = Ops.size(); i != e; ++i) Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i)); return Result; } // Convert the mask from an integer type to a vector of i1. static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask, unsigned NumElts) { llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(), cast(Mask->getType())->getBitWidth()); Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy); // If we have less than 8 elements, then the starting mask was an i8 and // we need to extract down to the right number of elements. if (NumElts < 8) { uint32_t Indices[4]; for (unsigned i = 0; i != NumElts; ++i) Indices[i] = i; MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec, makeArrayRef(Indices, NumElts), "extract"); } return MaskVec; } static Value *EmitX86MaskedStore(CodeGenFunction &CGF, SmallVectorImpl &Ops, unsigned Align) { // Cast the pointer to right type. Ops[0] = CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); // If the mask is all ones just emit a regular store. if (const auto *C = dyn_cast(Ops[2])) if (C->isAllOnesValue()) return CGF.Builder.CreateAlignedStore(Ops[1], Ops[0], Align); Value *MaskVec = getMaskVecValue(CGF, Ops[2], Ops[1]->getType()->getVectorNumElements()); return CGF.Builder.CreateMaskedStore(Ops[1], Ops[0], Align, MaskVec); } static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, SmallVectorImpl &Ops, unsigned Align) { // Cast the pointer to right type. Ops[0] = CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); // If the mask is all ones just emit a regular store. if (const auto *C = dyn_cast(Ops[2])) if (C->isAllOnesValue()) return CGF.Builder.CreateAlignedLoad(Ops[0], Align); Value *MaskVec = getMaskVecValue(CGF, Ops[2], Ops[1]->getType()->getVectorNumElements()); return CGF.Builder.CreateMaskedLoad(Ops[0], Align, MaskVec, Ops[1]); } static Value *EmitX86SubVectorBroadcast(CodeGenFunction &CGF, SmallVectorImpl &Ops, llvm::Type *DstTy, unsigned SrcSizeInBits, unsigned Align) { // Load the subvector. Ops[0] = CGF.Builder.CreateAlignedLoad(Ops[0], Align); // Create broadcast mask. unsigned NumDstElts = DstTy->getVectorNumElements(); unsigned NumSrcElts = SrcSizeInBits / DstTy->getScalarSizeInBits(); SmallVector Mask; for (unsigned i = 0; i != NumDstElts; i += NumSrcElts) for (unsigned j = 0; j != NumSrcElts; ++j) Mask.push_back(j); return CGF.Builder.CreateShuffleVector(Ops[0], Ops[0], Mask, "subvecbcst"); } static Value *EmitX86Select(CodeGenFunction &CGF, Value *Mask, Value *Op0, Value *Op1) { // If the mask is all ones just return first argument. if (const auto *C = dyn_cast(Mask)) if (C->isAllOnesValue()) return Op0; Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements()); return CGF.Builder.CreateSelect(Mask, Op0, Op1); } static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC, bool Signed, SmallVectorImpl &Ops) { unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); Value *Cmp; if (CC == 3) { Cmp = Constant::getNullValue( llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts)); } else if (CC == 7) { Cmp = Constant::getAllOnesValue( llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts)); } else { ICmpInst::Predicate Pred; switch (CC) { default: llvm_unreachable("Unknown condition code"); case 0: Pred = ICmpInst::ICMP_EQ; break; case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; case 4: Pred = ICmpInst::ICMP_NE; break; case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; } Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); } const auto *C = dyn_cast(Ops.back()); if (!C || !C->isAllOnesValue()) Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, Ops.back(), NumElts)); if (NumElts < 8) { uint32_t Indices[8]; for (unsigned i = 0; i != NumElts; ++i) Indices[i] = i; for (unsigned i = NumElts; i != 8; ++i) Indices[i] = i % NumElts + NumElts; Cmp = CGF.Builder.CreateShuffleVector( Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices); } return CGF.Builder.CreateBitCast(Cmp, IntegerType::get(CGF.getLLVMContext(), std::max(NumElts, 8U))); } static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef Ops) { llvm::Type *Ty = Ops[0]->getType(); Value *Zero = llvm::Constant::getNullValue(Ty); Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]); Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero); Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub); if (Ops.size() == 1) return Res; return EmitX86Select(CGF, Ops[2], Res, Ops[1]); } static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred, ArrayRef Ops) { Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]); if (Ops.size() == 2) return Res; assert(Ops.size() == 4); return EmitX86Select(CGF, Ops[3], Res, Ops[2]); } static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op, llvm::Type *DstTy) { unsigned NumberOfElements = DstTy->getVectorNumElements(); Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements); return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2"); } Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) { const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); StringRef CPUStr = cast(CPUExpr)->getString(); return EmitX86CpuIs(CPUStr); } Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) { // This enum contains the vendor, type, and subtype enums from the // runtime library concatenated together. The _START labels mark // the start and are used to adjust the value into the correct // encoding space. enum X86CPUs { INTEL = 1, AMD, CPU_TYPE_START, INTEL_BONNELL, INTEL_CORE2, INTEL_COREI7, AMDFAM10H, AMDFAM15H, INTEL_SILVERMONT, INTEL_KNL, AMD_BTVER1, AMD_BTVER2, AMDFAM17H, CPU_SUBTYPE_START, INTEL_COREI7_NEHALEM, INTEL_COREI7_WESTMERE, INTEL_COREI7_SANDYBRIDGE, AMDFAM10H_BARCELONA, AMDFAM10H_SHANGHAI, AMDFAM10H_ISTANBUL, AMDFAM15H_BDVER1, AMDFAM15H_BDVER2, AMDFAM15H_BDVER3, AMDFAM15H_BDVER4, AMDFAM17H_ZNVER1, INTEL_COREI7_IVYBRIDGE, INTEL_COREI7_HASWELL, INTEL_COREI7_BROADWELL, INTEL_COREI7_SKYLAKE, INTEL_COREI7_SKYLAKE_AVX512, }; X86CPUs CPU = StringSwitch(CPUStr) .Case("amd", AMD) .Case("amdfam10h", AMDFAM10H) .Case("amdfam10", AMDFAM10H) .Case("amdfam15h", AMDFAM15H) .Case("amdfam15", AMDFAM15H) .Case("amdfam17h", AMDFAM17H) .Case("atom", INTEL_BONNELL) .Case("barcelona", AMDFAM10H_BARCELONA) .Case("bdver1", AMDFAM15H_BDVER1) .Case("bdver2", AMDFAM15H_BDVER2) .Case("bdver3", AMDFAM15H_BDVER3) .Case("bdver4", AMDFAM15H_BDVER4) .Case("bonnell", INTEL_BONNELL) .Case("broadwell", INTEL_COREI7_BROADWELL) .Case("btver1", AMD_BTVER1) .Case("btver2", AMD_BTVER2) .Case("core2", INTEL_CORE2) .Case("corei7", INTEL_COREI7) .Case("haswell", INTEL_COREI7_HASWELL) .Case("intel", INTEL) .Case("istanbul", AMDFAM10H_ISTANBUL) .Case("ivybridge", INTEL_COREI7_IVYBRIDGE) .Case("knl", INTEL_KNL) .Case("nehalem", INTEL_COREI7_NEHALEM) .Case("sandybridge", INTEL_COREI7_SANDYBRIDGE) .Case("shanghai", AMDFAM10H_SHANGHAI) .Case("silvermont", INTEL_SILVERMONT) .Case("skylake", INTEL_COREI7_SKYLAKE) .Case("skylake-avx512", INTEL_COREI7_SKYLAKE_AVX512) .Case("slm", INTEL_SILVERMONT) .Case("westmere", INTEL_COREI7_WESTMERE) .Case("znver1", AMDFAM17H_ZNVER1); llvm::Type *Int32Ty = Builder.getInt32Ty(); // Matching the struct layout from the compiler-rt/libgcc structure that is // filled in: // unsigned int __cpu_vendor; // unsigned int __cpu_type; // unsigned int __cpu_subtype; // unsigned int __cpu_features[1]; llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, llvm::ArrayType::get(Int32Ty, 1)); // Grab the global __cpu_model. llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); // Calculate the index needed to access the correct field based on the // range. Also adjust the expected value. unsigned Index; unsigned Value; if (CPU > CPU_SUBTYPE_START) { Index = 2; Value = CPU - CPU_SUBTYPE_START; } else if (CPU > CPU_TYPE_START) { Index = 1; Value = CPU - CPU_TYPE_START; } else { Index = 0; Value = CPU; } // Grab the appropriate field from __cpu_model. llvm::Value *Idxs[] = { ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, Index) }; llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs); CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4)); // Check the value of the field against the requested value. return Builder.CreateICmpEQ(CpuValue, llvm::ConstantInt::get(Int32Ty, Value)); } Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) { const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts(); StringRef FeatureStr = cast(FeatureExpr)->getString(); return EmitX86CpuSupports(FeatureStr); } Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef FeatureStrs) { // TODO: When/if this becomes more than x86 specific then use a TargetInfo // based mapping. // Processor features and mapping to processor feature value. enum X86Features { CMOV = 0, MMX, POPCNT, SSE, SSE2, SSE3, SSSE3, SSE4_1, SSE4_2, AVX, AVX2, SSE4_A, FMA4, XOP, FMA, AVX512F, BMI, BMI2, AES, PCLMUL, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512ER, AVX512PF, AVX512VBMI, AVX512IFMA, AVX5124VNNIW, AVX5124FMAPS, AVX512VPOPCNTDQ, MAX }; uint32_t FeaturesMask = 0; for (const StringRef &FeatureStr : FeatureStrs) { X86Features Feature = StringSwitch(FeatureStr) .Case("cmov", X86Features::CMOV) .Case("mmx", X86Features::MMX) .Case("popcnt", X86Features::POPCNT) .Case("sse", X86Features::SSE) .Case("sse2", X86Features::SSE2) .Case("sse3", X86Features::SSE3) .Case("ssse3", X86Features::SSSE3) .Case("sse4.1", X86Features::SSE4_1) .Case("sse4.2", X86Features::SSE4_2) .Case("avx", X86Features::AVX) .Case("avx2", X86Features::AVX2) .Case("sse4a", X86Features::SSE4_A) .Case("fma4", X86Features::FMA4) .Case("xop", X86Features::XOP) .Case("fma", X86Features::FMA) .Case("avx512f", X86Features::AVX512F) .Case("bmi", X86Features::BMI) .Case("bmi2", X86Features::BMI2) .Case("aes", X86Features::AES) .Case("pclmul", X86Features::PCLMUL) .Case("avx512vl", X86Features::AVX512VL) .Case("avx512bw", X86Features::AVX512BW) .Case("avx512dq", X86Features::AVX512DQ) .Case("avx512cd", X86Features::AVX512CD) .Case("avx512er", X86Features::AVX512ER) .Case("avx512pf", X86Features::AVX512PF) .Case("avx512vbmi", X86Features::AVX512VBMI) .Case("avx512ifma", X86Features::AVX512IFMA) .Case("avx5124vnniw", X86Features::AVX5124VNNIW) .Case("avx5124fmaps", X86Features::AVX5124FMAPS) .Case("avx512vpopcntdq", X86Features::AVX512VPOPCNTDQ) .Default(X86Features::MAX); assert(Feature != X86Features::MAX && "Invalid feature!"); FeaturesMask |= (1U << Feature); } // Matching the struct layout from the compiler-rt/libgcc structure that is // filled in: // unsigned int __cpu_vendor; // unsigned int __cpu_type; // unsigned int __cpu_subtype; // unsigned int __cpu_features[1]; llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, llvm::ArrayType::get(Int32Ty, 1)); // Grab the global __cpu_model. llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); // Grab the first (0th) element from the field __cpu_features off of the // global in the struct STy. Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 3), ConstantInt::get(Int32Ty, 0)}; Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs); Value *Features = Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4)); // Check the value of the bit corresponding to the feature requested. Value *Bitset = Builder.CreateAnd( Features, llvm::ConstantInt::get(Int32Ty, FeaturesMask)); return Builder.CreateICmpNE(Bitset, llvm::ConstantInt::get(Int32Ty, 0)); } Value *CodeGenFunction::EmitX86CpuInit() { llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, /*Variadic*/ false); llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init"); return Builder.CreateCall(Func); } Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E) { if (BuiltinID == X86::BI__builtin_cpu_is) return EmitX86CpuIs(E); if (BuiltinID == X86::BI__builtin_cpu_supports) return EmitX86CpuSupports(E); if (BuiltinID == X86::BI__builtin_cpu_init) return EmitX86CpuInit(); SmallVector Ops; // Find out if any arguments are required to be integer constant expressions. unsigned ICEArguments = 0; ASTContext::GetBuiltinTypeError Error; getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); assert(Error == ASTContext::GE_None && "Should not codegen an error"); for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { // If this is a normal argument, just emit it as a scalar. if ((ICEArguments & (1 << i)) == 0) { Ops.push_back(EmitScalarExpr(E->getArg(i))); continue; } // If this is required to be a constant, constant fold it so that we know // that the generated intrinsic gets a ConstantInt. llvm::APSInt Result; bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); } // These exist so that the builtin that takes an immediate can be bounds // checked by clang to avoid passing bad immediates to the backend. Since // AVX has a larger immediate than SSE we would need separate builtins to // do the different bounds checking. Rather than create a clang specific // SSE only builtin, this implements eight separate builtins to match gcc // implementation. auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) { Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm)); llvm::Function *F = CGM.getIntrinsic(ID); return Builder.CreateCall(F, Ops); }; // For the vector forms of FP comparisons, translate the builtins directly to // IR. // TODO: The builtins could be removed if the SSE header files used vector // extension comparisons directly (vector ordered/unordered may need // additional support via __builtin_isnan()). auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) { Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); llvm::VectorType *FPVecTy = cast(Ops[0]->getType()); llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy); Value *Sext = Builder.CreateSExt(Cmp, IntVecTy); return Builder.CreateBitCast(Sext, FPVecTy); }; switch (BuiltinID) { default: return nullptr; case X86::BI_mm_prefetch: { Value *Address = Ops[0]; Value *RW = ConstantInt::get(Int32Ty, 0); Value *Locality = Ops[1]; Value *Data = ConstantInt::get(Int32Ty, 1); Value *F = CGM.getIntrinsic(Intrinsic::prefetch); return Builder.CreateCall(F, {Address, RW, Locality, Data}); } case X86::BI_mm_clflush: { return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush), Ops[0]); } case X86::BI_mm_lfence: { return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence)); } case X86::BI_mm_mfence: { return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence)); } case X86::BI_mm_sfence: { return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence)); } case X86::BI_mm_pause: { return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause)); } case X86::BI__rdtsc: { return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc)); } case X86::BI__builtin_ia32_undef128: case X86::BI__builtin_ia32_undef256: case X86::BI__builtin_ia32_undef512: // The x86 definition of "undef" is not the same as the LLVM definition // (PR32176). We leave optimizing away an unnecessary zero constant to the // IR optimizer and backend. // TODO: If we had a "freeze" IR instruction to generate a fixed undef // value, we should use that here instead of a zero. return llvm::Constant::getNullValue(ConvertType(E->getType())); case X86::BI__builtin_ia32_vec_init_v8qi: case X86::BI__builtin_ia32_vec_init_v4hi: case X86::BI__builtin_ia32_vec_init_v2si: return Builder.CreateBitCast(BuildVector(Ops), llvm::Type::getX86_MMXTy(getLLVMContext())); case X86::BI__builtin_ia32_vec_ext_v2si: return Builder.CreateExtractElement(Ops[0], llvm::ConstantInt::get(Ops[1]->getType(), 0)); case X86::BI_mm_setcsr: case X86::BI__builtin_ia32_ldmxcsr: { Address Tmp = CreateMemTemp(E->getArg(0)->getType()); Builder.CreateStore(Ops[0], Tmp); return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); } case X86::BI_mm_getcsr: case X86::BI__builtin_ia32_stmxcsr: { Address Tmp = CreateMemTemp(E->getType()); Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); return Builder.CreateLoad(Tmp, "stmxcsr"); } case X86::BI__builtin_ia32_xsave: case X86::BI__builtin_ia32_xsave64: case X86::BI__builtin_ia32_xrstor: case X86::BI__builtin_ia32_xrstor64: case X86::BI__builtin_ia32_xsaveopt: case X86::BI__builtin_ia32_xsaveopt64: case X86::BI__builtin_ia32_xrstors: case X86::BI__builtin_ia32_xrstors64: case X86::BI__builtin_ia32_xsavec: case X86::BI__builtin_ia32_xsavec64: case X86::BI__builtin_ia32_xsaves: case X86::BI__builtin_ia32_xsaves64: { Intrinsic::ID ID; #define INTRINSIC_X86_XSAVE_ID(NAME) \ case X86::BI__builtin_ia32_##NAME: \ ID = Intrinsic::x86_##NAME; \ break switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); INTRINSIC_X86_XSAVE_ID(xsave); INTRINSIC_X86_XSAVE_ID(xsave64); INTRINSIC_X86_XSAVE_ID(xrstor); INTRINSIC_X86_XSAVE_ID(xrstor64); INTRINSIC_X86_XSAVE_ID(xsaveopt); INTRINSIC_X86_XSAVE_ID(xsaveopt64); INTRINSIC_X86_XSAVE_ID(xrstors); INTRINSIC_X86_XSAVE_ID(xrstors64); INTRINSIC_X86_XSAVE_ID(xsavec); INTRINSIC_X86_XSAVE_ID(xsavec64); INTRINSIC_X86_XSAVE_ID(xsaves); INTRINSIC_X86_XSAVE_ID(xsaves64); } #undef INTRINSIC_X86_XSAVE_ID Value *Mhi = Builder.CreateTrunc( Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty); Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty); Ops[1] = Mhi; Ops.push_back(Mlo); return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); } case X86::BI__builtin_ia32_storedqudi128_mask: case X86::BI__builtin_ia32_storedqusi128_mask: case X86::BI__builtin_ia32_storedquhi128_mask: case X86::BI__builtin_ia32_storedquqi128_mask: case X86::BI__builtin_ia32_storeupd128_mask: case X86::BI__builtin_ia32_storeups128_mask: case X86::BI__builtin_ia32_storedqudi256_mask: case X86::BI__builtin_ia32_storedqusi256_mask: case X86::BI__builtin_ia32_storedquhi256_mask: case X86::BI__builtin_ia32_storedquqi256_mask: case X86::BI__builtin_ia32_storeupd256_mask: case X86::BI__builtin_ia32_storeups256_mask: case X86::BI__builtin_ia32_storedqudi512_mask: case X86::BI__builtin_ia32_storedqusi512_mask: case X86::BI__builtin_ia32_storedquhi512_mask: case X86::BI__builtin_ia32_storedquqi512_mask: case X86::BI__builtin_ia32_storeupd512_mask: case X86::BI__builtin_ia32_storeups512_mask: return EmitX86MaskedStore(*this, Ops, 1); case X86::BI__builtin_ia32_storess128_mask: case X86::BI__builtin_ia32_storesd128_mask: { return EmitX86MaskedStore(*this, Ops, 16); } case X86::BI__builtin_ia32_vpopcntd_512: case X86::BI__builtin_ia32_vpopcntq_512: { llvm::Type *ResultType = ConvertType(E->getType()); llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); return Builder.CreateCall(F, Ops); } case X86::BI__builtin_ia32_cvtmask2b128: case X86::BI__builtin_ia32_cvtmask2b256: case X86::BI__builtin_ia32_cvtmask2b512: case X86::BI__builtin_ia32_cvtmask2w128: case X86::BI__builtin_ia32_cvtmask2w256: case X86::BI__builtin_ia32_cvtmask2w512: case X86::BI__builtin_ia32_cvtmask2d128: case X86::BI__builtin_ia32_cvtmask2d256: case X86::BI__builtin_ia32_cvtmask2d512: case X86::BI__builtin_ia32_cvtmask2q128: case X86::BI__builtin_ia32_cvtmask2q256: case X86::BI__builtin_ia32_cvtmask2q512: return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType())); case X86::BI__builtin_ia32_movdqa32store128_mask: case X86::BI__builtin_ia32_movdqa64store128_mask: case X86::BI__builtin_ia32_storeaps128_mask: case X86::BI__builtin_ia32_storeapd128_mask: case X86::BI__builtin_ia32_movdqa32store256_mask: case X86::BI__builtin_ia32_movdqa64store256_mask: case X86::BI__builtin_ia32_storeaps256_mask: case X86::BI__builtin_ia32_storeapd256_mask: case X86::BI__builtin_ia32_movdqa32store512_mask: case X86::BI__builtin_ia32_movdqa64store512_mask: case X86::BI__builtin_ia32_storeaps512_mask: case X86::BI__builtin_ia32_storeapd512_mask: { unsigned Align = getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity(); return EmitX86MaskedStore(*this, Ops, Align); } case X86::BI__builtin_ia32_loadups128_mask: case X86::BI__builtin_ia32_loadups256_mask: case X86::BI__builtin_ia32_loadups512_mask: case X86::BI__builtin_ia32_loadupd128_mask: case X86::BI__builtin_ia32_loadupd256_mask: case X86::BI__builtin_ia32_loadupd512_mask: case X86::BI__builtin_ia32_loaddquqi128_mask: case X86::BI__builtin_ia32_loaddquqi256_mask: case X86::BI__builtin_ia32_loaddquqi512_mask: case X86::BI__builtin_ia32_loaddquhi128_mask: case X86::BI__builtin_ia32_loaddquhi256_mask: case X86::BI__builtin_ia32_loaddquhi512_mask: case X86::BI__builtin_ia32_loaddqusi128_mask: case X86::BI__builtin_ia32_loaddqusi256_mask: case X86::BI__builtin_ia32_loaddqusi512_mask: case X86::BI__builtin_ia32_loaddqudi128_mask: case X86::BI__builtin_ia32_loaddqudi256_mask: case X86::BI__builtin_ia32_loaddqudi512_mask: return EmitX86MaskedLoad(*this, Ops, 1); case X86::BI__builtin_ia32_loadss128_mask: case X86::BI__builtin_ia32_loadsd128_mask: return EmitX86MaskedLoad(*this, Ops, 16); case X86::BI__builtin_ia32_loadaps128_mask: case X86::BI__builtin_ia32_loadaps256_mask: case X86::BI__builtin_ia32_loadaps512_mask: case X86::BI__builtin_ia32_loadapd128_mask: case X86::BI__builtin_ia32_loadapd256_mask: case X86::BI__builtin_ia32_loadapd512_mask: case X86::BI__builtin_ia32_movdqa32load128_mask: case X86::BI__builtin_ia32_movdqa32load256_mask: case X86::BI__builtin_ia32_movdqa32load512_mask: case X86::BI__builtin_ia32_movdqa64load128_mask: case X86::BI__builtin_ia32_movdqa64load256_mask: case X86::BI__builtin_ia32_movdqa64load512_mask: { unsigned Align = getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity(); return EmitX86MaskedLoad(*this, Ops, Align); } case X86::BI__builtin_ia32_vbroadcastf128_pd256: case X86::BI__builtin_ia32_vbroadcastf128_ps256: { llvm::Type *DstTy = ConvertType(E->getType()); return EmitX86SubVectorBroadcast(*this, Ops, DstTy, 128, 1); } case X86::BI__builtin_ia32_storehps: case X86::BI__builtin_ia32_storelps: { llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty); llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2); // cast