//===---- TargetInfo.h - Encapsulate target details -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // These classes wrap the information about a call or function // definition used to handle ABI compliancy. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H #define LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H #include "CGValue.h" #include "clang/AST/Type.h" #include "clang/Basic/LLVM.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" namespace llvm { class Constant; class GlobalValue; class Type; class Value; } namespace clang { class Decl; namespace CodeGen { class ABIInfo; class CallArgList; class CodeGenModule; class CodeGenFunction; class CGFunctionInfo; /// TargetCodeGenInfo - This class organizes various target-specific /// codegeneration issues, like target-specific attributes, builtins and so /// on. class TargetCodeGenInfo { ABIInfo *Info; public: // WARNING: Acquires the ownership of ABIInfo. TargetCodeGenInfo(ABIInfo *info = nullptr) : Info(info) {} virtual ~TargetCodeGenInfo(); /// getABIInfo() - Returns ABI info helper for the target. const ABIInfo &getABIInfo() const { return *Info; } /// setTargetAttributes - Provides a convenient hook to handle extra /// target-specific attributes for the given global. virtual void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {} /// emitTargetMD - Provides a convenient hook to handle extra /// target-specific metadata for the given global. virtual void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {} /// Determines the size of struct _Unwind_Exception on this platform, /// in 8-bit units. The Itanium ABI defines this as: /// struct _Unwind_Exception { /// uint64 exception_class; /// _Unwind_Exception_Cleanup_Fn exception_cleanup; /// uint64 private_1; /// uint64 private_2; /// }; virtual unsigned getSizeOfUnwindException() const; /// Controls whether __builtin_extend_pointer should sign-extend /// pointers to uint64_t or zero-extend them (the default). Has /// no effect for targets: /// - that have 64-bit pointers, or /// - that cannot address through registers larger than pointers, or /// - that implicitly ignore/truncate the top bits when addressing /// through such registers. virtual bool extendPointerWithSExt() const { return false; } /// Determines the DWARF register number for the stack pointer, for /// exception-handling purposes. Implements __builtin_dwarf_sp_column. /// /// Returns -1 if the operation is unsupported by this target. virtual int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return -1; } /// Initializes the given DWARF EH register-size table, a char*. /// Implements __builtin_init_dwarf_reg_size_table. /// /// Returns true if the operation is unsupported by this target. virtual bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return true; } /// Performs the code-generation required to convert a return /// address as stored by the system into the actual address of the /// next instruction that will be executed. /// /// Used by __builtin_extract_return_addr(). virtual llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return Address; } /// Performs the code-generation required to convert the address /// of an instruction into a return address suitable for storage /// by the system in a return slot. /// /// Used by __builtin_frob_return_addr(). virtual llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return Address; } /// Corrects the low-level LLVM type for a given constraint and "usual" /// type. /// /// \returns A pointer to a new LLVM type, possibly the same as the original /// on success; 0 on failure. virtual llvm::Type *adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type *Ty) const { return Ty; } /// Adds constraints and types for result registers. virtual void addReturnRegisterOutputs( CodeGen::CodeGenFunction &CGF, CodeGen::LValue ReturnValue, std::string &Constraints, std::vector &ResultRegTypes, std::vector &ResultTruncRegTypes, std::vector &ResultRegDests, std::string &AsmString, unsigned NumOutputs) const {} /// doesReturnSlotInterfereWithArgs - Return true if the target uses an /// argument slot for an 'sret' type. virtual bool doesReturnSlotInterfereWithArgs() const { return true; } /// Retrieve the address of a function to call immediately before /// calling objc_retainAutoreleasedReturnValue. The /// implementation of objc_autoreleaseReturnValue sniffs the /// instruction stream following its return address to decide /// whether it's a call to objc_retainAutoreleasedReturnValue. /// This can be prohibitively expensive, depending on the /// relocation model, and so on some targets it instead sniffs for /// a particular instruction sequence. This functions returns /// that instruction sequence in inline assembly, which will be /// empty if none is required. virtual StringRef getARCRetainAutoreleasedReturnValueMarker() const { return ""; } /// Return a constant used by UBSan as