//===---- CGOpenMPRuntimeNVPTX.cpp - Interface to OpenMP NVPTX Runtimes ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This provides a class for OpenMP runtime code generation specialized to NVPTX // targets. // //===----------------------------------------------------------------------===// #include "CGOpenMPRuntimeNVPTX.h" #include "clang/AST/DeclOpenMP.h" #include "CodeGenFunction.h" #include "clang/AST/StmtOpenMP.h" using namespace clang; using namespace CodeGen; namespace { enum OpenMPRTLFunctionNVPTX { /// \brief Call to void __kmpc_kernel_init(kmp_int32 thread_limit); OMPRTL_NVPTX__kmpc_kernel_init, /// \brief Call to void __kmpc_kernel_deinit(); OMPRTL_NVPTX__kmpc_kernel_deinit, /// \brief Call to void __kmpc_spmd_kernel_init(kmp_int32 thread_limit, /// short RequiresOMPRuntime, short RequiresDataSharing); OMPRTL_NVPTX__kmpc_spmd_kernel_init, /// \brief Call to void __kmpc_spmd_kernel_deinit(); OMPRTL_NVPTX__kmpc_spmd_kernel_deinit, /// \brief Call to void __kmpc_kernel_prepare_parallel(void /// *outlined_function); OMPRTL_NVPTX__kmpc_kernel_prepare_parallel, /// \brief Call to bool __kmpc_kernel_parallel(void **outlined_function); OMPRTL_NVPTX__kmpc_kernel_parallel, /// \brief Call to void __kmpc_kernel_end_parallel(); OMPRTL_NVPTX__kmpc_kernel_end_parallel, /// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 /// global_tid); OMPRTL_NVPTX__kmpc_serialized_parallel, /// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 /// global_tid); OMPRTL_NVPTX__kmpc_end_serialized_parallel, /// \brief Call to int32_t __kmpc_shuffle_int32(int32_t element, /// int16_t lane_offset, int16_t warp_size); OMPRTL_NVPTX__kmpc_shuffle_int32, /// \brief Call to int64_t __kmpc_shuffle_int64(int64_t element, /// int16_t lane_offset, int16_t warp_size); OMPRTL_NVPTX__kmpc_shuffle_int64, /// \brief Call to __kmpc_nvptx_parallel_reduce_nowait(kmp_int32 /// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data, /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t /// lane_offset, int16_t shortCircuit), /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num)); OMPRTL_NVPTX__kmpc_parallel_reduce_nowait, /// \brief Call to __kmpc_nvptx_teams_reduce_nowait(int32_t global_tid, /// int32_t num_vars, size_t reduce_size, void *reduce_data, /// void (*kmp_ShuffleReductFctPtr)(void *rhs, int16_t lane_id, int16_t /// lane_offset, int16_t shortCircuit), /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num), /// void (*kmp_CopyToScratchpadFctPtr)(void *reduce_data, void * scratchpad, /// int32_t index, int32_t width), /// void (*kmp_LoadReduceFctPtr)(void *reduce_data, void * scratchpad, int32_t /// index, int32_t width, int32_t reduce)) OMPRTL_NVPTX__kmpc_teams_reduce_nowait, /// \brief Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid); OMPRTL_NVPTX__kmpc_end_reduce_nowait }; /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. class NVPTXActionTy final : public PrePostActionTy { llvm::Value *EnterCallee; ArrayRef EnterArgs; llvm::Value *ExitCallee; ArrayRef ExitArgs; bool Conditional; llvm::BasicBlock *ContBlock = nullptr; public: NVPTXActionTy(llvm::Value *EnterCallee, ArrayRef EnterArgs, llvm::Value *ExitCallee, ArrayRef ExitArgs, bool Conditional = false) : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), ExitArgs(ExitArgs), Conditional(Conditional) {} void Enter(CodeGenFunction &CGF) override { llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); if (Conditional) { llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); ContBlock = CGF.createBasicBlock("omp_if.end"); // Generate the branch (If-stmt) CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); CGF.EmitBlock(ThenBlock); } } void Done(CodeGenFunction &CGF) { // Emit the rest of blocks/branches CGF.EmitBranch(ContBlock); CGF.EmitBlock(ContBlock, true); } void Exit(CodeGenFunction &CGF) override { CGF.EmitRuntimeCall(ExitCallee, ExitArgs); } }; // A class to track the execution mode when codegening directives within // a target region. The appropriate mode (generic/spmd) is set on entry // to the target region and used by containing directives such as 'parallel' // to emit optimized code. class ExecutionModeRAII { private: CGOpenMPRuntimeNVPTX::ExecutionMode SavedMode; CGOpenMPRuntimeNVPTX::ExecutionMode &Mode; public: ExecutionModeRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &Mode, CGOpenMPRuntimeNVPTX::ExecutionMode NewMode) : Mode(Mode) { SavedMode = Mode; Mode = NewMode; } ~ExecutionModeRAII() { Mode = SavedMode; } }; /// GPU Configuration: This information can be derived from cuda registers, /// however, providing compile time constants helps generate more efficient /// code. For all practical purposes this is fine because the configuration /// is the same for all known NVPTX architectures. enum MachineConfiguration : unsigned { WarpSize = 32, /// Number of bits required to represent a lane identifier, which is /// computed as log_2(WarpSize). LaneIDBits = 5, LaneIDMask = WarpSize - 1, /// Global memory alignment for performance. GlobalMemoryAlignment = 256, }; enum NamedBarrier : unsigned { /// Synchronize on this barrier #ID using a named barrier primitive. /// Only the subset of active threads in a parallel region arrive at the /// barrier. NB_Parallel = 1, }; } // anonymous namespace /// Get the GPU warp size. static llvm::Value *getNVPTXWarpSize(CodeGenFunction &CGF) { CGBuilderTy &Bld = CGF.Builder; return Bld.CreateCall( llvm::Intrinsic::getDeclaration( &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_warpsize), llvm::None, "nvptx_warp_size"); } /// Get the id of the current thread on the GPU. static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) { CGBuilderTy &Bld = CGF.Builder; return Bld.CreateCall( llvm::Intrinsic::getDeclaration( &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x), llvm::None, "nvptx_tid"); } /// Get the id of the warp in the block. /// We assume that the warp size is 32, which is always the case /// on the NVPTX device, to generate more efficient code. static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { CGBuilderTy &Bld = CGF.Builder; return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id"); } /// Get the id of the current lane in the Warp. /// We assume that the warp size is 32, which is always the case /// on the NVPTX device, to generate more efficient code. static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { CGBuilderTy &Bld = CGF.Builder; return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask), "nvptx_lane_id"); } /// Get the maximum number of threads in a block of the GPU. static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) { CGBuilderTy &Bld = CGF.Builder; return Bld.CreateCall( llvm::Intrinsic::getDeclaration( &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x), llvm::None, "nvptx_num_threads"); } /// Get barrier to synchronize all threads in a block. static void getNVPTXCTABarrier(CodeGenFunction &CGF) { CGBuilderTy &Bld = CGF.Builder; Bld.CreateCall(llvm::Intrinsic::getDeclaration( &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_barrier0)); } /// Get barrier #ID to synchronize selected (multiple of warp size) threads in /// a CTA. static void getNVPTXBarrier(CodeGenFunction &CGF, int ID, llvm::Value *NumThreads) { CGBuilderTy &Bld = CGF.Builder; llvm::Value *Args[] = {Bld.getInt32(ID), NumThreads}; Bld.CreateCall(llvm::Intrinsic::getDeclaration(&CGF.CGM.getModule(), llvm::Intrinsic::nvvm_barrier), Args); } /// Synchronize all GPU threads in a block. static void syncCTAThreads(CodeGenFunction &CGF) { getNVPTXCTABarrier(CGF); } /// Synchronize worker threads in a parallel region. static void syncParallelThreads(CodeGenFunction &CGF, llvm::Value *NumThreads) { return getNVPTXBarrier(CGF, NB_Parallel, NumThreads); } /// Get the value of the thread_limit clause in the teams directive. /// For the 'generic' execution mode, the runtime encodes thread_limit in /// the launch parameters, always starting thread_limit+warpSize threads per /// CTA. The threads in the last warp are reserved for master execution. /// For the 'spmd' execution mode, all threads in a CTA are part of the team. static llvm::Value *getThreadLimit(CodeGenFunction &CGF, bool IsInSpmdExecutionMode = false) { CGBuilderTy &Bld = CGF.Builder; return IsInSpmdExecutionMode ? getNVPTXNumThreads(CGF) : Bld.CreateSub(getNVPTXNumThreads(CGF), getNVPTXWarpSize(CGF), "thread_limit"); } /// Get the thread id of the OMP master thread. /// The master thread id is the first thread (lane) of the last warp in the /// GPU block. Warp size is assumed to be some power of 2. /// Thread id is 0 indexed. /// E.g: If NumThreads is 33, master id is 32. /// If NumThreads is 64, master id is 32. /// If NumThreads is 1024, master id is 992. static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) { CGBuilderTy &Bld = CGF.Builder; llvm::Value *NumThreads = getNVPTXNumThreads(CGF); // We assume that the warp size is a power of 2. llvm::Value *Mask = Bld.CreateSub(getNVPTXWarpSize(CGF), Bld.getInt32(1)); return Bld.CreateAnd(Bld.CreateSub(NumThreads, Bld.getInt32(1)), Bld.CreateNot(Mask), "master_tid"); } CGOpenMPRuntimeNVPTX::WorkerFunctionState::WorkerFunctionState( CodeGenModule &CGM) : WorkerFn(nullptr), CGFI(nullptr) { createWorkerFunction(CGM); } void CGOpenMPRuntimeNVPTX::WorkerFunctionState::createWorkerFunction( CodeGenModule &CGM) { // Create an worker function with no arguments. CGFI = &CGM.getTypes().arrangeNullaryFunction(); WorkerFn = llvm::Function::Create( CGM.getTypes().GetFunctionType(*CGFI), llvm::GlobalValue::InternalLinkage, /* placeholder */ "_worker", &CGM.getModule()); CGM.SetInternalFunctionAttributes(/*D=*/nullptr, WorkerFn, *CGFI); } bool CGOpenMPRuntimeNVPTX::isInSpmdExecutionMode() const { return CurrentExecutionMode == CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd; } static CGOpenMPRuntimeNVPTX::ExecutionMode getExecutionModeForDirective(CodeGenModule &CGM, const OMPExecutableDirective &D) { OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); switch (DirectiveKind) { case OMPD_target: case OMPD_target_teams: return CGOpenMPRuntimeNVPTX::ExecutionMode::Generic; case OMPD_target_parallel: return CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd; default: llvm_unreachable("Unsupported directive on NVPTX device."); } llvm_unreachable("Unsupported directive on NVPTX device."); } void CGOpenMPRuntimeNVPTX::emitGenericKernel(const OMPExecutableDirective &D, StringRef ParentName, llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { ExecutionModeRAII ModeRAII(CurrentExecutionMode, CGOpenMPRuntimeNVPTX::ExecutionMode::Generic); EntryFunctionState EST; WorkerFunctionState WST(CGM); Work.clear(); // Emit target region as a standalone region. class NVPTXPrePostActionTy : public PrePostActionTy { CGOpenMPRuntimeNVPTX &RT; CGOpenMPRuntimeNVPTX::EntryFunctionState &EST; CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST; public: NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT, CGOpenMPRuntimeNVPTX::EntryFunctionState &EST, CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST) : RT(RT), EST(EST), WST(WST) {} void Enter(CodeGenFunction &CGF) override { RT.emitGenericEntryHeader(CGF, EST, WST); } void Exit(CodeGenFunction &CGF) override { RT.emitGenericEntryFooter(CGF, EST); } } Action(*this, EST, WST); CodeGen.setAction(Action); emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); // Create the worker function emitWorkerFunction(WST); // Now change the name of the worker function to correspond to this target // region's entry function. WST.WorkerFn->setName(OutlinedFn->getName() + "_worker"); } // Setup NVPTX threads for master-worker OpenMP scheme. void CGOpenMPRuntimeNVPTX::emitGenericEntryHeader(CodeGenFunction &CGF, EntryFunctionState &EST, WorkerFunctionState &WST) { CGBuilderTy &Bld = CGF.Builder; llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker"); llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck"); llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master"); EST.ExitBB = CGF.createBasicBlock(".exit"); auto *IsWorker = Bld.CreateICmpULT(getNVPTXThreadID(CGF), getThreadLimit(CGF)); Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB); CGF.EmitBlock(WorkerBB); CGF.EmitCallOrInvoke(WST.WorkerFn, llvm::None); CGF.EmitBranch(EST.ExitBB); CGF.EmitBlock(MasterCheckBB); auto *IsMaster = Bld.CreateICmpEQ(getNVPTXThreadID(CGF), getMasterThreadID(CGF)); Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB); CGF.EmitBlock(MasterBB); // First action in sequential region: // Initialize the state of the OpenMP runtime library on the GPU. llvm::Value *Args[] = {getThreadLimit(CGF)}; CGF.EmitRuntimeCall( createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_init), Args); } void CGOpenMPRuntimeNVPTX::emitGenericEntryFooter(CodeGenFunction &CGF, EntryFunctionState &EST) { if (!EST.ExitBB) EST.ExitBB = CGF.createBasicBlock(".exit"); llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier"); CGF.EmitBranch(TerminateBB); CGF.EmitBlock(TerminateBB); // Signal termination condition. CGF.EmitRuntimeCall( createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_deinit), None); // Barrier to terminate worker threads. syncCTAThreads(CGF); // Master thread jumps to exit point. CGF.EmitBranch(EST.ExitBB); CGF.EmitBlock(EST.ExitBB); EST.ExitBB = nullptr; } void CGOpenMPRuntimeNVPTX::emitSpmdKernel(const OMPExecutableDirective &D, StringRef ParentName, llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { ExecutionModeRAII ModeRAII(CurrentExecutionMode, CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd); EntryFunctionState EST; // Emit target region as a standalone region. class NVPTXPrePostActionTy : public PrePostActionTy { CGOpenMPRuntimeNVPTX &RT; CGOpenMPRuntimeNVPTX::EntryFunctionState &EST; const OMPExecutableDirective &D; public: NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT, CGOpenMPRuntimeNVPTX::EntryFunctionState &EST, const OMPExecutableDirective &D) : RT(RT), EST(EST), D(D) {} void Enter(CodeGenFunction &CGF) override { RT.emitSpmdEntryHeader(CGF, EST, D); } void Exit(CodeGenFunction &CGF) override { RT.emitSpmdEntryFooter(CGF, EST); } } Action(*this, EST, D); CodeGen.setAction(Action); emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); return; } void CGOpenMPRuntimeNVPTX::emitSpmdEntryHeader( CodeGenFunction &CGF, EntryFunctionState &EST, const OMPExecutableDirective &D) { auto &Bld = CGF.Builder; // Setup BBs in entry function. llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute"); EST.ExitBB = CGF.createBasicBlock(".exit"); // Initialize the OMP state in the runtime; called by all active threads. // TODO: Set RequiresOMPRuntime and RequiresDataSharing parameters // based on code analysis of the target region. llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSpmdExecutionMode=*/true), /*RequiresOMPRuntime=*/Bld.getInt16(1), /*RequiresDataSharing=*/Bld.getInt16(1)}; CGF.EmitRuntimeCall( createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_init), Args); CGF.EmitBranch(ExecuteBB); CGF.EmitBlock(ExecuteBB); } void CGOpenMPRuntimeNVPTX::emitSpmdEntryFooter(CodeGenFunction &CGF, EntryFunctionState &EST) { if (!EST.ExitBB) EST.ExitBB = CGF.createBasicBlock(".exit"); llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit"); CGF.EmitBranch(OMPDeInitBB); CGF.EmitBlock(OMPDeInitBB); // DeInitialize the OMP state in the runtime; called by all active threads. CGF.EmitRuntimeCall( createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_deinit), None); CGF.EmitBranch(EST.ExitBB); CGF.EmitBlock(EST.ExitBB); EST.ExitBB = nullptr; } // Create a unique global variable to indicate the execution mode of this target // region. The execution mode is either 'generic', or 'spmd' depending on the // target directive. This variable is picked up by the offload library to setup // the device appropriately before kernel launch. If the execution mode is // 'generic', the runtime reserves one warp for the master, otherwise, all // warps participate in parallel work. static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, CGOpenMPRuntimeNVPTX::ExecutionMode Mode) { (void)new llvm::GlobalVariable( CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, llvm::ConstantInt::get(CGM.Int8Ty, Mode), Name + Twine("_exec_mode")); } void CGOpenMPRuntimeNVPTX::emitWorkerFunction(WorkerFunctionState &WST) { auto &Ctx = CGM.getContext(); CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); CGF.disableDebugInfo(); CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, *WST.CGFI, {}); emitWorkerLoop(CGF, WST); CGF.FinishFunction(); } void CGOpenMPRuntimeNVPTX::emitWorkerLoop(CodeGenFunction &CGF, WorkerFunctionState &WST) { // // The workers enter this loop and wait for parallel work from the master. // When the master encounters a parallel region it sets up the work + variable // arguments, and wakes up the workers. The workers first check to see if // they are required for the parallel region, i.e., within the # of requested // parallel threads. The activated workers load the variable arguments and // execute the parallel work. // CGBuilderTy &Bld = CGF.Builder; llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work"); llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers"); llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel"); llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel"); llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel"); llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); CGF.EmitBranch(AwaitBB); // Workers wait for work from master. CGF.EmitBlock(AwaitBB); // Wait for parallel work syncCTAThreads(CGF); Address WorkFn = CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn"); Address ExecStatus = CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status"); CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0)); CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy)); llvm::Value *Args[] = {WorkFn.getPointer()}; llvm::Value *Ret = CGF.EmitRuntimeCall( createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_parallel), Args); Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus); // On termination condition (workid == 0), exit loop. llvm::Value *ShouldTerminate = Bld.CreateIsNull(Bld.CreateLoad(WorkFn), "should_terminate"); Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB); // Activate requested workers. CGF.EmitBlock(SelectWorkersBB); llvm::Value *IsActive = Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active"); Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB); // Signal start of parallel region. CGF.EmitBlock(ExecuteBB); // Process work items: outlined parallel functions. for (auto *W : Work) { // Try to match this outlined function. auto *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy); llvm::Value *WorkFnMatch = Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match"); llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn"); llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next"); Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB); // Execute this outlined function. CGF.EmitBlock(ExecuteFNBB); // Insert call to work function. // FIXME: Pass arguments to outlined function from master thread. auto *Fn = cast(W); Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, /*Name=*/".zero.addr"); CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C=*/0)); llvm::Value *FnArgs[] = {ZeroAddr.getPointer(), ZeroAddr.getPointer()}; CGF.EmitCallOrInvoke(Fn, FnArgs); // Go to end of parallel region. CGF.EmitBranch(TerminateBB); CGF.EmitBlock(CheckNextBB); } // Signal end of parallel region. CGF.EmitBlock(TerminateBB); CGF.EmitRuntimeCall( createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_end_parallel), llvm::None); CGF.EmitBranch(BarrierBB); // All active and inactive workers wait at a barrier after parallel region. CGF.EmitBlock(BarrierBB); // Barrier after parallel region. syncCTAThreads(CGF); CGF.EmitBranch(AwaitBB); // Exit target region. CGF.EmitBlock(ExitBB); } /// \brief Returns specified OpenMP runtime function for the current OpenMP /// implementation. Specialized for the NVPTX device. /// \param Function OpenMP runtime function. /// \return Specified function. llvm::Constant * CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) { llvm::Constant *RTLFn = nullptr; switch (static_cast(Function)) { case OMPRTL_NVPTX__kmpc_kernel_init: { // Build void __kmpc_kernel_init(kmp_int32 thread_limit); llvm::Type *TypeParams[] = {CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_init"); break; } case OMPRTL_NVPTX__kmpc_kernel_deinit: { // Build void __kmpc_kernel_deinit(); llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_deinit"); break; } case OMPRTL_NVPTX__kmpc_spmd_kernel_init: { // Build void __kmpc_spmd_kernel_init(kmp_int32 thread_limit, // short RequiresOMPRuntime, short RequiresDataSharing); llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_init"); break; } case OMPRTL_NVPTX__kmpc_spmd_kernel_deinit: { // Build void __kmpc_spmd_kernel_deinit(); llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_deinit"); break; } case OMPRTL_NVPTX__kmpc_kernel_prepare_parallel: { /// Build void __kmpc_kernel_prepare_parallel( /// void *outlined_function); llvm::Type *TypeParams[] = {CGM.Int8PtrTy}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_prepare_parallel"); break; } case OMPRTL_NVPTX__kmpc_kernel_parallel: { /// Build bool __kmpc_kernel_parallel(void **outlined_function); llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy}; llvm::Type *RetTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy); llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_parallel"); break; } case OMPRTL_NVPTX__kmpc_kernel_end_parallel: { /// Build void __kmpc_kernel_end_parallel(); llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_end_parallel"); break; } case OMPRTL_NVPTX__kmpc_serialized_parallel: { // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 // global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel"); break; } case OMPRTL_NVPTX__kmpc_end_serialized_parallel: { // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 // global_tid); llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel"); break; } case OMPRTL_NVPTX__kmpc_shuffle_int32: { // Build int32_t __kmpc_shuffle_int32(int32_t element, // int16_t lane_offset, int16_t warp_size); llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32"); break; } case OMPRTL_NVPTX__kmpc_shuffle_int64: { // Build int64_t __kmpc_shuffle_int64(int64_t element, // int16_t lane_offset, int16_t warp_size); llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false); RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64"); break; } case OMPRTL_NVPTX__kmpc_parallel_reduce_nowait: { // Build int32_t kmpc_nvptx_parallel_reduce_nowait(kmp_int32 global_tid, // kmp_int32 num_vars, size_t reduce_size, void* reduce_data, // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t // lane_offset, int16_t Algorithm Version), // void (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num)); llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty, CGM.Int16Ty, CGM.Int16Ty}; auto *ShuffleReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams, /*isVarArg=*/false); llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty}; auto *InterWarpCopyFnTy = llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams, /*isVarArg=*/false); llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, CGM.VoidPtrTy, ShuffleReduceFnTy->getPointerTo(), InterWarpCopyFnTy->getPointerTo()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction( FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait"); break; } case OMPRTL_NVPTX__kmpc_teams_reduce_nowait: { // Build int32_t __kmpc_nvptx_teams_reduce_nowait(int32_t global_tid, // int32_t num_vars, size_t reduce_size, void *reduce_data, // void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t // lane_offset, int16_t shortCircuit), // void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num), // void (*kmp_CopyToScratchpadFctPtr)(void *reduce_data, void * scratchpad, // int32_t index, int32_t width), // void (*kmp_LoadReduceFctPtr)(void *reduce_data, void * scratchpad, // int32_t index, int32_t width, int32_t reduce)) llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty, CGM.Int16Ty, CGM.Int16Ty}; auto *ShuffleReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams, /*isVarArg=*/false); llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty}; auto *InterWarpCopyFnTy = llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams, /*isVarArg=*/false); llvm::Type *CopyToScratchpadTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy, CGM.Int32Ty, CGM.Int32Ty}; auto *CopyToScratchpadFnTy = llvm::FunctionType::get(CGM.VoidTy, CopyToScratchpadTypeParams, /*isVarArg=*/false); llvm::Type *LoadReduceTypeParams[] = { CGM.VoidPtrTy, CGM.VoidPtrTy, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty}; auto *LoadReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, LoadReduceTypeParams, /*isVarArg=*/false); llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, CGM.VoidPtrTy, ShuffleReduceFnTy->getPointerTo(), InterWarpCopyFnTy->getPointerTo(), CopyToScratchpadFnTy->getPointerTo(), LoadReduceFnTy->getPointerTo()}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction( FnTy, /*Name=*/"__kmpc_nvptx_teams_reduce_nowait"); break; } case OMPRTL_NVPTX__kmpc_end_reduce_nowait: { // Build __kmpc_end_reduce_nowait(kmp_int32 global_tid); llvm::Type *TypeParams[] = {CGM.Int32Ty}; llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); RTLFn = CGM.CreateRuntimeFunction( FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait"); break; } } return RTLFn; } void CGOpenMPRuntimeNVPTX::createOffloadEntry(llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t) { auto *F = dyn_cast(Addr); // TODO: Add support for global variables on the device after declare target // support. if (!F) return; llvm::Module *M = F->getParent(); llvm::LLVMContext &Ctx = M->getContext(); // Get "nvvm.annotations" metadata node llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); llvm::Metadata *MDVals[] = { llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, "kernel"), llvm::ConstantAsMetadata::get( llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; // Append metadata to nvvm.annotations MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); } void CGOpenMPRuntimeNVPTX::emitTargetOutlinedFunction( const OMPExecutableDirective &D, StringRef ParentName, llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { if (!IsOffloadEntry) // Nothing to do. return; assert(!ParentName.empty() && "Invalid target region parent name!"); CGOpenMPRuntimeNVPTX::ExecutionMode Mode = getExecutionModeForDirective(CGM, D); switch (Mode) { case CGOpenMPRuntimeNVPTX::ExecutionMode::Generic: emitGenericKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); break; case CGOpenMPRuntimeNVPTX::ExecutionMode::Spmd: emitSpmdKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); break; case CGOpenMPRuntimeNVPTX::ExecutionMode::Unknown: llvm_unreachable( "Unknown programming model for OpenMP directive on NVPTX target."); } setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); } CGOpenMPRuntimeNVPTX::CGOpenMPRuntimeNVPTX(CodeGenModule &CGM) : CGOpenMPRuntime(CGM), CurrentExecutionMode(ExecutionMode::Unknown) { if (!CGM.getLangOpts().OpenMPIsDevice) llvm_unreachable("OpenMP NVPTX can only handle device code."); } void CGOpenMPRuntimeNVPTX::emitProcBindClause(CodeGenFunction &CGF, OpenMPProcBindClauseKind ProcBind, SourceLocation Loc) { // Do nothing in case of Spmd mode and L0 parallel. // TODO: If in Spmd mode and L1 parallel emit the clause. if (isInSpmdExecutionMode()) return; CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); } void CGOpenMPRuntimeNVPTX::emitNumThreadsClause(CodeGenFunction &CGF, llvm::Value *NumThreads, SourceLocation Loc) { // Do nothing in case of Spmd mode and L0 parallel. // TODO: If in Spmd mode and L1 parallel emit the clause. if (isInSpmdExecutionMode()) return; CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); } void CGOpenMPRuntimeNVPTX::emitNumTeamsClause(CodeGenFunction &CGF, const Expr *NumTeams, const Expr *ThreadLimit, SourceLocation Loc) {} llvm::Value *CGOpenMPRuntimeNVPTX::emitParallelOutlinedFunction( const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { return CGOpenMPRuntime::emitParallelOutlinedFunction(D, ThreadIDVar, InnermostKind, CodeGen); } llvm::Value *CGOpenMPRuntimeNVPTX::emitTeamsOutlinedFunction( const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { llvm::Value *OutlinedFunVal = CGOpenMPRuntime::emitTeamsOutlinedFunction( D, ThreadIDVar, InnermostKind, CodeGen); llvm::Function *OutlinedFun = cast(OutlinedFunVal); OutlinedFun->removeFnAttr(llvm::Attribute::NoInline); OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone); OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline); return OutlinedFun; } void CGOpenMPRuntimeNVPTX::emitTeamsCall(CodeGenFunction &CGF, const OMPExecutableDirective &D, SourceLocation Loc, llvm::Value *OutlinedFn, ArrayRef CapturedVars) { if (!CGF.HaveInsertPoint()) return; Address ZeroAddr = CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4), /*Name*/ ".zero.addr"); CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); llvm::SmallVector OutlinedFnArgs; OutlinedFnArgs.push_back(ZeroAddr.getPointer()); OutlinedFnArgs.push_back(ZeroAddr.getPointer()); OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs); } void CGOpenMPRuntimeNVPTX::emitParallelCall( CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn, ArrayRef CapturedVars, const Expr *IfCond) { if (!CGF.HaveInsertPoint()) return; if (isInSpmdExecutionMode()) emitSpmdParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond); else emitGenericParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond); } void CGOpenMPRuntimeNVPTX::emitGenericParallelCall( CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn, ArrayRef CapturedVars, const Expr *IfCond) { llvm::Function *Fn = cast(OutlinedFn); auto &&L0ParallelGen = [this, Fn](CodeGenFunction &CGF, PrePostActionTy &) { CGBuilderTy &Bld = CGF.Builder; // Prepare for parallel region. Indicate the outlined function. llvm::Value *Args[] = {Bld.CreateBitOrPointerCast(Fn, CGM.Int8PtrTy)}; CGF.EmitRuntimeCall( createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel), Args); // Activate workers. This barrier is used by the master to signal // work for the workers. syncCTAThreads(CGF); // OpenMP [2.5, Parallel Construct, p.49] // There is an implied barrier at the end of a parallel region. After the // end of a parallel region, only the master thread of the team resumes // execution of the enclosing task region. // // The master waits at this barrier until all workers are done. syncCTAThreads(CGF); // Remember for post-processing in worker loop. Work.push_back(Fn); }; auto *RTLoc = emitUpdateLocation(CGF, Loc); auto *ThreadID = getThreadID(CGF, Loc); llvm::Value *Args[] = {RTLoc, ThreadID}; auto &&SeqGen = [this, Fn, &CapturedVars, &Args](CodeGenFunction &CGF, PrePostActionTy &) { auto &&CodeGen = [this, Fn, &CapturedVars](CodeGenFunction &CGF, PrePostActionTy &Action) { Action.Enter(CGF); llvm::SmallVector OutlinedFnArgs; OutlinedFnArgs.push_back( llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo())); OutlinedFnArgs.push_back( llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo())); OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); CGF.EmitCallOrInvoke(Fn, OutlinedFnArgs); }; RegionCodeGenTy RCG(CodeGen); NVPTXActionTy Action( createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel), Args, createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel), Args); RCG.setAction(Action); RCG(CGF); }; if (IfCond) emitOMPIfClause(CGF, IfCond, L0ParallelGen, SeqGen); else { CodeGenFunction::RunCleanupsScope Scope(CGF); RegionCodeGenTy ThenRCG(L0ParallelGen); ThenRCG(CGF); } } void CGOpenMPRuntimeNVPTX::emitSpmdParallelCall( CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn, ArrayRef CapturedVars, const Expr *IfCond) { // Just call the outlined function to execute the parallel region. // OutlinedFn(>id, &zero, CapturedStruct); // // TODO: Do something with IfCond when support for the 'if' clause // is added on Spmd target directives. llvm::SmallVector OutlinedFnArgs; OutlinedFnArgs.push_back( llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo())); OutlinedFnArgs.push_back( llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo())); OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs); } /// This function creates calls to one of two shuffle functions to copy /// variables between lanes in a warp. static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, QualType ElemTy, llvm::Value *Elem, llvm::Value *Offset) { auto &CGM = CGF.CGM; auto &C = CGM.getContext(); auto &Bld = CGF.Builder; CGOpenMPRuntimeNVPTX &RT = *(static_cast(&CGM.getOpenMPRuntime())); unsigned Size = CGM.getContext().getTypeSizeInChars(ElemTy).getQuantity(); assert(Size <= 8 && "Unsupported bitwidth in shuffle instruction."); OpenMPRTLFunctionNVPTX ShuffleFn = Size <= 4 ? OMPRTL_NVPTX__kmpc_shuffle_int32 : OMPRTL_NVPTX__kmpc_shuffle_int64; // Cast all types to 32- or 64-bit values before calling shuffle routines. auto CastTy = Size <= 4 ? CGM.Int32Ty : CGM.Int64Ty; auto *ElemCast = Bld.CreateSExtOrBitCast(Elem, CastTy); auto *WarpSize = CGF.EmitScalarConversion( getNVPTXWarpSize(CGF), C.getIntTypeForBitwidth(32, /* Signed */ true), C.getIntTypeForBitwidth(16, /* Signed */ true), SourceLocation()); auto *ShuffledVal = CGF.EmitRuntimeCall(RT.createNVPTXRuntimeFunction(ShuffleFn), {ElemCast, Offset, WarpSize}); return Bld.CreateTruncOrBitCast(ShuffledVal, CGF.ConvertTypeForMem(ElemTy)); } namespace { enum CopyAction : unsigned { // RemoteLaneToThread: Copy over a Reduce list from a remote lane in // the warp using shuffle instructions. RemoteLaneToThread, // ThreadCopy: Make a copy of a Reduce list on the thread's stack. ThreadCopy, // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. ThreadToScratchpad, // ScratchpadToThread: Copy from a scratchpad array in global memory // containing team-reduced data to a thread's stack. ScratchpadToThread, }; } // namespace struct CopyOptionsTy { llvm::Value *RemoteLaneOffset; llvm::Value *ScratchpadIndex; llvm::Value *ScratchpadWidth; }; /// Emit instructions to copy a Reduce list, which contains partially /// aggregated values, in the specified direction. static void emitReductionListCopy( CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, ArrayRef Privates, Address SrcBase, Address DestBase, CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { auto &CGM = CGF.CGM; auto &C = CGM.getContext(); auto &Bld = CGF.Builder; auto *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; auto *ScratchpadIndex = CopyOptions.ScratchpadIndex; auto *ScratchpadWidth = CopyOptions.ScratchpadWidth; // Iterates, element-by-element, through the source Reduce list and // make a copy. unsigned Idx = 0; unsigned Size = Privates.size(); for (auto &Private : Privates) { Address SrcElementAddr = Address::invalid(); Address DestElementAddr = Address::invalid(); Address DestElementPtrAddr = Address::invalid(); // Should we shuffle in an element from a remote lane? bool ShuffleInElement = false; // Set to true to update the pointer in the dest Reduce list to a // newly created element. bool UpdateDestListPtr = false; // Increment the src or dest pointer to the scratchpad, for each // new element. bool IncrScratchpadSrc = false; bool IncrScratchpadDest = false; switch (Action) { case RemoteLaneToThread: { // Step 1.1: Get the address for the src element in the Reduce list. Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize()); llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar( SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); SrcElementAddr = Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType())); // Step 1.2: Create a temporary to store the element in the destination // Reduce list. DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize()); DestElementAddr = CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); ShuffleInElement = true; UpdateDestListPtr = true; break; } case ThreadCopy: { // Step 1.1: Get the address for the src element in the Reduce list. Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize()); llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar( SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); SrcElementAddr = Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType())); // Step 1.2: Get the address for dest element. The destination // element has already been created on the thread's stack. DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize()); llvm::Value *DestElementPtr = CGF.EmitLoadOfScalar(DestElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); Address DestElemAddr = Address(DestElementPtr, C.getTypeAlignInChars(Private->getType())); DestElementAddr = Bld.CreateElementBitCast( DestElemAddr, CGF.ConvertTypeForMem(Private->getType())); break; } case ThreadToScratchpad: { // Step 1.1: Get the address for the src element in the Reduce list. Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize()); llvm::Value *SrcElementPtrPtr = CGF.EmitLoadOfScalar( SrcElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); SrcElementAddr = Address(SrcElementPtrPtr, C.getTypeAlignInChars(Private->getType())); // Step 1.2: Get the address for dest element: // address = base + index * ElementSizeInChars. unsigned ElementSizeInChars = C.getTypeSizeInChars(Private->getType()).getQuantity(); auto *CurrentOffset = Bld.CreateMul(llvm::ConstantInt::get(CGM.SizeTy, ElementSizeInChars), ScratchpadIndex); auto *ScratchPadElemAbsolutePtrVal = Bld.CreateAdd(DestBase.getPointer(), CurrentOffset); ScratchPadElemAbsolutePtrVal = Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); Address ScratchpadPtr = Address(ScratchPadElemAbsolutePtrVal, C.getTypeAlignInChars(Private->getType())); DestElementAddr = Bld.CreateElementBitCast( ScratchpadPtr, CGF.ConvertTypeForMem(Private->getType())); IncrScratchpadDest = true; break; } case ScratchpadToThread: { // Step 1.1: Get the address for the src element in the scratchpad. // address = base + index * ElementSizeInChars. unsigned ElementSizeInChars = C.getTypeSizeInChars(Private->getType()).getQuantity(); auto *CurrentOffset = Bld.CreateMul(llvm::ConstantInt::get(CGM.SizeTy, ElementSizeInChars), ScratchpadIndex); auto *ScratchPadElemAbsolutePtrVal = Bld.CreateAdd(SrcBase.getPointer(), CurrentOffset); ScratchPadElemAbsolutePtrVal = Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, C.getTypeAlignInChars(Private->getType())); IncrScratchpadSrc = true; // Step 1.2: Create a temporary to store the element in the destination // Reduce list. DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize()); DestElementAddr = CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); UpdateDestListPtr = true; break; } } // Regardless of src and dest of copy, we emit the load of src // element as this is required in all directions SrcElementAddr = Bld.CreateElementBitCast( SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); llvm::Value *Elem = CGF.EmitLoadOfScalar(SrcElementAddr, /*Volatile=*/false, Private->getType(), SourceLocation()); // Now that all active lanes have read the element in the // Reduce list, shuffle over the value from the remote lane. if (ShuffleInElement) { Elem = createRuntimeShuffleFunction(CGF, Private->getType(), Elem, RemoteLaneOffset); } // Store the source element value to the dest element address. CGF.EmitStoreOfScalar(Elem, DestElementAddr, /*Volatile=*/false, Private->getType()); // Step 3.1: Modify reference in dest Reduce list as needed. // Modifying the reference in Reduce list to point to the newly // created element. The element is live in the current function // scope and that of functions it invokes (i.e., reduce_function). // RemoteReduceData[i] = (void*)&RemoteElem if (UpdateDestListPtr) { CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( DestElementAddr.getPointer(), CGF.VoidPtrTy), DestElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy); } // Step 4.1: Increment SrcBase/DestBase so that it points to the starting // address of the next element in scratchpad memory, unless we're currently // processing the last one. Memory alignment is also taken care of here. if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { llvm::Value *ScratchpadBasePtr = IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); unsigned ElementSizeInChars = C.getTypeSizeInChars(Private->getType()).getQuantity(); ScratchpadBasePtr = Bld.CreateAdd( ScratchpadBasePtr, Bld.CreateMul(ScratchpadWidth, llvm::ConstantInt::get( CGM.SizeTy, ElementSizeInChars))); // Take care of global memory alignment for performance ScratchpadBasePtr = Bld.CreateSub(ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); ScratchpadBasePtr = Bld.CreateSDiv( ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); ScratchpadBasePtr = Bld.CreateAdd(ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); ScratchpadBasePtr = Bld.CreateMul( ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); if (IncrScratchpadDest) DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); else /* IncrScratchpadSrc = true */ SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); } Idx++; } } /// This function emits a helper that loads data from the scratchpad array /// and (optionally) reduces it with the input operand. /// /// load_and_reduce(local, scratchpad, index, width, should_reduce) /// reduce_data remote; /// for elem in remote: /// remote.elem = Scratchpad[elem_id][index] /// if (should_reduce) /// local = local @ remote /// else /// local = remote static llvm::Value * emitReduceScratchpadFunction(CodeGenModule &CGM, ArrayRef Privates, QualType ReductionArrayTy, llvm::Value *ReduceFn) { auto &C = CGM.getContext(); auto Int32Ty = C.getIntTypeForBitwidth(32, /* Signed */ true); // Destination of the copy. ImplicitParamDecl ReduceListArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); // Base address of the scratchpad array, with each element storing a // Reduce list per team. ImplicitParamDecl ScratchPadArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); // A source index into the scratchpad array. ImplicitParamDecl IndexArg(C, Int32Ty, ImplicitParamDecl::Other); // Row width of an element in the scratchpad array, typically // the number of teams. ImplicitParamDecl WidthArg(C, Int32Ty, ImplicitParamDecl::Other); // If should_reduce == 1, then it's load AND reduce, // If should_reduce == 0 (or otherwise), then it only loads (+ copy). // The latter case is used for initialization. ImplicitParamDecl ShouldReduceArg(C, Int32Ty, ImplicitParamDecl::Other); FunctionArgList Args; Args.push_back(&ReduceListArg); Args.push_back(&ScratchPadArg); Args.push_back(&IndexArg); Args.push_back(&WidthArg); Args.push_back(&ShouldReduceArg); auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *Fn = llvm::Function::Create( CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, "_omp_reduction_load_and_reduce", &CGM.getModule()); CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI); CodeGenFunction CGF(CGM); // We don't need debug information in this function as nothing here refers to // user code. CGF.disableDebugInfo(); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); auto &Bld = CGF.Builder; // Get local Reduce list pointer. Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); Address ReduceListAddr( Bld.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()), CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), CGF.getPointerAlign()); Address AddrScratchPadArg = CGF.GetAddrOfLocalVar(&ScratchPadArg); llvm::Value *ScratchPadBase = CGF.EmitLoadOfScalar( AddrScratchPadArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); Address AddrIndexArg = CGF.GetAddrOfLocalVar(&IndexArg); llvm::Value *IndexVal = Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrIndexArg, /*Volatile=*/false, Int32Ty, SourceLocation()), CGM.SizeTy, /*isSigned=*/true); Address AddrWidthArg = CGF.GetAddrOfLocalVar(&WidthArg); llvm::Value *WidthVal = Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrWidthArg, /*Volatile=*/false, Int32Ty, SourceLocation()), CGM.SizeTy, /*isSigned=*/true); Address AddrShouldReduceArg = CGF.GetAddrOfLocalVar(&ShouldReduceArg); llvm::Value *ShouldReduceVal = CGF.EmitLoadOfScalar( AddrShouldReduceArg, /*Volatile=*/false, Int32Ty, SourceLocation()); // The absolute ptr address to the base addr of the next element to copy. llvm::Value *CumulativeElemBasePtr = Bld.CreatePtrToInt(ScratchPadBase, CGM.SizeTy); Address SrcDataAddr(CumulativeElemBasePtr, CGF.getPointerAlign()); // Create a Remote Reduce list to store the elements read from the // scratchpad array. Address RemoteReduceList = CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_red_list"); // Assemble remote Reduce list from scratchpad array. emitReductionListCopy(ScratchpadToThread, CGF, ReductionArrayTy, Privates, SrcDataAddr, RemoteReduceList, {/*RemoteLaneOffset=*/nullptr, /*ScratchpadIndex=*/IndexVal, /*ScratchpadWidth=*/WidthVal}); llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); auto CondReduce = Bld.CreateICmpEQ(ShouldReduceVal, Bld.getInt32(1)); Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); CGF.EmitBlock(ThenBB); // We should reduce with the local Reduce list. // reduce_function(LocalReduceList, RemoteReduceList) llvm::Value *LocalDataPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( ReduceListAddr.getPointer(), CGF.VoidPtrTy); llvm::Value *RemoteDataPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( RemoteReduceList.getPointer(), CGF.VoidPtrTy); CGF.EmitCallOrInvoke(ReduceFn, {LocalDataPtr, RemoteDataPtr}); Bld.CreateBr(MergeBB); CGF.EmitBlock(ElseBB); // No reduction; just copy: // Local Reduce list = Remote Reduce list. emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, RemoteReduceList, ReduceListAddr); Bld.CreateBr(MergeBB); CGF.EmitBlock(MergeBB); CGF.FinishFunction(); return Fn; } /// This function emits a helper that stores reduced data from the team /// master to a scratchpad array in global memory. /// /// for elem in Reduce List: /// scratchpad[elem_id][index] = elem /// static llvm::Value *emitCopyToScratchpad(CodeGenModule &CGM, ArrayRef Privates, QualType ReductionArrayTy) { auto &C = CGM.getContext(); auto Int32Ty = C.getIntTypeForBitwidth(32, /* Signed */ true); // Source of the copy. ImplicitParamDecl ReduceListArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); // Base address of the scratchpad array, with each element storing a // Reduce list per team. ImplicitParamDecl ScratchPadArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); // A destination index into the scratchpad array, typically the team // identifier. ImplicitParamDecl IndexArg(C, Int32Ty, ImplicitParamDecl::Other); // Row width of an element in the scratchpad array, typically // the number of teams. ImplicitParamDecl WidthArg(C, Int32Ty, ImplicitParamDecl::Other); FunctionArgList Args; Args.push_back(&ReduceListArg); Args.push_back(&ScratchPadArg); Args.push_back(&IndexArg); Args.push_back(&WidthArg); auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *Fn = llvm::Function::Create( CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, "_omp_reduction_copy_to_scratchpad", &CGM.getModule()); CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI); CodeGenFunction CGF(CGM); // We don't need debug information in this function as nothing here refers to // user code. CGF.disableDebugInfo(); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); auto &Bld = CGF.Builder; Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); Address SrcDataAddr( Bld.