val v2i64 Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast"); // extract (0, 1) unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1; llvm::Value *Idx = llvm::ConstantInt::get(SizeTy, Index); Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract"); // cast pointer to i64 & store Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case X86::BI__builtin_ia32_palignr128: case X86::BI__builtin_ia32_palignr256: case X86::BI__builtin_ia32_palignr512_mask: { unsigned ShiftVal = cast(Ops[2])->getZExtValue(); unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); assert(NumElts % 16 == 0); // If palignr is shifting the pair of vectors more than the size of two // lanes, emit zero. if (ShiftVal >= 32) return llvm::Constant::getNullValue(ConvertType(E->getType())); // If palignr is shifting the pair of input vectors more than one lane, // but less than two lanes, convert to shifting in zeroes. if (ShiftVal > 16) { ShiftVal -= 16; Ops[1] = Ops[0]; Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType()); } uint32_t Indices[64]; // 256-bit palignr operates on 128-bit lanes so we need to handle that for (unsigned l = 0; l != NumElts; l += 16) { for (unsigned i = 0; i != 16; ++i) { unsigned Idx = ShiftVal + i; if (Idx >= 16) Idx += NumElts - 16; // End of lane, switch operand. Indices[l + i] = Idx + l; } } Value *Align = Builder.CreateShuffleVector(Ops[1], Ops[0], makeArrayRef(Indices, NumElts), "palignr"); // If this isn't a masked builtin, just return the align operation. if (Ops.size() == 3) return Align; return EmitX86Select(*this, Ops[4], Align, Ops[3]); } case X86::BI__builtin_ia32_vperm2f128_pd256: case X86::BI__builtin_ia32_vperm2f128_ps256: case X86::BI__builtin_ia32_vperm2f128_si256: case X86::BI__builtin_ia32_permti256: { unsigned Imm = cast(Ops[2])->getZExtValue(); unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); // This takes a very simple approach since there are two lanes and a // shuffle can have 2 inputs. So we reserve the first input for the first // lane and the second input for the second lane. This may result in // duplicate sources, but this can be dealt with in the backend. Value *OutOps[2]; uint32_t Indices[8]; for (unsigned l = 0; l != 2; ++l) { // Determine the source for this lane. if (Imm & (1 << ((l * 4) + 3))) OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType()); else if (Imm & (1 << ((l * 4) + 1))) OutOps[l] = Ops[1]; else OutOps[l] = Ops[0]; for (unsigned i = 0; i != NumElts/2; ++i) { // Start with ith element of the source for this lane. unsigned Idx = (l * NumElts) + i; // If bit 0 of the immediate half is set, switch to the high half of // the source. if (Imm & (1 << (l * 4))) Idx += NumElts/2; Indices[(l * (NumElts/2)) + i] = Idx; } } return Builder.CreateShuffleVector(OutOps[0], OutOps[1], makeArrayRef(Indices, NumElts), "vperm"); } case X86::BI__builtin_ia32_movnti: case X86::BI__builtin_ia32_movnti64: case X86::BI__builtin_ia32_movntsd: case X86::BI__builtin_ia32_movntss: { llvm::MDNode *Node = llvm::MDNode::get( getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); Value *Ptr = Ops[0]; Value *Src = Ops[1]; // Extract the 0'th element of the source vector. if (BuiltinID == X86::BI__builtin_ia32_movntsd || BuiltinID == X86::BI__builtin_ia32_movntss) Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract"); // Convert the type of the pointer to a pointer to the stored type. Value *BC = Builder.CreateBitCast( Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast"); // Unaligned nontemporal store of the scalar value. StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC); SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); SI->setAlignment(1); return SI; } case X86::BI__builtin_ia32_selectb_128: case X86::BI__builtin_ia32_selectb_256: case X86::BI__builtin_ia32_selectb_512: case X86::BI__builtin_ia32_selectw_128: case X86::BI__builtin_ia32_selectw_256: case X86::BI__builtin_ia32_selectw_512: case X86::BI__builtin_ia32_selectd_128: case X86::BI__builtin_ia32_selectd_256: case X86::BI__builtin_ia32_selectd_512: case X86::BI__builtin_ia32_selectq_128: case X86::BI__builtin_ia32_selectq_256: case X86::BI__builtin_ia32_selectq_512: case X86::BI__builtin_ia32_selectps_128: case X86::BI__builtin_ia32_selectps_256: case X86::BI__builtin_ia32_selectps_512: case X86::BI__builtin_ia32_selectpd_128: case X86::BI__builtin_ia32_selectpd_256: case X86::BI__builtin_ia32_selectpd_512: return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]); case X86::BI__builtin_ia32_pcmpeqb128_mask: case X86::BI__builtin_ia32_pcmpeqb256_mask: case X86::BI__builtin_ia32_pcmpeqb512_mask: case X86::BI__builtin_ia32_pcmpeqw128_mask: case X86::BI__builtin_ia32_pcmpeqw256_mask: case X86::BI__builtin_ia32_pcmpeqw512_mask: case X86::BI__builtin_ia32_pcmpeqd128_mask: case X86::BI__builtin_ia32_pcmpeqd256_mask: case X86::BI__builtin_ia32_pcmpeqd512_mask: case X86::BI__builtin_ia32_pcmpeqq128_mask: case X86::BI__builtin_ia32_pcmpeqq256_mask: case X86::BI__builtin_ia32_pcmpeqq512_mask: return EmitX86MaskedCompare(*this, 0, false, Ops); case X86::BI__builtin_ia32_pcmpgtb128_mask: case X86::BI__builtin_ia32_pcmpgtb256_mask: case X86::BI__builtin_ia32_pcmpgtb512_mask: case X86::BI__builtin_ia32_pcmpgtw128_mask: case X86::BI__builtin_ia32_pcmpgtw256_mask: case X86::BI__builtin_ia32_pcmpgtw512_mask: case X86::BI__builtin_ia32_pcmpgtd128_mask: case X86::BI__builtin_ia32_pcmpgtd256_mask: case X86::BI__builtin_ia32_pcmpgtd512_mask: case X86::BI__builtin_ia32_pcmpgtq128_mask: case X86::BI__builtin_ia32_pcmpgtq256_mask: case X86::BI__builtin_ia32_pcmpgtq512_mask: return EmitX86MaskedCompare(*this, 6, true, Ops); case X86::BI__builtin_ia32_cmpb128_mask: case X86::BI__builtin_ia32_cmpb256_mask: case X86::BI__builtin_ia32_cmpb512_mask: case X86::BI__builtin_ia32_cmpw128_mask: case X86::BI__builtin_ia32_cmpw256_mask: case X86::BI__builtin_ia32_cmpw512_mask: case X86::BI__builtin_ia32_cmpd128_mask: case X86::BI__builtin_ia32_cmpd256_mask: case X86::BI__builtin_ia32_cmpd512_mask: case X86::BI__builtin_ia32_cmpq128_mask: case X86::BI__builtin_ia32_cmpq256_mask: case X86::BI__builtin_ia32_cmpq512_mask: { unsigned CC = cast(Ops[2])->getZExtValue() & 0x7; return EmitX86MaskedCompare(*this, CC, true, Ops); } case X86::BI__builtin_ia32_ucmpb128_mask: case X86::BI__builtin_ia32_ucmpb256_mask: case X86::BI__builtin_ia32_ucmpb512_mask: case X86::BI__builtin_ia32_ucmpw128_mask: case X86::BI__builtin_ia32_ucmpw256_mask: case X86::BI__builtin_ia32_ucmpw512_mask: case X86::BI__builtin_ia32_ucmpd128_mask: case X86::BI__builtin_ia32_ucmpd256_mask: case X86::BI__builtin_ia32_ucmpd512_mask: case X86::BI__builtin_ia32_ucmpq128_mask: case X86::BI__builtin_ia32_ucmpq256_mask: case X86::BI__builtin_ia32_ucmpq512_mask: { unsigned CC = cast(Ops[2])->getZExtValue() & 0x7; return EmitX86MaskedCompare(*this, CC, false, Ops); } case X86::BI__builtin_ia32_vplzcntd_128_mask: case X86::BI__builtin_ia32_vplzcntd_256_mask: case X86::BI__builtin_ia32_vplzcntd_512_mask: case X86::BI__builtin_ia32_vplzcntq_128_mask: case X86::BI__builtin_ia32_vplzcntq_256_mask: case X86::BI__builtin_ia32_vplzcntq_512_mask: { Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); return EmitX86Select(*this, Ops[2], Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}), Ops[1]); } case X86::BI__builtin_ia32_pabsb128: case X86::BI__builtin_ia32_pabsw128: case X86::BI__builtin_ia32_pabsd128: case X86::BI__builtin_ia32_pabsb256: case X86::BI__builtin_ia32_pabsw256: case X86::BI__builtin_ia32_pabsd256: case X86::BI__builtin_ia32_pabsq128_mask: case X86::BI__builtin_ia32_pabsq256_mask: case X86::BI__builtin_ia32_pabsb512_mask: case X86::BI__builtin_ia32_pabsw512_mask: case X86::BI__builtin_ia32_pabsd512_mask: case X86::BI__builtin_ia32_pabsq512_mask: return EmitX86Abs(*this, Ops); case X86::BI__builtin_ia32_pmaxsb128: case X86::BI__builtin_ia32_pmaxsw128: case X86::BI__builtin_ia32_pmaxsd128: case X86::BI__builtin_ia32_pmaxsq128_mask: case X86::BI__builtin_ia32_pmaxsb256: case X86::BI__builtin_ia32_pmaxsw256: case X86::BI__builtin_ia32_pmaxsd256: case X86::BI__builtin_ia32_pmaxsq256_mask: case X86::BI__builtin_ia32_pmaxsb512_mask: case X86::BI__builtin_ia32_pmaxsw512_mask: case X86::BI__builtin_ia32_pmaxsd512_mask: case X86::BI__builtin_ia32_pmaxsq512_mask: return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops); case X86::BI__builtin_ia32_pmaxub128: case X86::BI__builtin_ia32_pmaxuw128: case X86::BI__builtin_ia32_pmaxud128: case X86::BI__builtin_ia32_pmaxuq128_mask: case X86::BI__builtin_ia32_pmaxub256: case X86::BI__builtin_ia32_pmaxuw256: case X86::BI__builtin_ia32_pmaxud256: case X86::BI__builtin_ia32_pmaxuq256_mask: case X86::BI__builtin_ia32_pmaxub512_mask: case X86::BI__builtin_ia32_pmaxuw512_mask: case X86::BI__builtin_ia32_pmaxud512_mask: case X86::BI__builtin_ia32_pmaxuq512_mask: return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops); case X86::BI__builtin_ia32_pminsb128: case X86::BI__builtin_ia32_pminsw128: case X86::BI__builtin_ia32_pminsd128: case X86::BI__builtin_ia32_pminsq128_mask: case X86::BI__builtin_ia32_pminsb256: case X86::BI__builtin_ia32_pminsw256: case X86::BI__builtin_ia32_pminsd256: case X86::BI__builtin_ia32_pminsq256_mask: case X86::BI__builtin_ia32_pminsb512_mask: case X86::BI__builtin_ia32_pminsw512_mask: case X86::BI__builtin_ia32_pminsd512_mask: case X86::BI__builtin_ia32_pminsq512_mask: return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops); case X86::BI__builtin_ia32_pminub128: case X86::BI__builtin_ia32_pminuw128: case X86::BI__builtin_ia32_pminud128: case X86::BI__builtin_ia32_pminuq128_mask: case X86::BI__builtin_ia32_pminub256: case X86::BI__builtin_ia32_pminuw256: case X86::BI__builtin_ia32_pminud256: case X86::BI__builtin_ia32_pminuq256_mask: case X86::BI__builtin_ia32_pminub512_mask: case X86::BI__builtin_ia32_pminuw512_mask: case X86::BI__builtin_ia32_pminud512_mask: case X86::BI__builtin_ia32_pminuq512_mask: return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops); // 3DNow! case X86::BI__builtin_ia32_pswapdsf: case X86::BI__builtin_ia32_pswapdsi: { llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext()); Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast"); llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd); return Builder.CreateCall(F, Ops, "pswapd"); } case X86::BI__builtin_ia32_rdrand16_step: case X86::BI__builtin_ia32_rdrand32_step: case X86::BI__builtin_ia32_rdrand64_step: case X86::BI__builtin_ia32_rdseed16_step: case X86::BI__builtin_ia32_rdseed32_step: case X86::BI__builtin_ia32_rdseed64_step: { Intrinsic::ID ID; switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); case X86::BI__builtin_ia32_rdrand16_step: ID = Intrinsic::x86_rdrand_16; break; case X86::BI__builtin_ia32_rdrand32_step: ID = Intrinsic::x86_rdrand_32; break; case X86::BI__builtin_ia32_rdrand64_step: ID = Intrinsic::x86_rdrand_64; break; case X86::BI__builtin_ia32_rdseed16_step: ID = Intrinsic::x86_rdseed_16; break; case X86::BI__builtin_ia32_rdseed32_step: ID = Intrinsic::x86_rdseed_32; break; case X86::BI__builtin_ia32_rdseed64_step: ID = Intrinsic::x86_rdseed_64; break; } Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID)); Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0), Ops[0]); return Builder.CreateExtractValue(Call, 1); } // SSE packed comparison intrinsics case X86::BI__builtin_ia32_cmpeqps: case X86::BI__builtin_ia32_cmpeqpd: return getVectorFCmpIR(CmpInst::FCMP_OEQ); case X86::BI__builtin_ia32_cmpltps: case X86::BI__builtin_ia32_cmpltpd: return getVectorFCmpIR(CmpInst::FCMP_OLT); case X86::BI__builtin_ia32_cmpleps: case X86::BI__builtin_ia32_cmplepd: return getVectorFCmpIR(CmpInst::FCMP_OLE); case X86::BI__builtin_ia32_cmpunordps: case X86::BI__builtin_ia32_cmpunordpd: return getVectorFCmpIR(CmpInst::FCMP_UNO); case X86::BI__builtin_ia32_cmpneqps: case X86::BI__builtin_ia32_cmpneqpd: return getVectorFCmpIR(CmpInst::FCMP_UNE); case X86::BI__builtin_ia32_cmpnltps: case X86::BI__builtin_ia32_cmpnltpd: return getVectorFCmpIR(CmpInst::FCMP_UGE); case X86::BI__builtin_ia32_cmpnleps: case X86::BI__builtin_ia32_cmpnlepd: return getVectorFCmpIR(CmpInst::FCMP_UGT); case X86::BI__builtin_ia32_cmpordps: case X86::BI__builtin_ia32_cmpordpd: return getVectorFCmpIR(CmpInst::FCMP_ORD); case X86::BI__builtin_ia32_cmpps: case X86::BI__builtin_ia32_cmpps256: case X86::BI__builtin_ia32_cmppd: case X86::BI__builtin_ia32_cmppd256: { unsigned CC = cast(Ops[2])->getZExtValue(); // If this one of the SSE immediates, we can use native IR. if (CC < 8) { FCmpInst::Predicate Pred; switch (CC) { case 0: Pred = FCmpInst::FCMP_OEQ; break; case 1: Pred = FCmpInst::FCMP_OLT; break; case 2: Pred = FCmpInst::FCMP_OLE; break; case 3: Pred = FCmpInst::FCMP_UNO; break; case 4: Pred = FCmpInst::FCMP_UNE; break; case 5: Pred = FCmpInst::FCMP_UGE; break; case 6: Pred = FCmpInst::FCMP_UGT; break; case 7: Pred = FCmpInst::FCMP_ORD; break; } return getVectorFCmpIR(Pred); } // We can't handle 8-31 immediates with native IR, use the intrinsic. // Except for predicates that create constants. Intrinsic::ID ID; switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); case X86::BI__builtin_ia32_cmpps: ID = Intrinsic::x86_sse_cmp_ps; break; case X86::BI__builtin_ia32_cmpps256: // _CMP_TRUE_UQ, _CMP_TRUE_US produce -1,-1... vector // on any input and _CMP_FALSE_OQ, _CMP_FALSE_OS produce 0, 0... if (CC == 0xf || CC == 0xb || CC == 0x1b || CC == 0x1f) { Value *Constant = (CC == 0xf || CC == 0x1f) ? llvm::Constant::getAllOnesValue(Builder.getInt32Ty()) : llvm::Constant::getNullValue(Builder.getInt32Ty()); Value *Vec = Builder.CreateVectorSplat( Ops[0]->getType()->getVectorNumElements(), Constant); return Builder.CreateBitCast(Vec, Ops[0]->getType()); } ID = Intrinsic::x86_avx_cmp_ps_256; break; case X86::BI__builtin_ia32_cmppd: ID = Intrinsic::x86_sse2_cmp_pd; break; case X86::BI__builtin_ia32_cmppd256: // _CMP_TRUE_UQ, _CMP_TRUE_US produce -1,-1... vector // on any input and _CMP_FALSE_OQ, _CMP_FALSE_OS produce 0, 0... if (CC == 0xf || CC == 0xb || CC == 0x1b || CC == 0x1f) { Value *Constant = (CC == 0xf || CC == 0x1f) ? llvm::Constant::getAllOnesValue(Builder.getInt64Ty()) : llvm::Constant::getNullValue(Builder.getInt64Ty()); Value *Vec = Builder.CreateVectorSplat( Ops[0]->getType()->getVectorNumElements(), Constant); return Builder.CreateBitCast(Vec, Ops[0]->getType()); } ID = Intrinsic::x86_avx_cmp_pd_256; break; } return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); } // SSE scalar comparison intrinsics case X86::BI__builtin_ia32_cmpeqss: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0); case X86::BI__builtin_ia32_cmpltss: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1); case X86::BI__builtin_ia32_cmpless: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2); case X86::BI__builtin_ia32_cmpunordss: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3); case X86::BI__builtin_ia32_cmpneqss: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4); case X86::BI__builtin_ia32_cmpnltss: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5); case X86::BI__builtin_ia32_cmpnless: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6); case X86::BI__builtin_ia32_cmpordss: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7); case X86::BI__builtin_ia32_cmpeqsd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0); case X86::BI__builtin_ia32_cmpltsd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1); case X86::BI__builtin_ia32_cmplesd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2); case X86::BI__builtin_ia32_cmpunordsd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3); case X86::BI__builtin_ia32_cmpneqsd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4); case X86::BI__builtin_ia32_cmpnltsd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5); case X86::BI__builtin_ia32_cmpnlesd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6); case X86::BI__builtin_ia32_cmpordsd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7); case X86::BI__emul: case X86::BI__emulu: { llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64); bool isSigned = (BuiltinID == X86::BI__emul); Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned); Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned); return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned); } case X86::BI__mulh: case X86::BI__umulh: case X86::BI_mul128: case X86::BI_umul128: { llvm::Type *ResType = ConvertType(E->getType()); llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128); Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned); Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned); Value *MulResult, *HigherBits; if (IsSigned) { MulResult = Builder.CreateNSWMul(LHS, RHS); HigherBits = Builder.CreateAShr(MulResult, 64); } else { MulResult = Builder.CreateNUWMul(LHS, RHS); HigherBits = Builder.CreateLShr(MulResult, 64); } HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh) return HigherBits; Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2)); Builder.CreateStore(HigherBits, HighBitsAddress); return Builder.CreateIntCast(MulResult, ResType, IsSigned); } case X86::BI__faststorefence: { return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, llvm::SyncScope::System); } case X86::BI_ReadWriteBarrier: case X86::BI_ReadBarrier: case X86::BI_WriteBarrier: { return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, llvm::SyncScope::SingleThread); } case X86::BI_BitScanForward: case X86::BI_BitScanForward64: return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); case X86::BI_BitScanReverse: case X86::BI_BitScanReverse64: return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); case X86::BI_InterlockedAnd64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); case X86::BI_InterlockedExchange64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); case X86::BI_InterlockedExchangeAdd64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); case X86::BI_InterlockedExchangeSub64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); case X86::BI_InterlockedOr64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); case X86::BI_InterlockedXor64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); case X86::BI_InterlockedDecrement64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); case X86::BI_InterlockedIncrement64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); case X86::BI_AddressOfReturnAddress: { Value *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress); return Builder.CreateCall(F); } case X86::BI__stosb: { // We treat __stosb as a volatile memset - it may not generate "rep stosb" // instruction, but it will create a memset that won't be optimized away. return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true); } case X86::BI__ud2: // llvm.trap makes a ud2a instruction on x86. return EmitTrapCall(Intrinsic::trap); case X86::BI__int2c: { // This syscall signals a driver assertion failure in x86 NT kernels. llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*SideEffects=*/true); llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::NoReturn); CallSite CS = Builder.CreateCall(IA); CS.setAttributes(NoReturnAttr); return CS.getInstruction(); } case X86::BI__readfsbyte: case X86::BI__readfsword: case X86::BI__readfsdword: case X86::BI__readfsqword: { llvm::Type *IntTy = ConvertType(E->getType()); Value *Ptr = Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)), llvm::PointerType::get(IntTy, 257)); LoadInst *Load = Builder.CreateAlignedLoad( IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); Load->setVolatile(true); return Load; } case X86::BI__readgsbyte: case X86::BI__readgsword: case X86::BI__readgsdword: case X86::BI__readgsqword: { llvm::Type *IntTy = ConvertType(E->getType()); Value *Ptr = Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)), llvm::PointerType::get(IntTy, 256)); LoadInst *Load = Builder.CreateAlignedLoad( IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); Load->setVolatile(true); return Load; } } } Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { SmallVector Ops; for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) Ops.push_back(EmitScalarExpr(E->getArg(i))); Intrinsic::ID ID = Intrinsic::not_intrinsic; switch (BuiltinID) { default: return nullptr; // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we // call __builtin_readcyclecounter. case PPC::BI__builtin_ppc_get_timebase: return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter)); // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr case PPC::BI__builtin_altivec_lvx: case PPC::BI__builtin_altivec_lvxl: case PPC::BI__builtin_altivec_lvebx: case PPC::BI__builtin_altivec_lvehx: case PPC::BI__builtin_altivec_lvewx: case PPC::BI__builtin_altivec_lvsl: case PPC::BI__builtin_altivec_lvsr: case PPC::BI__builtin_vsx_lxvd2x: case PPC::BI__builtin_vsx_lxvw4x: case PPC::BI__builtin_vsx_lxvd2x_be: case PPC::BI__builtin_vsx_lxvw4x_be: case PPC::BI__builtin_vsx_lxvl: case PPC::BI__builtin_vsx_lxvll: { if(BuiltinID == PPC::BI__builtin_vsx_lxvl || BuiltinID == PPC::BI__builtin_vsx_lxvll){ Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy); }else { Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]); Ops.pop_back(); } switch (BuiltinID) { default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!"); case PPC::BI__builtin_altivec_lvx: ID = Intrinsic::ppc_altivec_lvx; break; case PPC::BI__builtin_altivec_lvxl: ID = Intrinsic::ppc_altivec_lvxl; break; case PPC::BI__builtin_altivec_lvebx: ID = Intrinsic::ppc_altivec_lvebx; break; case PPC::BI__builtin_altivec_lvehx: ID = Intrinsic::ppc_altivec_lvehx; break; case PPC::BI__builtin_altivec_lvewx: ID = Intrinsic::ppc_altivec_lvewx; break; case