a signature to identify functions /// possessing type information, or 0 if the platform is unsupported. virtual llvm::Constant * getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { return nullptr; } /// Determine whether a call to an unprototyped functions under /// the given calling convention should use the variadic /// convention or the non-variadic convention. /// /// There's a good reason to make a platform's variadic calling /// convention be different from its non-variadic calling /// convention: the non-variadic arguments can be passed in /// registers (better for performance), and the variadic arguments /// can be passed on the stack (also better for performance). If /// this is done, however, unprototyped functions *must* use the /// non-variadic convention, because C99 states that a call /// through an unprototyped function type must succeed if the /// function was defined with a non-variadic prototype with /// compatible parameters. Therefore, splitting the conventions /// makes it impossible to call a variadic function through an /// unprototyped type. Since function prototypes came out in the /// late 1970s, this is probably an acceptable trade-off. /// Nonetheless, not all platforms are willing to make it, and in /// particularly x86-64 bends over backwards to make the /// conventions compatible. /// /// The default is false. This is correct whenever: /// - the conventions are exactly the same, because it does not /// matter and the resulting IR will be somewhat prettier in /// certain cases; or /// - the conventions are substantively different in how they pass /// arguments, because in this case using the variadic convention /// will lead to C99 violations. /// /// However, some platforms make the conventions identical except /// for passing additional out-of-band information to a variadic /// function: for example, x86-64 passes the number of SSE /// arguments in %al. On these platforms, it is desirable to /// call unprototyped functions using the variadic convention so /// that unprototyped calls to varargs functions still succeed. /// /// Relatedly, platforms which pass the fixed arguments to this: /// A foo(B, C, D); /// differently than they would pass them to this: /// A foo(B, C, D, ...); /// may need to adjust the debugger-support code in Sema to do the /// right thing when calling a function with no know signature. virtual bool isNoProtoCallVariadic(const CodeGen::CallArgList &args, const FunctionNoProtoType *fnType) const; /// Gets the linker options necessary to link a dependent library on this /// platform. virtual void getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const; /// Gets the linker options necessary to detect object file mismatches on /// this platform. virtual void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, llvm::SmallString<32> &Opt) const {} /// Get LLVM calling convention for OpenCL kernel. virtual unsigned getOpenCLKernelCallingConv() const; /// Get target specific null pointer. /// \param T is the LLVM type of the null pointer. /// \param QT is the clang QualType of the null pointer. /// \return ConstantPointerNull with the given type \p T. /// Each target can override it to return its own desired constant value. virtual llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, llvm::PointerType *T, QualType QT) const; /// Get target favored AST address space of a global variable for languages /// other than OpenCL and CUDA. /// If \p D is nullptr, returns the default target favored address space /// for global variable. virtual unsigned getGlobalVarAddressSpace(CodeGenModule &CGM, const VarDecl *D) const; /// Get the AST address space for alloca. virtual unsigned getASTAllocaAddressSpace() const { return LangAS::Default; } /// Perform address space cast of an expression of pointer type. /// \param V is the LLVM value to be casted to another address space. /// \param SrcAddr is the language address space of \p V. /// \param DestAddr is the targeted language address space. /// \param DestTy is the destination LLVM pointer type. /// \param IsNonNull is the flag indicating \p V is known to be non null. virtual llvm::Value *performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, llvm::Value *V, unsigned SrcAddr, unsigned DestAddr, llvm::Type *DestTy, bool IsNonNull = false) const; /// Perform address space cast of a constant expression of pointer type. /// \param V is the LLVM constant to be casted to another address space. /// \param SrcAddr is the language address space of \p V. /// \param DestAddr is the targeted language address space. /// \param DestTy is the destination LLVM pointer type. virtual llvm::Constant * performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *V, unsigned SrcAddr, unsigned DestAddr, llvm::Type *DestTy) const; }; } // namespace CodeGen } // namespace clang #endif // LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H