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()), CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), CGF.getPointerAlign()); Address AddrScratchPadArg = CGF.GetAddrOfLocalVar(&ScratchPadArg); llvm::Value *ScratchPadBase = CGF.EmitLoadOfScalar( AddrScratchPadArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); Address AddrIndexArg = CGF.GetAddrOfLocalVar(&IndexArg); llvm::Value *IndexVal = Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrIndexArg, /*Volatile=*/false, Int32Ty, SourceLocation()), CGF.SizeTy, /*isSigned=*/true); Address AddrWidthArg = CGF.GetAddrOfLocalVar(&WidthArg); llvm::Value *WidthVal = Bld.CreateIntCast(CGF.EmitLoadOfScalar(AddrWidthArg, /*Volatile=*/false, Int32Ty, SourceLocation()), CGF.SizeTy, /*isSigned=*/true); // The absolute ptr address to the base addr of the next element to copy. llvm::Value *CumulativeElemBasePtr = Bld.CreatePtrToInt(ScratchPadBase, CGM.SizeTy); Address DestDataAddr(CumulativeElemBasePtr, CGF.getPointerAlign()); emitReductionListCopy(ThreadToScratchpad, CGF, ReductionArrayTy, Privates, SrcDataAddr, DestDataAddr, {/*RemoteLaneOffset=*/nullptr, /*ScratchpadIndex=*/IndexVal, /*ScratchpadWidth=*/WidthVal}); CGF.FinishFunction(); return Fn; } /// This function emits a helper that gathers Reduce lists from the first /// lane of every active warp to lanes in the first warp. /// /// void inter_warp_copy_func(void* reduce_data, num_warps) /// shared smem[warp_size]; /// For all data entries D in reduce_data: /// If (I am the first lane in each warp) /// Copy my local D to smem[warp_id] /// sync /// if (I am the first warp) /// Copy smem[thread_id] to my local D /// sync static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, ArrayRef Privates, QualType ReductionArrayTy) { auto &C = CGM.getContext(); auto &M = CGM.getModule(); // ReduceList: thread local Reduce list. // At the stage of the computation when this function is called, partially // aggregated values reside in the first lane of every active warp. ImplicitParamDecl ReduceListArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); // NumWarps: number of warps active in the parallel region. This could // be smaller than 32 (max warps in a CTA) for partial block reduction. ImplicitParamDecl NumWarpsArg(C, C.getIntTypeForBitwidth(32, /* Signed */ true), ImplicitParamDecl::Other); FunctionArgList Args; Args.push_back(&ReduceListArg); Args.push_back(&NumWarpsArg); auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *Fn = llvm::Function::Create( CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, "_omp_reduction_inter_warp_copy_func", &CGM.getModule()); CGM.SetInternalFunctionAttributes(/*DC=*/nullptr, Fn, CGFI); CodeGenFunction CGF(CGM); // We don't need debug information in this function as nothing here refers to // user code. CGF.disableDebugInfo(); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); auto &Bld = CGF.Builder; // This array is used as a medium to transfer, one reduce element at a time, // the data from the first lane of every warp to lanes in the first warp // in order to perform the final step of a reduction in a parallel region // (reduction across warps). The array is placed in NVPTX __shared__ memory // for reduced latency, as well as to have a distinct copy for concurrently // executing target regions. The array is declared with common linkage so // as to be shared across compilation units. const char *TransferMediumName = "__openmp_nvptx_data_transfer_temporary_storage"; llvm::GlobalVariable *TransferMedium = M.getGlobalVariable(TransferMediumName); if (!TransferMedium) { auto *Ty = llvm::ArrayType::get(CGM.Int64Ty, WarpSize); unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); TransferMedium = new llvm::GlobalVariable( M, Ty, /*isConstant=*/false, llvm::GlobalVariable::CommonLinkage, llvm::Constant::getNullValue(Ty), TransferMediumName, /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, SharedAddressSpace); } // Get the CUDA thread id of the current OpenMP thread on the GPU. auto *ThreadID = getNVPTXThreadID(CGF); // nvptx_lane_id = nvptx_id % warpsize auto *LaneID = getNVPTXLaneID(CGF); // nvptx_warp_id = nvptx_id / warpsize auto *WarpID = getNVPTXWarpID(CGF); Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); Address LocalReduceList( Bld.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()), CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), CGF.getPointerAlign()); unsigned Idx = 0; for (auto &Private : Privates) { // // Warp master copies reduce element to transfer medium in __shared__ // memory. // llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); // if (lane_id == 0) auto IsWarpMaster = Bld.CreateICmpEQ(LaneID, Bld.getInt32(0), "warp_master"); Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); CGF.EmitBlock(ThenBB); // Reduce element = LocalReduceList[i] Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize()); llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); // elemptr = (type[i]*)(elemptrptr) Address ElemPtr = Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); ElemPtr = Bld.CreateElementBitCast( ElemPtr, CGF.ConvertTypeForMem(Private->getType())); // elem = *elemptr llvm::Value *Elem = CGF.EmitLoadOfScalar( ElemPtr, /*Volatile=*/false, Private->getType(), SourceLocation()); // Get pointer to location in transfer medium. // MediumPtr = &medium[warp_id] llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); Address MediumPtr(MediumPtrVal, C.getTypeAlignInChars(Private->getType())); // Casting to actual data type. // MediumPtr = (type[i]*)MediumPtrAddr; MediumPtr = Bld.CreateElementBitCast( MediumPtr, CGF.ConvertTypeForMem(Private->getType())); //*MediumPtr = elem Bld.CreateStore(Elem, MediumPtr); Bld.CreateBr(MergeBB); CGF.EmitBlock(ElseBB); Bld.CreateBr(MergeBB); CGF.EmitBlock(MergeBB); Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, SourceLocation()); auto *NumActiveThreads = Bld.CreateNSWMul( NumWarpsVal, getNVPTXWarpSize(CGF), "num_active_threads"); // named_barrier_sync(ParallelBarrierID, num_active_threads) syncParallelThreads(CGF, NumActiveThreads); // // Warp 0 copies reduce element from transfer medium. // llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); // Up to 32 threads in warp 0 are active. auto IsActiveThread = Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); CGF.EmitBlock(W0ThenBB); // SrcMediumPtr = &medium[tid] llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); Address SrcMediumPtr(SrcMediumPtrVal, C.getTypeAlignInChars(Private->getType())); // SrcMediumVal = *SrcMediumPtr; SrcMediumPtr = Bld.CreateElementBitCast( SrcMediumPtr, CGF.ConvertTypeForMem(Private->getType())); llvm::Value *SrcMediumValue = CGF.EmitLoadOfScalar( SrcMediumPtr, /*Volatile=*/false, Private->getType(), SourceLocation()); // TargetElemPtr = (type[i]*)(SrcDataAddr[i]) Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize()); llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); Address TargetElemPtr = Address(TargetElemPtrVal, C.getTypeAlignInChars(Private->getType())); TargetElemPtr = Bld.CreateElementBitCast( TargetElemPtr, CGF.ConvertTypeForMem(Private->getType())); // *TargetElemPtr = SrcMediumVal; CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, Private->getType()); Bld.CreateBr(W0MergeBB); CGF.EmitBlock(W0ElseBB); Bld.CreateBr(W0MergeBB); CGF.EmitBlock(W0MergeBB); // While warp 0 copies values from transfer medium, all other warps must // wait. syncParallelThreads(CGF, NumActiveThreads); Idx++; } CGF.FinishFunction(); return Fn; } /// Emit a helper that reduces data across two OpenMP threads (lanes) /// in the same warp. It uses shuffle instructions to copy over data from /// a remote lane's stack. The reduction algorithm performed is specified /// by the fourth parameter. /// /// Algorithm Versions. /// Full Warp Reduce (argument value 0): /// This algorithm assumes that all 32 lanes are active and gathers /// data from these 32 lanes, producing a single resultant value. /// Contiguous Partial Warp Reduce (argument value 1): /// This algorithm assumes that only a *contiguous* subset of lanes /// are active. This happens for the last warp in a parallel region /// when the user specified num_threads is not an integer multiple of /// 32. This contiguous subset always starts with the zeroth lane. /// Partial Warp Reduce (argument value 2): /// This algorithm gathers data from any number of lanes at any position. /// All reduced values are stored in the lowest possible lane. The set /// of problems every algorithm addresses is a super set of those /// addressable by algorithms with a lower version number. Overhead /// increases as algorithm version increases. /// /// Terminology /// Reduce element: /// Reduce element refers to the individual data field with primitive /// data types to be combined and reduced across threads. /// Reduce list: /// Reduce list refers to a collection of local, thread-private /// reduce elements. /// Remote Reduce list: /// Remote Reduce list refers to a collection of remote (relative to /// the current thread) reduce elements. /// /// We distinguish between three states of threads that are important to /// the implementation of this function. /// Alive threads: /// Threads in a warp executing the SIMT instruction, as distinguished from /// threads that are inactive due to divergent control flow. /// Active threads: /// The minimal set of threads that has to be alive upon entry to this /// function. The computation is correct iff active threads are alive. /// Some threads are alive but they are not active because they do not /// contribute to the computation in any useful