//===--- Compilation.cpp - Compilation Task Implementation ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "clang/Driver/Compilation.h" #include "clang/Driver/Action.h" #include "clang/Driver/Driver.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/Options.h" #include "clang/Driver/ToolChain.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Option/ArgList.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/raw_ostream.h" using namespace clang::driver; using namespace clang; using namespace llvm::opt; Compilation::Compilation(const Driver &D, const ToolChain &_DefaultToolChain, InputArgList *_Args, DerivedArgList *_TranslatedArgs, bool ContainsError) : TheDriver(D), DefaultToolChain(_DefaultToolChain), ActiveOffloadMask(0u), Args(_Args), TranslatedArgs(_TranslatedArgs), ForDiagnostics(false), ContainsError(ContainsError) { // The offloading host toolchain is the default toolchain. OrderedOffloadingToolchains.insert( std::make_pair(Action::OFK_Host, &DefaultToolChain)); } Compilation::~Compilation() { delete TranslatedArgs; delete Args; // Free any derived arg lists. for (auto Arg : TCArgs) if (Arg.second != TranslatedArgs) delete Arg.second; } const DerivedArgList & Compilation::getArgsForToolChain(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind) { if (!TC) TC = &DefaultToolChain; DerivedArgList *&Entry = TCArgs[{TC, BoundArch, DeviceOffloadKind}]; if (!Entry) { SmallVector AllocatedArgs; DerivedArgList *OpenMPArgs = nullptr; // Translate OpenMP toolchain arguments provided via the -Xopenmp-target flags. if (DeviceOffloadKind == Action::OFK_OpenMP) { const ToolChain *HostTC = getSingleOffloadToolChain(); bool SameTripleAsHost = (TC->getTriple() == HostTC->getTriple()); OpenMPArgs = TC->TranslateOpenMPTargetArgs( *TranslatedArgs, SameTripleAsHost, AllocatedArgs); } if (!OpenMPArgs) { Entry = TC->TranslateArgs(*TranslatedArgs, BoundArch, DeviceOffloadKind); if (!Entry) Entry = TranslatedArgs; } else { Entry = TC->TranslateArgs(*OpenMPArgs, BoundArch, DeviceOffloadKind); if (!Entry) Entry = OpenMPArgs; else delete OpenMPArgs; } // Add allocated arguments to the final DAL. for (auto ArgPtr : AllocatedArgs) { Entry->AddSynthesizedArg(ArgPtr); } } return *Entry; } bool Compilation::CleanupFile(const char *File, bool IssueErrors) const { // FIXME: Why are we trying to remove files that we have not created? For // example we should only try to remove a temporary assembly file if // "clang -cc1" succeed in writing it. Was this a workaround for when // clang was writing directly to a .s file and sometimes leaving it behind // during a failure? // FIXME: If this is necessary, we can still try to split // llvm::sys::fs::remove into a removeFile and a removeDir and avoid the // duplicated stat from is_regular_file. // Don't try to remove files which we don't have write access to (but may be // able to remove), or non-regular files. Underlying tools may have // intentionally not overwritten them. if (!llvm::sys::fs::can_write(File) || !llvm::sys::fs::is_regular_file(File)) return true; if (std::error_code EC = llvm::sys::fs::remove(File)) { // Failure is only failure if the file exists and is "regular". We checked // for it being regular before, and llvm::sys::fs::remove ignores ENOENT, // so we don't need to check again. if (IssueErrors) getDriver().Diag(clang::diag::err_drv_unable_to_remove_file) << EC.message(); return false; } return true; } bool Compilation::CleanupFileList(const ArgStringList &Files, bool IssueErrors) const { bool Success = true; for (ArgStringList::const_iterator it = Files.begin(), ie = Files.end(); it != ie; ++it) Success &= CleanupFile(*it, IssueErrors); return Success; } bool Compilation::CleanupFileMap(const ArgStringMap &Files, const JobAction *JA, bool IssueErrors) const { bool Success = true; for (ArgStringMap::const_iterator it = Files.begin(), ie = Files.end(); it != ie; ++it) { // If specified, only delete the files associated with the JobAction. // Otherwise, delete all files in the map. if (JA && it->first != JA) continue; Success &= CleanupFile(it->second, IssueErrors); } return Success; } int Compilation::ExecuteCommand(const Command &C, const Command *&FailingCommand) const { if ((getDriver().CCPrintOptions || getArgs().hasArg(options::OPT_v)) && !getDriver().CCGenDiagnostics) { raw_ostream *OS = &llvm::errs(); // Follow gcc implementation of CC_PRINT_OPTIONS; we could also cache the // output stream. if (getDriver().CCPrintOptions && getDriver().CCPrintOptionsFilename) { std::error_code EC; OS = new llvm::raw_fd_ostream(getDriver().CCPrintOptionsFilename, EC, llvm::sys::fs::F_Append | llvm::sys::fs::F_Text); if (EC) { getDriver().Diag(clang::diag::err_drv_cc_print_options_failure) << EC.message(); FailingCommand = &C; delete OS; return 1; } } if (getDriver().CCPrintOptions) *OS << "[Logging clang options]"; C.Print(*OS, "\n", /*Quote=*/getDriver().CCPrintOptions); if (OS != &llvm::errs()) delete OS; } std::string Error; bool ExecutionFailed; int Res = C.Execute(Redirects, &Error, &ExecutionFailed); if (!Error.empty()) { assert(Res && "Error string set with 0 result code!"); getDriver().Diag(clang::diag::err_drv_command_failure) << Error; } if (Res) FailingCommand = &C; return ExecutionFailed ? 1 : Res; } using FailingCommandList = SmallVectorImpl>; static bool ActionFailed(const Action *A, const FailingCommandList &FailingCommands) { if (FailingCommands.empty()) return false; // CUDA can have the same input source code compiled multiple times so do not // compiled again if there are already failures. It is OK to abort the CUDA // pipeline on errors. if (A->isOffloading(Action::OFK_Cuda)) return true; for (const auto &CI : FailingCommands) if (A == &(CI.second->getSource())) return true; for (const Action *AI : A->inputs()) if (ActionFailed(AI, FailingCommands)) return true; return false; } static bool InputsOk(const Command &C, const FailingCommandList &FailingCommands) { return !ActionFailed(&C.getSource(), FailingCommands); } void Compilation::ExecuteJobs(const JobList &Jobs, FailingCommandList &FailingCommands) const { // According to UNIX standard, driver need to continue compiling all the // inputs on the command line even one of them failed. // In all but CLMode, execute all the jobs unless the necessary inputs for the // job is missing due to previous failures. for (const auto &Job : Jobs) { if (!InputsOk(Job, FailingCommands)) continue; const Command *FailingCommand = nullptr; if (int Res = ExecuteCommand(Job, FailingCommand)) { FailingCommands.push_back(std::make_pair(Res, FailingCommand)); // Bail as soon as one command fails in cl driver mode. if (TheDriver.IsCLMode()) return; } } } void Compilation::initCompilationForDiagnostics() { ForDiagnostics = true; // Free actions and jobs. Actions.clear(); AllActions.clear(); Jobs.clear(); // Clear temporary/results file lists. TempFiles.clear(); ResultFiles.clear(); FailureResultFiles.clear(); // Remove any user specified output. Claim any unclaimed arguments, so as // to avoid emitting warnings about unused args. OptSpecifier OutputOpts[] = { options::OPT_o, options::OPT_MD, options::OPT_MMD }; for (unsigned i = 0, e = llvm::array_lengthof(OutputOpts); i != e; ++i) { if (TranslatedArgs->hasArg(OutputOpts[i])) TranslatedArgs->eraseArg(OutputOpts[i]); } TranslatedArgs->ClaimAllArgs(); // Redirect stdout/stderr to /dev/null. Redirects = {None, {""}, {""}}; } StringRef Compilation::getSysRoot() const { return getDriver().SysRoot; } void Compilation::Redirect(ArrayRef> Redirects) { this->Redirects = Redirects; }