PPC::BI__builtin_altivec_lvsl: ID = Intrinsic::ppc_altivec_lvsl; break; case PPC::BI__builtin_altivec_lvsr: ID = Intrinsic::ppc_altivec_lvsr; break; case PPC::BI__builtin_vsx_lxvd2x: ID = Intrinsic::ppc_vsx_lxvd2x; break; case PPC::BI__builtin_vsx_lxvw4x: ID = Intrinsic::ppc_vsx_lxvw4x; break; case PPC::BI__builtin_vsx_lxvd2x_be: ID = Intrinsic::ppc_vsx_lxvd2x_be; break; case PPC::BI__builtin_vsx_lxvw4x_be: ID = Intrinsic::ppc_vsx_lxvw4x_be; break; case PPC::BI__builtin_vsx_lxvl: ID = Intrinsic::ppc_vsx_lxvl; break; case PPC::BI__builtin_vsx_lxvll: ID = Intrinsic::ppc_vsx_lxvll; break; } llvm::Function *F = CGM.getIntrinsic(ID); return Builder.CreateCall(F, Ops, ""); } // vec_st, vec_xst_be case PPC::BI__builtin_altivec_stvx: case PPC::BI__builtin_altivec_stvxl: case PPC::BI__builtin_altivec_stvebx: case PPC::BI__builtin_altivec_stvehx: case PPC::BI__builtin_altivec_stvewx: case PPC::BI__builtin_vsx_stxvd2x: case PPC::BI__builtin_vsx_stxvw4x: case PPC::BI__builtin_vsx_stxvd2x_be: case PPC::BI__builtin_vsx_stxvw4x_be: case PPC::BI__builtin_vsx_stxvl: case PPC::BI__builtin_vsx_stxvll: { if(BuiltinID == PPC::BI__builtin_vsx_stxvl || BuiltinID == PPC::BI__builtin_vsx_stxvll ){ Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); }else { Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]); Ops.pop_back(); } switch (BuiltinID) { default: llvm_unreachable("Unsupported st intrinsic!"); case PPC::BI__builtin_altivec_stvx: ID = Intrinsic::ppc_altivec_stvx; break; case PPC::BI__builtin_altivec_stvxl: ID = Intrinsic::ppc_altivec_stvxl; break; case PPC::BI__builtin_altivec_stvebx: ID = Intrinsic::ppc_altivec_stvebx; break; case PPC::BI__builtin_altivec_stvehx: ID = Intrinsic::ppc_altivec_stvehx; break; case PPC::BI__builtin_altivec_stvewx: ID = Intrinsic::ppc_altivec_stvewx; break; case PPC::BI__builtin_vsx_stxvd2x: ID = Intrinsic::ppc_vsx_stxvd2x; break; case PPC::BI__builtin_vsx_stxvw4x: ID = Intrinsic::ppc_vsx_stxvw4x; break; case PPC::BI__builtin_vsx_stxvd2x_be: ID = Intrinsic::ppc_vsx_stxvd2x_be; break; case PPC::BI__builtin_vsx_stxvw4x_be: ID = Intrinsic::ppc_vsx_stxvw4x_be; break; case PPC::BI__builtin_vsx_stxvl: ID = Intrinsic::ppc_vsx_stxvl; break; case PPC::BI__builtin_vsx_stxvll: ID = Intrinsic::ppc_vsx_stxvll; break; } llvm::Function *F = CGM.getIntrinsic(ID); return Builder.CreateCall(F, Ops, ""); } // Square root case PPC::BI__builtin_vsx_xvsqrtsp: case PPC::BI__builtin_vsx_xvsqrtdp: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); ID = Intrinsic::sqrt; llvm::Function *F = CGM.getIntrinsic(ID, ResultType); return Builder.CreateCall(F, X); } // Count leading zeros case PPC::BI__builtin_altivec_vclzb: case PPC::BI__builtin_altivec_vclzh: case PPC::BI__builtin_altivec_vclzw: case PPC::BI__builtin_altivec_vclzd: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); return Builder.CreateCall(F, {X, Undef}); } case PPC::BI__builtin_altivec_vctzb: case PPC::BI__builtin_altivec_vctzh: case PPC::BI__builtin_altivec_vctzw: case PPC::BI__builtin_altivec_vctzd: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); return Builder.CreateCall(F, {X, Undef}); } case PPC::BI__builtin_altivec_vpopcntb: case PPC::BI__builtin_altivec_vpopcnth: case PPC::BI__builtin_altivec_vpopcntw: case PPC::BI__builtin_altivec_vpopcntd: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); return Builder.CreateCall(F, X); } // Copy sign case PPC::BI__builtin_vsx_xvcpsgnsp: case PPC::BI__builtin_vsx_xvcpsgndp: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); ID = Intrinsic::copysign; llvm::Function *F = CGM.getIntrinsic(ID, ResultType); return Builder.CreateCall(F, {X, Y}); } // Rounding/truncation case PPC::BI__builtin_vsx_xvrspip: case PPC::BI__builtin_vsx_xvrdpip: case PPC::BI__builtin_vsx_xvrdpim: case PPC::BI__builtin_vsx_xvrspim: case PPC::BI__builtin_vsx_xvrdpi: case PPC::BI__builtin_vsx_xvrspi: case PPC::BI__builtin_vsx_xvrdpic: case PPC::BI__builtin_vsx_xvrspic: case PPC::BI__builtin_vsx_xvrdpiz: case PPC::BI__builtin_vsx_xvrspiz: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim || BuiltinID == PPC::BI__builtin_vsx_xvrspim) ID = Intrinsic::floor; else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi || BuiltinID == PPC::BI__builtin_vsx_xvrspi) ID = Intrinsic::round; else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic || BuiltinID == PPC::BI__builtin_vsx_xvrspic) ID = Intrinsic::nearbyint; else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip || BuiltinID == PPC::BI__builtin_vsx_xvrspip) ID = Intrinsic::ceil; else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz || BuiltinID == PPC::BI__builtin_vsx_xvrspiz) ID = Intrinsic::trunc; llvm::Function *F = CGM.getIntrinsic(ID, ResultType); return Builder.CreateCall(F, X); } // Absolute value case PPC::BI__builtin_vsx_xvabsdp: case PPC::BI__builtin_vsx_xvabssp: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); return Builder.CreateCall(F, X); } // FMA variations case PPC::BI__builtin_vsx_xvmaddadp: case PPC::BI__builtin_vsx_xvmaddasp: case PPC::BI__builtin_vsx_xvnmaddadp: case PPC::BI__builtin_vsx_xvnmaddasp: case PPC::BI__builtin_vsx_xvmsubadp: case PPC::BI__builtin_vsx_xvmsubasp: case PPC::BI__builtin_vsx_xvnmsubadp: case PPC::BI__builtin_vsx_xvnmsubasp: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); Value *Z = EmitScalarExpr(E->getArg(2)); Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); switch (BuiltinID) { case PPC::BI__builtin_vsx_xvmaddadp: case PPC::BI__builtin_vsx_xvmaddasp: return Builder.CreateCall(F, {X, Y, Z}); case PPC::BI__builtin_vsx_xvnmaddadp: case PPC::BI__builtin_vsx_xvnmaddasp: return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub"); case PPC::BI__builtin_vsx_xvmsubadp: case PPC::BI__builtin_vsx_xvmsubasp: return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")}); case PPC::BI__builtin_vsx_xvnmsubadp: case PPC::BI__builtin_vsx_xvnmsubasp: Value *FsubRes = Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")}); return Builder.CreateFSub(Zero, FsubRes, "sub"); } llvm_unreachable("Unknown FMA operation"); return nullptr; // Suppress no-return warning } case PPC::BI__builtin_vsx_insertword: { llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw); // Third argument is a compile time constant int. It must be clamped to // to the range [0, 12]. ConstantInt *ArgCI = dyn_cast(Ops[2]); assert(ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"); const int64_t MaxIndex = 12; int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); // The builtin semantics don't exactly match the xxinsertw instructions // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the // word from the first argument, and inserts it in the second argument. The // instruction extracts the word from its second input register and inserts // it into its first input register, so swap the first and second arguments. std::swap(Ops[0], Ops[1]); // Need to cast the second argument from a vector of unsigned int to a // vector of long long. Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2)); if (getTarget().isLittleEndian()) { // Create a shuffle mask of (1, 0) Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1), ConstantInt::get(Int32Ty, 0) }; Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); // Reverse the double words in the vector we will extract from. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask); // Reverse the index. Index = MaxIndex - Index; } // Intrinsic expects the first arg to be a vector of int. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4)); Ops[2] = ConstantInt::getSigned(Int32Ty, Index); return Builder.CreateCall(F, Ops); } case PPC::BI__builtin_vsx_extractuword: { llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw); // Intrinsic expects the first argument to be a vector of doublewords. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); // The second argument is a compile time constant int that needs to // be clamped to the range [0, 12]. ConstantInt *ArgCI = dyn_cast(Ops[1]); assert(ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"); const int64_t MaxIndex = 12; int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); if (getTarget().isLittleEndian()) { // Reverse the index. Index = MaxIndex - Index; Ops[1] = ConstantInt::getSigned(Int32Ty, Index); // Emit the call, then reverse the double words of the results vector. Value *Call = Builder.CreateCall(F, Ops); // Create a shuffle mask of (1, 0) Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1), ConstantInt::get(Int32Ty, 0) }; Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask); return ShuffleCall; } else { Ops[1] = ConstantInt::getSigned(Int32Ty, Index); return Builder.CreateCall(F, Ops); } } case PPC::BI__builtin_vsx_xxpermdi: { ConstantInt *ArgCI = dyn_cast(Ops[2]); assert(ArgCI && "Third arg must be constant integer!"); unsigned Index = ArgCI->getZExtValue(); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2)); // Element zero comes from the first input vector and element one comes from // the second. The element indices within each vector are numbered in big // endian order so the shuffle mask must be adjusted for this on little // endian platforms (i.e. index is complemented and source vector reversed). unsigned ElemIdx0; unsigned ElemIdx1; if (getTarget().isLittleEndian()) { ElemIdx0 = (~Index & 1) + 2; ElemIdx1 = (~Index & 2) >> 1; } else { // BigEndian ElemIdx0 = (Index & 2) >> 1; ElemIdx1 = 2 + (Index & 1); } Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0), ConstantInt::get(Int32Ty, ElemIdx1)}; Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); Value *ShuffleCall = Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask); QualType BIRetType = E->getType(); auto RetTy = ConvertType(BIRetType); return Builder.CreateBitCast(ShuffleCall, RetTy); } case PPC::BI__builtin_vsx_xxsldwi: { ConstantInt *ArgCI = dyn_cast(Ops[2]); assert(ArgCI && "Third argument must be a compile time constant"); unsigned Index = ArgCI->getZExtValue() & 0x3; Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4)); Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4)); // Create a shuffle mask unsigned ElemIdx0; unsigned ElemIdx1; unsigned ElemIdx2; unsigned ElemIdx3; if (getTarget().isLittleEndian()) { // Little endian element N comes from element 8+N-Index of the // concatenated wide vector (of course, using modulo arithmetic on // the total number of elements). ElemIdx0 = (8 - Index) % 8; ElemIdx1 = (9 - Index) % 8; ElemIdx2 = (10 - Index) % 8; ElemIdx3 = (11 - Index) % 8; } else { // Big endian ElemIdx = Index + N ElemIdx0 = Index; ElemIdx1 = Index + 1; ElemIdx2 = Index + 2; ElemIdx3 = Index + 3; } Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0), ConstantInt::get(Int32Ty, ElemIdx1), ConstantInt::get(Int32Ty, ElemIdx2), ConstantInt::get(Int32Ty, ElemIdx3)}; Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); Value *ShuffleCall = Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask); QualType BIRetType = E->getType(); auto RetTy = ConvertType(BIRetType); return Builder.CreateBitCast(ShuffleCall, RetTy); } } } Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { switch (BuiltinID) { case AMDGPU::BI__builtin_amdgcn_div_scale: case AMDGPU::BI__builtin_amdgcn_div_scalef: { // Translate from the intrinsics's struct return to the builtin's out // argument. Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3)); llvm::Value *X = EmitScalarExpr(E->getArg(0)); llvm::Value *Y = EmitScalarExpr(E->getArg(1)); llvm::Value *Z = EmitScalarExpr(E->getArg(2)); llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale, X->getType()); llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z}); llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0); llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1); llvm::Type *RealFlagType = FlagOutPtr.getPointer()->getType()->getPointerElementType(); llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType); Builder.CreateStore(FlagExt, FlagOutPtr); return Result; } case AMDGPU::BI__builtin_amdgcn_div_fmas: case AMDGPU::BI__builtin_amdgcn_div_fmasf: { llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); llvm::Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas, Src0->getType()); llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3); return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool}); } case AMDGPU::BI__builtin_amdgcn_ds_swizzle: return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle); case AMDGPU::BI__builtin_amdgcn_mov_dpp: { llvm::SmallVector Args; for (unsigned I = 0; I != 5; ++I) Args.push_back(EmitScalarExpr(E->getArg(I))); Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_mov_dpp, Args[0]->getType()); return Builder.CreateCall(F, Args); } case AMDGPU::BI__builtin_amdgcn_div_fixup: case AMDGPU::BI__builtin_amdgcn_div_fixupf: case AMDGPU::BI__builtin_amdgcn_div_fixuph: return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup); case AMDGPU::BI__builtin_amdgcn_trig_preop: case AMDGPU::BI__builtin_amdgcn_trig_preopf: return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop); case AMDGPU::BI__builtin_amdgcn_rcp: case AMDGPU::BI__builtin_amdgcn_rcpf: case AMDGPU::BI__builtin_amdgcn_rcph: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp); case AMDGPU::BI__builtin_amdgcn_rsq: case AMDGPU::BI__builtin_amdgcn_rsqf: case AMDGPU::BI__builtin_amdgcn_rsqh: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq); case AMDGPU::BI__builtin_amdgcn_rsq_clamp: case AMDGPU::BI__builtin_amdgcn_rsq_clampf: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp); case AMDGPU::BI__builtin_amdgcn_sinf: case AMDGPU::BI__builtin_amdgcn_sinh: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin); case AMDGPU::BI__builtin_amdgcn_cosf: case AMDGPU::BI__builtin_amdgcn_cosh: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos); case AMDGPU::BI__builtin_amdgcn_log_clampf: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp); case AMDGPU::BI__builtin_amdgcn_ldexp: case AMDGPU::BI__builtin_amdgcn_ldexpf: case AMDGPU::BI__builtin_amdgcn_ldexph: return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp); case AMDGPU::BI__builtin_amdgcn_frexp_mant: case AMDGPU::BI__builtin_amdgcn_frexp_mantf: case AMDGPU::BI__builtin_amdgcn_frexp_manth: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant); case AMDGPU::BI__builtin_amdgcn_frexp_exp: case AMDGPU::BI__builtin_amdgcn_frexp_expf: { Value *Src0 = EmitScalarExpr(E->getArg(0)); Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, { Builder.getInt32Ty(), Src0->getType() }); return Builder.CreateCall(F, Src0); } case AMDGPU::BI__builtin_amdgcn_frexp_exph: { Value *Src0 = EmitScalarExpr(E->getArg(0)); Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, { Builder.getInt16Ty(), Src0->getType() }); return Builder.CreateCall(F, Src0); } case AMDGPU::BI__builtin_amdgcn_fract: case AMDGPU::BI__builtin_amdgcn_fractf: case AMDGPU::BI__builtin_amdgcn_fracth: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract); case AMDGPU::BI__builtin_amdgcn_lerp: return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp); case AMDGPU::BI__builtin_amdgcn_uicmp: case AMDGPU::BI__builtin_amdgcn_uicmpl: case AMDGPU::BI__builtin_amdgcn_sicmp: case AMDGPU::BI__builtin_amdgcn_sicmpl: return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_icmp); case AMDGPU::BI__builtin_amdgcn_fcmp: case AMDGPU::BI__builtin_amdgcn_fcmpf: return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fcmp); case AMDGPU::BI__builtin_amdgcn_class: case AMDGPU::BI__builtin_amdgcn_classf: case AMDGPU::BI__builtin_amdgcn_classh: return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class); case AMDGPU::BI__builtin_amdgcn_fmed3f: case AMDGPU::BI__builtin_amdgcn_fmed3h: return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3); case AMDGPU::BI__builtin_amdgcn_read_exec: { CallInst *CI = cast( EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec")); CI->setConvergent(); return CI; } case AMDGPU::BI__builtin_amdgcn_read_exec_lo: case AMDGPU::BI__builtin_amdgcn_read_exec_hi: { StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ? "exec_lo" : "exec_hi"; CallInst *CI = cast( EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName)); CI->setConvergent(); return CI; } // amdgcn workitem case AMDGPU::BI__builtin_amdgcn_workitem_id_x: return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024); case AMDGPU::BI__builtin_amdgcn_workitem_id_y: return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024); case AMDGPU::BI__builtin_amdgcn_workitem_id_z: return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024); // r600 intrinsics case AMDGPU::BI__builtin_r600_recipsqrt_ieee: case AMDGPU::BI__builtin_r600_recipsqrt_ieeef: return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee); case AMDGPU::BI__builtin_r600_read_tidig_x: return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024); case AMDGPU::BI__builtin_r600_read_tidig_y: return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024); case AMDGPU::BI__builtin_r600_read_tidig_z: return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024); default: return nullptr; } } /// Handle a SystemZ function in which the final argument is a pointer /// to an int that receives the post-instruction CC value. At the LLVM level /// this is represented as a function that returns a {result, cc} pair. static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF, unsigned IntrinsicID, const CallExpr *E) { unsigned NumArgs = E->getNumArgs() - 1; SmallVector Args(NumArgs); for (unsigned I = 0; I < NumArgs; ++I) Args[I] = CGF.EmitScalarExpr(E->getArg(I)); Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs)); Value *F = CGF.CGM.getIntrinsic(IntrinsicID); Value *Call = CGF.Builder.CreateCall(F, Args); Value *CC = CGF.Builder.CreateExtractValue(Call, 1); CGF.Builder.CreateStore(CC, CCPtr); return CGF.Builder.CreateExtractValue(Call, 0); } Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { switch (BuiltinID) { case SystemZ::BI__builtin_tbegin: { Value *TDB = EmitScalarExpr(E->getArg(0)); Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin); return Builder.CreateCall(F, {TDB, Control}); } case SystemZ::BI__builtin_tbegin_nofloat: { Value *TDB = EmitScalarExpr(E->getArg(0)); Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat); return Builder.CreateCall(F, {TDB, Control}); } case SystemZ::BI__builtin_tbeginc: { Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy); Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08); Value *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc); return Builder.CreateCall(F, {TDB, Control}); } case SystemZ::BI__builtin_tabort: { Value *Data = EmitScalarExpr(E->getArg(0)); Value *F = CGM.getIntrinsic(Intrinsic::s390_tabort); return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort")); } case SystemZ::BI__builtin_non_tx_store: { Value *Address = EmitScalarExpr(E->getArg(0)); Value *Data = EmitScalarExpr(E->getArg(1)); Value *F = CGM.getIntrinsic(Intrinsic::s390_ntstg); return Builder.CreateCall(F, {Data, Address}); } // Vector builtins. Note that most vector builtins are mapped automatically // to target-specific LLVM intrinsics. The ones handled specially here can // be represented via standard LLVM IR, which is preferable to enable common // LLVM optimizations. case SystemZ::BI__builtin_s390_vpopctb: case SystemZ::BI__builtin_s390_vpopcth: case SystemZ::BI__builtin_s390_vpopctf: case SystemZ::BI__builtin_s390_vpopctg: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); return Builder.CreateCall(F, X); } case SystemZ::BI__builtin_s390_vclzb: case SystemZ::BI__builtin_s390_vclzh: case SystemZ::BI__builtin_s390_vclzf: case SystemZ::BI__builtin_s390_vclzg: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); return Builder.CreateCall(F, {X, Undef}); } case SystemZ::BI__builtin_s390_vctzb: case SystemZ::BI__builtin_s390_vctzh: case SystemZ::BI__builtin_s390_vctzf: case SystemZ::BI__builtin_s390_vctzg: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); return Builder.CreateCall(F, {X, Undef}); } case SystemZ::BI__builtin_s390_vfsqsb: case SystemZ::BI__builtin_s390_vfsqdb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); return Builder.CreateCall(F, X); } case SystemZ::BI__builtin_s390_vfmasb: case SystemZ::BI__builtin_s390_vfmadb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); Value *Z = EmitScalarExpr(E->getArg(2)); Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); return Builder.CreateCall(F, {X, Y, Z}); } case SystemZ::BI__builtin_s390_vfmssb: case SystemZ::BI__builtin_s390_vfmsdb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); Value *Z = EmitScalarExpr(E->getArg(2)); Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")}); } case SystemZ::BI__builtin_s390_vfnmasb: case SystemZ::BI__builtin_s390_vfnmadb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); Value *Z = EmitScalarExpr(E->getArg(2)); Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub"); } case SystemZ::BI__builtin_s390_vfnmssb: case SystemZ::BI__builtin_s390_vfnmsdb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); Value *Z = EmitScalarExpr(E->getArg(2)); Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); Value *NegZ = Builder.CreateFSub(Zero, Z, "sub"); return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ})); } case SystemZ::BI__builtin_s390_vflpsb: case SystemZ::BI__builtin_s390_vflpdb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); return Builder.CreateCall(F, X); } case SystemZ::BI__builtin_s390_vflnsb: case SystemZ::BI__builtin_s390_vflndb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub"); } case SystemZ::BI__builtin_s390_vfisb: case SystemZ::BI__builtin_s390_vfidb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); // Constant-fold the M4 and M5 mask arguments. llvm::APSInt