manner. Turning them off /// may introduce control flow overheads without any tangible benefits. /// Effective threads: /// In order to comply with the argument requirements of the shuffle /// function, we must keep all lanes holding data alive. But at most /// half of them perform value aggregation; we refer to this half of /// threads as effective. The other half is simply handing off their /// data. /// /// Procedure /// Value shuffle: /// In this step active threads transfer data from higher lane positions /// in the warp to lower lane positions, creating Remote Reduce list. /// Value aggregation: /// In this step, effective threads combine their thread local Reduce list /// with Remote Reduce list and store the result in the thread local /// Reduce list. /// Value copy: /// In this step, we deal with the assumption made by algorithm 2 /// (i.e. contiguity assumption). When we have an odd number of lanes /// active, say 2k+1, only k threads will be effective and therefore k /// new values will be produced. However, the Reduce list owned by the /// (2k+1)th thread is ignored in the value aggregation. Therefore /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so /// that the contiguity assumption still holds. static llvm::Value * emitShuffleAndReduceFunction(CodeGenModule &CGM, ArrayRef Privates, QualType ReductionArrayTy, llvm::Value *ReduceFn) { auto &C = CGM.getContext(); // Thread local Reduce list used to host the values of data to be reduced. ImplicitParamDecl ReduceListArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); // Current lane id; could be logical. ImplicitParamDecl LaneIDArg(C, C.ShortTy, ImplicitParamDecl::Other); // Offset of the remote source lane relative to the current lane. ImplicitParamDecl RemoteLaneOffsetArg(C, C.ShortTy, ImplicitParamDecl::Other); // Algorithm version. This is expected to be known at compile time. ImplicitParamDecl AlgoVerArg(C, C.ShortTy, ImplicitParamDecl::Other); FunctionArgList Args; Args.push_back(&ReduceListArg); Args.push_back(&LaneIDArg); Args.push_back(&RemoteLaneOffsetArg); Args.push_back(&AlgoVerArg); auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *Fn = llvm::Function::Create( CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI); CodeGenFunction CGF(CGM); // We don't need debug information in this function as nothing here refers to // user code. CGF.disableDebugInfo(); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); auto &Bld = CGF.Builder; Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); Address LocalReduceList( Bld.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()), CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), CGF.getPointerAlign()); Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); // Create a local thread-private variable to host the Reduce list // from a remote lane. Address RemoteReduceList = CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); // This loop iterates through the list of reduce elements and copies, // element by element, from a remote lane in the warp to RemoteReduceList, // hosted on the thread's stack. emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, LocalReduceList, RemoteReduceList, {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, /*ScratchpadIndex=*/nullptr, /*ScratchpadWidth=*/nullptr}); // The actions to be performed on the Remote Reduce list is dependent // on the algorithm version. // // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && // LaneId % 2 == 0 && Offset > 0): // do the reduction value aggregation // // The thread local variable Reduce list is mutated in place to host the // reduced data, which is the aggregated value produced from local and // remote lanes. // // Note that AlgoVer is expected to be a constant integer known at compile // time. // When AlgoVer==0, the first conjunction evaluates to true, making // the entire predicate true during compile time. // When AlgoVer==1, the second conjunction has only the second part to be // evaluated during runtime. Other conjunctions evaluates to false // during compile time. // When AlgoVer==2, the third conjunction has only the second part to be // evaluated during runtime. Other conjunctions evaluates to false // during compile time. auto CondAlgo0 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(0)); auto Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); auto CondAlgo1 = Bld.CreateAnd( Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); auto Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); auto CondAlgo2 = Bld.CreateAnd( Algo2, Bld.CreateICmpEQ(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)), Bld.getInt16(0))); CondAlgo2 = Bld.CreateAnd( CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); auto CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); CGF.EmitBlock(ThenBB); // reduce_function(LocalReduceList, RemoteReduceList) llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( LocalReduceList.getPointer(), CGF.VoidPtrTy); llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( RemoteReduceList.getPointer(), CGF.VoidPtrTy); CGF.EmitCallOrInvoke(ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); Bld.CreateBr(MergeBB); CGF.EmitBlock(ElseBB); Bld.CreateBr(MergeBB); CGF.EmitBlock(MergeBB); // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local // Reduce list. Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); auto CondCopy = Bld.CreateAnd( Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); CGF.EmitBlock(CpyThenBB); emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, RemoteReduceList, LocalReduceList); Bld.CreateBr(CpyMergeBB); CGF.EmitBlock(CpyElseBB); Bld.CreateBr(CpyMergeBB); CGF.EmitBlock(CpyMergeBB); CGF.FinishFunction(); return Fn; } /// /// Design of OpenMP reductions on the GPU /// /// Consider a typical OpenMP program with one or more reduction /// clauses: /// /// float foo; /// double bar; /// #pragma omp target teams distribute parallel for \ /// reduction(+:foo) reduction(*:bar) /// for (int i = 0; i < N; i++) { /// foo += A[i]; bar *= B[i]; /// } /// /// where 'foo' and 'bar' are reduced across all OpenMP threads in /// all teams. In our OpenMP implementation on the NVPTX device an /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads /// within a team are mapped to CUDA threads within a threadblock. /// Our goal is to efficiently aggregate values across all OpenMP /// threads such that: /// /// - the compiler and runtime are logically concise, and /// - the reduction is performed efficiently in a hierarchical /// manner as follows: within OpenMP threads in the same warp, /// across warps in a threadblock, and finally across teams on /// the NVPTX device. /// /// Introduction to Decoupling /// /// We would like to decouple the compiler and the runtime so that the /// latter is ignorant of the reduction variables (number, data types) /// and the reduction operators. This allows a simpler interface /// and implementation while still attaining good performance. /// /// Pseudocode for the aforementioned OpenMP program generated by the /// compiler is as follows: /// /// 1. Create private copies of reduction variables on each OpenMP /// thread: 'foo_private', 'bar_private' /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned /// to it and writes the result in 'foo_private' and 'bar_private' /// respectively. /// 3. Call the OpenMP runtime on the GPU to reduce within a team /// and store the result on the team master: /// /// __kmpc_nvptx_parallel_reduce_nowait(..., /// reduceData, shuffleReduceFn, interWarpCpyFn) /// /// where: /// struct ReduceData { /// double *foo; /// double *bar; /// } reduceData /// reduceData.foo = &foo_private /// reduceData.bar = &bar_private /// /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two /// auxiliary functions generated by the compiler that operate on /// variables of type 'ReduceData'. They aid the runtime perform /// algorithmic steps in a data agnostic manner. /// /// 'shuffleReduceFn' is a pointer to a function that reduces data /// of type 'ReduceData' across two OpenMP threads (lanes) in the /// same warp. It takes the following arguments as input: /// /// a. variable of type 'ReduceData' on the calling lane, /// b. its lane_id, /// c. an offset relative to the current lane_id to generate a /// remote_lane_id. The remote lane contains the second /// variable of type 'ReduceData' that is to be reduced. /// d. an algorithm version parameter determining which reduction /// algorithm to use. /// /// 'shuffleReduceFn' retrieves data from the remote lane using /// efficient GPU shuffle intrinsics and reduces, using the /// algorithm specified by the 4th parameter, the two operands /// element-wise. The result is written to the first operand. /// /// Different reduction algorithms are implemented in different /// runtime functions, all calling 'shuffleReduceFn' to perform /// the essential reduction step. Therefore, based on the 4th /// parameter, this function behaves slightly differently to /// cooperate with the runtime to ensure correctness under /// different circumstances. /// /// 'InterWarpCpyFn' is a pointer to a function that transfers /// reduced variables across warps. It tunnels, through CUDA /// shared memory, the thread-private data of type 'ReduceData' /// from lane 0 of each warp to a lane in the first warp. /// 4. Call the OpenMP runtime on the GPU to reduce across teams. /// The last team writes the global reduced value to memory. /// /// ret = __kmpc_nvptx_teams_reduce_nowait(..., /// reduceData, shuffleReduceFn, interWarpCpyFn, /// scratchpadCopyFn, loadAndReduceFn) /// /// 