M4, M5; bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext()); bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext()); assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?"); (void)IsConstM4; (void)IsConstM5; // Check whether this instance can be represented via a LLVM standard // intrinsic. We only support some combinations of M4 and M5. Intrinsic::ID ID = Intrinsic::not_intrinsic; switch (M4.getZExtValue()) { default: break; case 0: // IEEE-inexact exception allowed switch (M5.getZExtValue()) { default: break; case 0: ID = Intrinsic::rint; break; } break; case 4: // IEEE-inexact exception suppressed switch (M5.getZExtValue()) { default: break; case 0: ID = Intrinsic::nearbyint; break; case 1: ID = Intrinsic::round; break; case 5: ID = Intrinsic::trunc; break; case 6: ID = Intrinsic::ceil; break; case 7: ID = Intrinsic::floor; break; } break; } if (ID != Intrinsic::not_intrinsic) { Function *F = CGM.getIntrinsic(ID, ResultType); return Builder.CreateCall(F, X); } switch (BuiltinID) { case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break; case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break; default: llvm_unreachable("Unknown BuiltinID"); } Function *F = CGM.getIntrinsic(ID); Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5); return Builder.CreateCall(F, {X, M4Value, M5Value}); } case SystemZ::BI__builtin_s390_vfmaxsb: case SystemZ::BI__builtin_s390_vfmaxdb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); // Constant-fold the M4 mask argument. llvm::APSInt M4; bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext()); assert(IsConstM4 && "Constant arg isn't actually constant?"); (void)IsConstM4; // Check whether this instance can be represented via a LLVM standard // intrinsic. We only support some values of M4. Intrinsic::ID ID = Intrinsic::not_intrinsic; switch (M4.getZExtValue()) { default: break; case 4: ID = Intrinsic::maxnum; break; } if (ID != Intrinsic::not_intrinsic) { Function *F = CGM.getIntrinsic(ID, ResultType); return Builder.CreateCall(F, {X, Y}); } switch (BuiltinID) { case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break; case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break; default: llvm_unreachable("Unknown BuiltinID"); } Function *F = CGM.getIntrinsic(ID); Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); return Builder.CreateCall(F, {X, Y, M4Value}); } case SystemZ::BI__builtin_s390_vfminsb: case SystemZ::BI__builtin_s390_vfmindb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); // Constant-fold the M4 mask argument. llvm::APSInt M4; bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext()); assert(IsConstM4 && "Constant arg isn't actually constant?"); (void)IsConstM4; // Check whether this instance can be represented via a LLVM standard // intrinsic. We only support some values of M4. Intrinsic::ID ID = Intrinsic::not_intrinsic; switch (M4.getZExtValue()) { default: break; case 4: ID = Intrinsic::minnum; break; } if (ID != Intrinsic::not_intrinsic) { Function *F = CGM.getIntrinsic(ID, ResultType); return Builder.CreateCall(F, {X, Y}); } switch (BuiltinID) { case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break; case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break; default: llvm_unreachable("Unknown BuiltinID"); } Function *F = CGM.getIntrinsic(ID); Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); return Builder.CreateCall(F, {X, Y, M4Value}); } // Vector intrisincs that output the post-instruction CC value. #define INTRINSIC_WITH_CC(NAME) \ case SystemZ::BI__builtin_##NAME: \ return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E) INTRINSIC_WITH_CC(s390_vpkshs); INTRINSIC_WITH_CC(s390_vpksfs); INTRINSIC_WITH_CC(s390_vpksgs); INTRINSIC_WITH_CC(s390_vpklshs); INTRINSIC_WITH_CC(s390_vpklsfs); INTRINSIC_WITH_CC(s390_vpklsgs); INTRINSIC_WITH_CC(s390_vceqbs); INTRINSIC_WITH_CC(s390_vceqhs); INTRINSIC_WITH_CC(s390_vceqfs); INTRINSIC_WITH_CC(s390_vceqgs); INTRINSIC_WITH_CC(s390_vchbs); INTRINSIC_WITH_CC(s390_vchhs); INTRINSIC_WITH_CC(s390_vchfs); INTRINSIC_WITH_CC(s390_vchgs); INTRINSIC_WITH_CC(s390_vchlbs); INTRINSIC_WITH_CC(s390_vchlhs); INTRINSIC_WITH_CC(s390_vchlfs); INTRINSIC_WITH_CC(s390_vchlgs); INTRINSIC_WITH_CC(s390_vfaebs); INTRINSIC_WITH_CC(s390_vfaehs); INTRINSIC_WITH_CC(s390_vfaefs); INTRINSIC_WITH_CC(s390_vfaezbs); INTRINSIC_WITH_CC(s390_vfaezhs); INTRINSIC_WITH_CC(s390_vfaezfs); INTRINSIC_WITH_CC(s390_vfeebs); INTRINSIC_WITH_CC(s390_vfeehs); INTRINSIC_WITH_CC(s390_vfeefs); INTRINSIC_WITH_CC(s390_vfeezbs); INTRINSIC_WITH_CC(s390_vfeezhs); INTRINSIC_WITH_CC(s390_vfeezfs); INTRINSIC_WITH_CC(s390_vfenebs); INTRINSIC_WITH_CC(s390_vfenehs); INTRINSIC_WITH_CC(s390_vfenefs); INTRINSIC_WITH_CC(s390_vfenezbs); INTRINSIC_WITH_CC(s390_vfenezhs); INTRINSIC_WITH_CC(s390_vfenezfs); INTRINSIC_WITH_CC(s390_vistrbs); INTRINSIC_WITH_CC(s390_vistrhs); INTRINSIC_WITH_CC(s390_vistrfs); INTRINSIC_WITH_CC(s390_vstrcbs); INTRINSIC_WITH_CC(s390_vstrchs); INTRINSIC_WITH_CC(s390_vstrcfs); INTRINSIC_WITH_CC(s390_vstrczbs); INTRINSIC_WITH_CC(s390_vstrczhs); INTRINSIC_WITH_CC(s390_vstrczfs); INTRINSIC_WITH_CC(s390_vfcesbs); INTRINSIC_WITH_CC(s390_vfcedbs); INTRINSIC_WITH_CC(s390_vfchsbs); INTRINSIC_WITH_CC(s390_vfchdbs); INTRINSIC_WITH_CC(s390_vfchesbs); INTRINSIC_WITH_CC(s390_vfchedbs); INTRINSIC_WITH_CC(s390_vftcisb); INTRINSIC_WITH_CC(s390_vftcidb); #undef INTRINSIC_WITH_CC default: return nullptr; } } Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { auto MakeLdg = [&](unsigned IntrinsicID) { Value *Ptr = EmitScalarExpr(E->getArg(0)); clang::CharUnits Align = getNaturalPointeeTypeAlignment(E->getArg(0)->getType()); return Builder.CreateCall( CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), Ptr->getType()}), {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())}); }; auto MakeScopedAtomic = [&](unsigned IntrinsicID) { Value *Ptr = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), Ptr->getType()}), {Ptr, EmitScalarExpr(E->getArg(1))}); }; switch (BuiltinID) { case NVPTX::BI__nvvm_atom_add_gen_i: case NVPTX::BI__nvvm_atom_add_gen_l: case NVPTX::BI__nvvm_atom_add_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E); case NVPTX::BI__nvvm_atom_sub_gen_i: case NVPTX::BI__nvvm_atom_sub_gen_l: case NVPTX::BI__nvvm_atom_sub_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E); case NVPTX::BI__nvvm_atom_and_gen_i: case NVPTX::BI__nvvm_atom_and_gen_l: case NVPTX::BI__nvvm_atom_and_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E); case NVPTX::BI__nvvm_atom_or_gen_i: case NVPTX::BI__nvvm_atom_or_gen_l: case NVPTX::BI__nvvm_atom_or_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E); case NVPTX::BI__nvvm_atom_xor_gen_i: case NVPTX::BI__nvvm_atom_xor_gen_l: case NVPTX::BI__nvvm_atom_xor_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E); case NVPTX::BI__nvvm_atom_xchg_gen_i: case NVPTX::BI__nvvm_atom_xchg_gen_l: case NVPTX::BI__nvvm_atom_xchg_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E); case NVPTX::BI__nvvm_atom_max_gen_i: case NVPTX::BI__nvvm_atom_max_gen_l: case NVPTX::BI__nvvm_atom_max_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E); case NVPTX::BI__nvvm_atom_max_gen_ui: case NVPTX::BI__nvvm_atom_max_gen_ul: case NVPTX::BI__nvvm_atom_max_gen_ull: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E); case NVPTX::BI__nvvm_atom_min_gen_i: case NVPTX::BI__nvvm_atom_min_gen_l: case NVPTX::BI__nvvm_atom_min_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E); case NVPTX::BI__nvvm_atom_min_gen_ui: case NVPTX::BI__nvvm_atom_min_gen_ul: case NVPTX::BI__nvvm_atom_min_gen_ull: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E); case NVPTX::BI__nvvm_atom_cas_gen_i: case NVPTX::BI__nvvm_atom_cas_gen_l: case NVPTX::BI__nvvm_atom_cas_gen_ll: // __nvvm_atom_cas_gen_* should return the old value rather than the // success flag. return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false); case NVPTX::BI__nvvm_atom_add_gen_f: { Value *Ptr = EmitScalarExpr(E->getArg(0)); Value *Val = EmitScalarExpr(E->getArg(1)); // atomicrmw only deals with integer arguments so we need to use // LLVM's nvvm_atomic_load_add_f32 intrinsic for that. Value *FnALAF32 = CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f32, Ptr->getType()); return Builder.CreateCall(FnALAF32, {Ptr, Val}); } case NVPTX::BI__nvvm_atom_inc_gen_ui: { Value *Ptr = EmitScalarExpr(E->getArg(0)); Value *Val = EmitScalarExpr(E->getArg(1)); Value *FnALI32 = CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType()); return Builder.CreateCall(FnALI32, {Ptr, Val}); } case NVPTX::BI__nvvm_atom_dec_gen_ui: { Value *Ptr = EmitScalarExpr(E->getArg(0)); Value *Val = EmitScalarExpr(E->getArg(1)); Value *FnALD32 = CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType()); return Builder.CreateCall(FnALD32, {Ptr, Val}); } case NVPTX::BI__nvvm_ldg_c: case NVPTX::BI__nvvm_ldg_c2: case NVPTX::BI__nvvm_ldg_c4: case NVPTX::BI__nvvm_ldg_s: case NVPTX::BI__nvvm_ldg_s2: case NVPTX::BI__nvvm_ldg_s4: case NVPTX::BI__nvvm_ldg_i: case NVPTX::BI__nvvm_ldg_i2: case NVPTX::BI__nvvm_ldg_i4: case NVPTX::BI__nvvm_ldg_l: case NVPTX::BI__nvvm_ldg_ll: case NVPTX::BI__nvvm_ldg_ll2: case NVPTX::BI__nvvm_ldg_uc: case NVPTX::BI__nvvm_ldg_uc2: case NVPTX::BI__nvvm_ldg_uc4: case NVPTX::BI__nvvm_ldg_us: case NVPTX::BI__nvvm_ldg_us2: case NVPTX::BI__nvvm_ldg_us4: case NVPTX::BI__nvvm_ldg_ui: case NVPTX::BI__nvvm_ldg_ui2: case NVPTX::BI__nvvm_ldg_ui4: case NVPTX::BI__nvvm_ldg_ul: case NVPTX::BI__nvvm_ldg_ull: case NVPTX::BI__nvvm_ldg_ull2: // PTX Interoperability section 2.2: "For a vector with an even number of // elements, its alignment is set to number of elements times the alignment // of its member: n*alignof(t)." return MakeLdg(Intrinsic::nvvm_ldg_global_i); case NVPTX::BI__nvvm_ldg_f: case NVPTX::BI__nvvm_ldg_f2: case NVPTX::BI__nvvm_ldg_f4: case NVPTX::BI__nvvm_ldg_d: case NVPTX::BI__nvvm_ldg_d2: return MakeLdg(Intrinsic::nvvm_ldg_global_f); case NVPTX::BI__nvvm_atom_cta_add_gen_i: case NVPTX::BI__nvvm_atom_cta_add_gen_l: case NVPTX::BI__nvvm_atom_cta_add_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_add_gen_i: case NVPTX::BI__nvvm_atom_sys_add_gen_l: case NVPTX::BI__nvvm_atom_sys_add_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_add_gen_f: case NVPTX::BI__nvvm_atom_cta_add_gen_d: return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta); case NVPTX::BI__nvvm_atom_sys_add_gen_f: case NVPTX::BI__nvvm_atom_sys_add_gen_d: return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys); case NVPTX::BI__nvvm_atom_cta_xchg_gen_i: case NVPTX::BI__nvvm_atom_cta_xchg_gen_l: case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_xchg_gen_i: case NVPTX::BI__nvvm_atom_sys_xchg_gen_l: case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_max_gen_i: case NVPTX::BI__nvvm_atom_cta_max_gen_ui: case NVPTX::BI__nvvm_atom_cta_max_gen_l: case