'scratchpadCopyFn' is a helper that stores reduced /// data from the team master to a scratchpad array in /// global memory. /// /// 'loadAndReduceFn' is a helper that loads data from /// the scratchpad array and reduces it with the input /// operand. /// /// These compiler generated functions hide address /// calculation and alignment information from the runtime. /// 5. if ret == 1: /// The team master of the last team stores the reduced /// result to the globals in memory. /// foo += reduceData.foo; bar *= reduceData.bar /// /// /// Warp Reduction Algorithms /// /// On the warp level, we have three algorithms implemented in the /// OpenMP runtime depending on the number of active lanes: /// /// Full Warp Reduction /// /// The reduce algorithm within a warp where all lanes are active /// is implemented in the runtime as follows: /// /// full_warp_reduce(void *reduce_data, /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) /// ShuffleReduceFn(reduce_data, 0, offset, 0); /// } /// /// The algorithm completes in log(2, WARPSIZE) steps. /// /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is /// not used therefore we save instructions by not retrieving lane_id /// from the corresponding special registers. The 4th parameter, which /// represents the version of the algorithm being used, is set to 0 to /// signify full warp reduction. /// /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: /// /// #reduce_elem refers to an element in the local lane's data structure /// #remote_elem is retrieved from a remote lane /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); /// reduce_elem = reduce_elem REDUCE_OP remote_elem; /// /// Contiguous Partial Warp Reduction /// /// This reduce algorithm is used within a warp where only the first /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the /// number of OpenMP threads in a parallel region is not a multiple of /// WARPSIZE. The algorithm is implemented in the runtime as follows: /// /// void /// contiguous_partial_reduce(void *reduce_data, /// kmp_ShuffleReductFctPtr ShuffleReduceFn, /// int size, int lane_id) { /// int curr_size; /// int offset; /// curr_size = size; /// mask = curr_size/2; /// while (offset>0) { /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); /// curr_size = (curr_size+1)/2; /// offset = curr_size/2; /// } /// } /// /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: /// /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); /// if (lane_id < offset) /// reduce_elem = reduce_elem REDUCE_OP remote_elem /// else /// reduce_elem = remote_elem /// /// This algorithm assumes that the data to be reduced are located in a /// contiguous subset of lanes starting from the first. When there is /// an odd number of active lanes, the data in the last lane is not /// aggregated with any other lane's dat but is instead copied over. /// /// Dispersed Partial Warp Reduction /// /// This algorithm is used within a warp when any discontiguous subset of /// lanes are active. It is used to implement the reduction operation /// across lanes in an OpenMP simd region or in a nested parallel region. /// /// void /// dispersed_partial_reduce(void *reduce_data, /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { /// int size, remote_id; /// int logical_lane_id = number_of_active_lanes_before_me() * 2; /// do { /// remote_id = next_active_lane_id_right_after_me(); /// # the above function returns 0 of no active lane /// # is present right after the current lane. /// size = number_of_active_lanes_in_this_warp(); /// logical_lane_id /= 2; /// ShuffleReduceFn(reduce_data, logical_lane_id, /// remote_id-1-threadIdx.x, 2); /// } while (logical_lane_id % 2 == 0 && size > 1); /// } /// /// There is no assumption made about the initial state of the reduction. /// Any number of lanes (>=1) could be active at any position. The reduction /// result is returned in the first active lane. /// /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: /// /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); /// if (lane_id % 2 == 0 && offset > 0) /// reduce_elem = reduce_elem REDUCE_OP remote_elem /// else /// reduce_elem = remote_elem /// /// /// Intra-Team Reduction /// /// This function, as implemented in the runtime call /// '__kmpc_nvptx_parallel_reduce_nowait', aggregates data across OpenMP /// threads in a team. It first reduces within a warp using the /// aforementioned algorithms. We then proceed to gather all such /// reduced values at the first warp. /// /// The runtime makes use of the function 'InterWarpCpyFn', which copies /// data from each of the "warp master" (zeroth lane of each warp, where /// warp-reduced data is held) to the zeroth warp. This step reduces (in /// a mathematical sense) the problem of reduction across warp masters in /// a block to the problem of warp reduction. /// /// /// Inter-Team Reduction /// /// Once a team has reduced its data to a single value, it is stored in /// a global scratchpad array. Since each team has a distinct slot, this /// can be done without locking. /// /// The last team to write to the scratchpad array proceeds to reduce the /// scratchpad array. One or more workers in the last team use the helper /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., /// the k'th worker reduces every k'th element. /// /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait' to /// reduce across workers and compute a globally reduced value. /// void CGOpenMPRuntimeNVPTX::emitReduction( CodeGenFunction &CGF, SourceLocation Loc, ArrayRef Privates, ArrayRef LHSExprs, ArrayRef RHSExprs, ArrayRef ReductionOps, ReductionOptionsTy Options) { if (!CGF.HaveInsertPoint()) return; bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); // FIXME: Add support for simd reduction. assert((TeamsReduction || ParallelReduction) && "Invalid reduction selection in emitReduction."); auto &C = CGM.getContext(); // 1. Build a list of reduction variables. // void *RedList[] = {[0], ..., [-1]}; auto Size = RHSExprs.size(); for (auto *E : Privates) { if (E->getType()->isVariablyModifiedType()) // Reserve place for array size. ++Size; } llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); QualType ReductionArrayTy = C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal, /*IndexTypeQuals=*/0); Address ReductionList = CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); auto IPriv = Privates.begin(); unsigned Idx = 0; for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, CGF.getPointerSize()); CGF.Builder.CreateStore( CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy), Elem); if ((*IPriv)->getType()->isVariablyModifiedType()) { // Store array size. ++Idx; Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, CGF.getPointerSize()); llvm::Value *Size = CGF.Builder.CreateIntCast( CGF.getVLASize( CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) .first, CGF.SizeTy, /*isSigned=*/false); CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), Elem); } } // 2. Emit reduce_func(). auto *ReductionFn = emitReductionFunction( CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, LHSExprs, RHSExprs, ReductionOps); // 4. Build res = __kmpc_reduce{_nowait}(, , sizeof(RedList), // RedList, shuffle_reduce_func, interwarp_copy_func); auto *ThreadId = getThreadID(CGF, Loc); auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); auto *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( ReductionList.getPointer(), CGF.VoidPtrTy); auto *ShuffleAndReduceFn = emitShuffleAndReduceFunction( CGM, Privates, ReductionArrayTy, ReductionFn); auto *InterWarpCopyFn = emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy); llvm::Value *Res = nullptr; if (ParallelReduction) { llvm::Value *Args[] = {ThreadId, CGF.Builder.getInt32(RHSExprs.size()), ReductionArrayTySize, RL, ShuffleAndReduceFn, InterWarpCopyFn}; Res = CGF.EmitRuntimeCall( createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_reduce_nowait), Args); } if (TeamsReduction) { auto *ScratchPadCopyFn = emitCopyToScratchpad(CGM, Privates, ReductionArrayTy); auto *LoadAndReduceFn = emitReduceScratchpadFunction( CGM, Privates, ReductionArrayTy, ReductionFn); llvm::Value *Args[] = {ThreadId, CGF.Builder.getInt32(RHSExprs.size()), ReductionArrayTySize, RL, ShuffleAndReduceFn, InterWarpCopyFn, ScratchPadCopyFn, LoadAndReduceFn}; Res = CGF.EmitRuntimeCall( createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_teams_reduce_nowait), Args); } // 5. Build switch(res) auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default"); auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/1); // 6. Build case 1: where we have reduced values in the master // thread in each team. // __kmpc_end_reduce{_nowait}(); // break; auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1"); SwInst->addCase(CGF.Builder.getInt32(1), Case1BB); CGF.EmitBlock(Case1BB); // Add emission of __kmpc_end_reduce{_nowait}(); llvm::Value *EndArgs[] = {ThreadId}; auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps, this](CodeGenFunction &CGF, PrePostActionTy &Action) { auto IPriv = Privates.begin(); auto ILHS = LHSExprs.begin(); auto IRHS = RHSExprs.begin(); for (auto *E : ReductionOps) { emitSingleReductionCombiner(CGF, E, *IPriv, cast(*ILHS), cast(*IRHS)); ++IPriv; ++ILHS; ++IRHS; } }; RegionCodeGenTy RCG(CodeGen); NVPTXActionTy Action( nullptr, llvm::None, createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait), EndArgs); RCG.setAction(Action); RCG(CGF); CGF.EmitBranch(DefaultBB); CGF.EmitBlock(DefaultBB, /*IsFinished=*/true); }