NVPTX::BI__nvvm_atom_cta_max_gen_ul: case NVPTX::BI__nvvm_atom_cta_max_gen_ll: case NVPTX::BI__nvvm_atom_cta_max_gen_ull: return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_max_gen_i: case NVPTX::BI__nvvm_atom_sys_max_gen_ui: case NVPTX::BI__nvvm_atom_sys_max_gen_l: case NVPTX::BI__nvvm_atom_sys_max_gen_ul: case NVPTX::BI__nvvm_atom_sys_max_gen_ll: case NVPTX::BI__nvvm_atom_sys_max_gen_ull: return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_min_gen_i: case NVPTX::BI__nvvm_atom_cta_min_gen_ui: case NVPTX::BI__nvvm_atom_cta_min_gen_l: case NVPTX::BI__nvvm_atom_cta_min_gen_ul: case NVPTX::BI__nvvm_atom_cta_min_gen_ll: case NVPTX::BI__nvvm_atom_cta_min_gen_ull: return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_min_gen_i: case NVPTX::BI__nvvm_atom_sys_min_gen_ui: case NVPTX::BI__nvvm_atom_sys_min_gen_l: case NVPTX::BI__nvvm_atom_sys_min_gen_ul: case NVPTX::BI__nvvm_atom_sys_min_gen_ll: case NVPTX::BI__nvvm_atom_sys_min_gen_ull: return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_inc_gen_ui: return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta); case NVPTX::BI__nvvm_atom_cta_dec_gen_ui: return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_inc_gen_ui: return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys); case NVPTX::BI__nvvm_atom_sys_dec_gen_ui: return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_and_gen_i: case NVPTX::BI__nvvm_atom_cta_and_gen_l: case NVPTX::BI__nvvm_atom_cta_and_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_and_gen_i: case NVPTX::BI__nvvm_atom_sys_and_gen_l: case NVPTX::BI__nvvm_atom_sys_and_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_or_gen_i: case NVPTX::BI__nvvm_atom_cta_or_gen_l: case NVPTX::BI__nvvm_atom_cta_or_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_or_gen_i: case NVPTX::BI__nvvm_atom_sys_or_gen_l: case NVPTX::BI__nvvm_atom_sys_or_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_xor_gen_i: case NVPTX::BI__nvvm_atom_cta_xor_gen_l: case NVPTX::BI__nvvm_atom_cta_xor_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_xor_gen_i: case NVPTX::BI__nvvm_atom_sys_xor_gen_l: case NVPTX::BI__nvvm_atom_sys_xor_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_cas_gen_i: case NVPTX::BI__nvvm_atom_cta_cas_gen_l: case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: { Value *Ptr = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic( Intrinsic::nvvm_atomic_cas_gen_i_cta, {Ptr->getType()->getPointerElementType(), Ptr->getType()}), {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); } case NVPTX::BI__nvvm_atom_sys_cas_gen_i: case NVPTX::BI__nvvm_atom_sys_cas_gen_l: case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: { Value *Ptr = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic( Intrinsic::nvvm_atomic_cas_gen_i_sys, {Ptr->getType()->getPointerElementType(), Ptr->getType()}), {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); } case NVPTX::BI__nvvm_match_all_sync_i32p: case NVPTX::BI__nvvm_match_all_sync_i64p: { Value *Mask = EmitScalarExpr(E->getArg(0)); Value *Val = EmitScalarExpr(E->getArg(1)); Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2)); Value *ResultPair = Builder.CreateCall( CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p ? Intrinsic::nvvm_match_all_sync_i32p : Intrinsic::nvvm_match_all_sync_i64p), {Mask, Val}); Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1), PredOutPtr.getElementType()); Builder.CreateStore(Pred, PredOutPtr); return Builder.CreateExtractValue(ResultPair, 0); } case NVPTX::BI__hmma_m16n16k16_ld_a: case NVPTX::BI__hmma_m16n16k16_ld_b: case NVPTX::BI__hmma_m16n16k16_ld_c_f16: case NVPTX::BI__hmma_m16n16k16_ld_c_f32: { Address Dst = EmitPointerWithAlignment(E->getArg(0)); Value *Src = EmitScalarExpr(E->getArg(1)); Value *Ldm = EmitScalarExpr(E->getArg(2)); llvm::APSInt isColMajorArg; if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext())) return nullptr; bool isColMajor = isColMajorArg.getSExtValue(); unsigned IID; unsigned NumResults; switch (BuiltinID) { case NVPTX::BI__hmma_m16n16k16_ld_a: IID = isColMajor ? Intrinsic::nvvm_wmma_load_a_f16_col_stride : Intrinsic::nvvm_wmma_load_a_f16_row_stride; NumResults = 8; break; case NVPTX::BI__hmma_m16n16k16_ld_b: IID = isColMajor ? Intrinsic::nvvm_wmma_load_b_f16_col_stride : Intrinsic::nvvm_wmma_load_b_f16_row_stride; NumResults = 8; break; case NVPTX::BI__hmma_m16n16k16_ld_c_f16: IID = isColMajor ? Intrinsic::nvvm_wmma_load_c_f16_col_stride : Intrinsic::nvvm_wmma_load_c_f16_row_stride; NumResults = 4; break; case NVPTX::BI__hmma_m16n16k16_ld_c_f32: IID = isColMajor ? Intrinsic::nvvm_wmma_load_c_f32_col_stride : Intrinsic::nvvm_wmma_load_c_f32_row_stride; NumResults = 8; break; default: llvm_unreachable("Unexpected builtin ID."); } Value *Result = Builder.CreateCall(CGM.getIntrinsic(IID), {Builder.CreatePointerCast(Src, VoidPtrTy), Ldm}); // Save returned values. for (unsigned i = 0; i < NumResults; ++i) { Builder.CreateAlignedStore( Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), Dst.getElementType()), Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)), CharUnits::fromQuantity(4)); } return Result; } case NVPTX::BI__hmma_m16n16k16_st_c_f16: case NVPTX::BI__hmma_m16n16k16_st_c_f32: { Value *Dst = EmitScalarExpr(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); Value *Ldm = EmitScalarExpr(E->getArg(2)); llvm::APSInt isColMajorArg; if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext())) return nullptr; bool isColMajor = isColMajorArg.getSExtValue(); unsigned IID; unsigned NumResults = 8; // PTX Instructions (and LLVM instrinsics) are defined for slice _d_, yet // for some reason nvcc builtins use _c_. switch (BuiltinID) { case NVPTX::BI__hmma_m16n16k16_st_c_f16: IID = isColMajor ? Intrinsic::nvvm_wmma_store_d_f16_col_stride : Intrinsic::nvvm_wmma_store_d_f16_row_stride; NumResults = 4; break; case NVPTX::BI__hmma_m16n16k16_st_c_f32: IID = isColMajor ? Intrinsic::nvvm_wmma_store_d_f32_col_stride : Intrinsic::nvvm_wmma_store_d_f32_row_stride; break; default: llvm_unreachable("Unexpected builtin ID."); } Function *Intrinsic = CGM.getIntrinsic(IID); llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1); SmallVector Values; Values.push_back(Builder.CreatePointerCast(Dst, VoidPtrTy)); for (unsigned i = 0; i < NumResults; ++i) { Value *V = Builder.CreateAlignedLoad( Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)), CharUnits::fromQuantity(4)); Values.push_back(Builder.CreateBitCast(V, ParamType)); } Values.push_back(Ldm); Value *Result = Builder.CreateCall(Intrinsic, Values); return Result; } // BI__hmma_m16n16k16_mma_(d, a, b, c, layout, satf) // --> Intrinsic::nvvm_wmma_mma_sync case NVPTX::BI__hmma_m16n16k16_mma_f16f16: case NVPTX::BI__hmma_m16n16k16_mma_f32f16: case NVPTX::BI__hmma_m16n16k16_mma_f32f32: case NVPTX::BI__hmma_m16n16k16_mma_f16f32: { Address Dst = EmitPointerWithAlignment(E->getArg(0)); Address SrcA = EmitPointerWithAlignment(E->getArg(1)); Address SrcB = EmitPointerWithAlignment(E->getArg(2)); Address SrcC = EmitPointerWithAlignment(E->getArg(3)); llvm::APSInt LayoutArg; if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext())) return nullptr; int Layout = LayoutArg.getSExtValue(); if (Layout < 0 || Layout > 3) return nullptr; llvm::APSInt SatfArg; if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext())) return nullptr; bool Satf = SatfArg.getSExtValue(); // clang-format off #define MMA_VARIANTS(type) {{ \ Intrinsic::nvvm_wmma_mma_sync_row_row_##type, \ Intrinsic::nvvm_wmma_mma_sync_row_row_##type##_satfinite, \ Intrinsic::nvvm_wmma_mma_sync_row_col_##type, \ Intrinsic::nvvm_wmma_mma_sync_row_col_##type##_satfinite, \ Intrinsic::nvvm_wmma_mma_sync_col_row_##type, \ Intrinsic::nvvm_wmma_mma_sync_col_row_##type##_satfinite, \ Intrinsic::nvvm_wmma_mma_sync_col_col_##type, \ Intrinsic::nvvm_wmma_mma_sync_col_col_##type##_satfinite \ }} // clang-format on auto getMMAIntrinsic = [Layout, Satf](std::array Variants) { unsigned Index = Layout * 2 + Satf; assert(Index < 8); return Variants[Index]; }; unsigned IID; unsigned NumEltsC; unsigned NumEltsD; switch (BuiltinID) { case NVPTX::BI__hmma_m16n16k16_mma_f16f16: IID = getMMAIntrinsic(MMA_VARIANTS(f16_f16)); NumEltsC = 4; NumEltsD = 4; break; case NVPTX::BI__hmma_m16n16k16_mma_f32f16: IID = getMMAIntrinsic(MMA_VARIANTS(f32_f16)); NumEltsC = 4; NumEltsD = 8; break; case NVPTX::BI__hmma_m16n16k16_mma_f16f32: IID = getMMAIntrinsic(MMA_VARIANTS(f16_f32)); NumEltsC = 8; NumEltsD = 4; break; case NVPTX::BI__hmma_m16n16k16_mma_f32f32: IID = getMMAIntrinsic(MMA_VARIANTS(f32_f32)); NumEltsC = 8; NumEltsD = 8; break; default: llvm_unreachable("Unexpected builtin ID."); } #undef MMA_VARIANTS SmallVector Values; Function *Intrinsic = CGM.getIntrinsic(IID); llvm::Type *ABType = Intrinsic->getFunctionType()->getParamType(0); // Load A for (unsigned i = 0; i < 8; ++i) { Value *V = Builder.CreateAlignedLoad( Builder.CreateGEP(SrcA.getPointer(), llvm::ConstantInt::get(IntTy, i)), CharUnits::fromQuantity(4)); Values.push_back(Builder.CreateBitCast(V, ABType)); } // Load B for (unsigned i = 0; i < 8; ++i) { Value *V = Builder.CreateAlignedLoad( Builder.CreateGEP(SrcB.getPointer(), llvm::ConstantInt::get(IntTy, i)), CharUnits::fromQuantity(4)); Values.push_back(Builder.CreateBitCast(V, ABType)); } // Load C llvm::Type *CType = Intrinsic->getFunctionType()->getParamType(16); for (unsigned i = 0; i < NumEltsC; ++i) { Value *V = Builder.CreateAlignedLoad( Builder.CreateGEP(SrcC.getPointer(), llvm::ConstantInt::get(IntTy, i)), CharUnits::fromQuantity(4)); Values.push_back(Builder.CreateBitCast(V, CType)); } Value *Result = Builder.CreateCall(Intrinsic, Values); llvm::Type *DType = Dst.getElementType(); for (unsigned i = 0; i < NumEltsD; ++i) Builder.CreateAlignedStore( Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType), Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)), CharUnits::fromQuantity(4)); return Result; } default: return nullptr; } } Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { switch (BuiltinID) { case WebAssembly::BI__builtin_wasm_current_memory: { llvm::Type *ResultType = ConvertType(E->getType()); Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_current_memory, ResultType); return Builder.CreateCall(Callee); } case WebAssembly::BI__builtin_wasm_grow_memory: { Value *X = EmitScalarExpr(E->getArg(0)); Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_grow_memory, X->getType()); return Builder.CreateCall(Callee, X); } case WebAssembly::BI__builtin_wasm_throw: { Value *Tag = EmitScalarExpr(E->getArg(0)); Value *Obj = EmitScalarExpr(E->getArg(1)); Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw); return Builder.CreateCall(Callee, {Tag, Obj}); } case WebAssembly::BI__builtin_wasm_rethrow: { Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow); return Builder.CreateCall(Callee); } default: return nullptr; } }