//===--- ToolChains.cpp - ToolChain Implementations -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ToolChains.h" #include "clang/Basic/Cuda.h" #include "clang/Basic/ObjCRuntime.h" #include "clang/Basic/Version.h" #include "clang/Basic/VirtualFileSystem.h" #include "clang/Config/config.h" // for GCC_INSTALL_PREFIX #include "clang/Driver/Compilation.h" #include "clang/Driver/Distro.h" #include "clang/Driver/Driver.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/Options.h" #include "clang/Driver/SanitizerArgs.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Option/Arg.h" #include "llvm/Option/ArgList.h" #include "llvm/Option/OptTable.h" #include "llvm/Option/Option.h" #include "llvm/ProfileData/InstrProf.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/Program.h" #include "llvm/Support/TargetParser.h" #include "llvm/Support/raw_ostream.h" #include // ::getenv #include using namespace clang::driver; using namespace clang::driver::toolchains; using namespace clang; using namespace llvm::opt; MachO::MachO(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : ToolChain(D, Triple, Args) { // We expect 'as', 'ld', etc. to be adjacent to our install dir. getProgramPaths().push_back(getDriver().getInstalledDir()); if (getDriver().getInstalledDir() != getDriver().Dir) getProgramPaths().push_back(getDriver().Dir); } /// Darwin - Darwin tool chain for i386 and x86_64. Darwin::Darwin(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : MachO(D, Triple, Args), TargetInitialized(false), CudaInstallation(D, Triple, Args) {} types::ID MachO::LookupTypeForExtension(StringRef Ext) const { types::ID Ty = types::lookupTypeForExtension(Ext); // Darwin always preprocesses assembly files (unless -x is used explicitly). if (Ty == types::TY_PP_Asm) return types::TY_Asm; return Ty; } bool MachO::HasNativeLLVMSupport() const { return true; } ToolChain::CXXStdlibType Darwin::GetDefaultCXXStdlibType() const { // Default to use libc++ on OS X 10.9+ and iOS 7+. if ((isTargetMacOS() && !isMacosxVersionLT(10, 9)) || (isTargetIOSBased() && !isIPhoneOSVersionLT(7, 0)) || isTargetWatchOSBased()) return ToolChain::CST_Libcxx; return ToolChain::CST_Libstdcxx; } /// Darwin provides an ARC runtime starting in MacOS X 10.7 and iOS 5.0. ObjCRuntime Darwin::getDefaultObjCRuntime(bool isNonFragile) const { if (isTargetWatchOSBased()) return ObjCRuntime(ObjCRuntime::WatchOS, TargetVersion); if (isTargetIOSBased()) return ObjCRuntime(ObjCRuntime::iOS, TargetVersion); if (isNonFragile) return ObjCRuntime(ObjCRuntime::MacOSX, TargetVersion); return ObjCRuntime(ObjCRuntime::FragileMacOSX, TargetVersion); } /// Darwin provides a blocks runtime starting in MacOS X 10.6 and iOS 3.2. bool Darwin::hasBlocksRuntime() const { if (isTargetWatchOSBased()) return true; else if (isTargetIOSBased()) return !isIPhoneOSVersionLT(3, 2); else { assert(isTargetMacOS() && "unexpected darwin target"); return !isMacosxVersionLT(10, 6); } } void Darwin::AddCudaIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args); } // This is just a MachO name translation routine and there's no // way to join this into ARMTargetParser without breaking all // other assumptions. Maybe MachO should consider standardising // their nomenclature. static const char *ArmMachOArchName(StringRef Arch) { return llvm::StringSwitch(Arch) .Case("armv6k", "armv6") .Case("armv6m", "armv6m") .Case("armv5tej", "armv5") .Case("xscale", "xscale") .Case("armv4t", "armv4t") .Case("armv7", "armv7") .Cases("armv7a", "armv7-a", "armv7") .Cases("armv7r", "armv7-r", "armv7") .Cases("armv7em", "armv7e-m", "armv7em") .Cases("armv7k", "armv7-k", "armv7k") .Cases("armv7m", "armv7-m", "armv7m") .Cases("armv7s", "armv7-s", "armv7s") .Default(nullptr); } static const char *ArmMachOArchNameCPU(StringRef CPU) { unsigned ArchKind = llvm::ARM::parseCPUArch(CPU); if (ArchKind == llvm::ARM::AK_INVALID) return nullptr; StringRef Arch = llvm::ARM::getArchName(ArchKind); // FIXME: Make sure this MachO triple mangling is really necessary. // ARMv5* normalises to ARMv5. if (Arch.startswith("armv5")) Arch = Arch.substr(0, 5); // ARMv6*, except ARMv6M, normalises to ARMv6. else if (Arch.startswith("armv6") && !Arch.endswith("6m")) Arch = Arch.substr(0, 5); // ARMv7A normalises to ARMv7. else if (Arch.endswith("v7a")) Arch = Arch.substr(0, 5); return Arch.data(); } static bool isSoftFloatABI(const ArgList &Args) { Arg *A = Args.getLastArg(options::OPT_msoft_float, options::OPT_mhard_float, options::OPT_mfloat_abi_EQ); if (!A) return false; return A->getOption().matches(options::OPT_msoft_float) || (A->getOption().matches(options::OPT_mfloat_abi_EQ) && A->getValue() == StringRef("soft")); } StringRef MachO::getMachOArchName(const ArgList &Args) const { switch (getTriple().getArch()) { default: return getDefaultUniversalArchName(); case llvm::Triple::aarch64: return "arm64"; case llvm::Triple::thumb: case llvm::Triple::arm: if (const Arg *A = Args.getLastArg(options::OPT_march_EQ)) if (const char *Arch = ArmMachOArchName(A->getValue())) return Arch; if (const Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) if (const char *Arch = ArmMachOArchNameCPU(A->getValue())) return Arch; return "arm"; } } Darwin::~Darwin() {} MachO::~MachO() {} std::string Darwin::ComputeEffectiveClangTriple(const ArgList &Args, types::ID InputType) const { llvm::Triple Triple(ComputeLLVMTriple(Args, InputType)); // If the target isn't initialized (e.g., an unknown Darwin platform, return // the default triple). if (!isTargetInitialized()) return Triple.getTriple(); SmallString<16> Str; if (isTargetWatchOSBased()) Str += "watchos"; else if (isTargetTvOSBased()) Str += "tvos"; else if (isTargetIOSBased()) Str += "ios"; else Str += "macosx"; Str += getTargetVersion().getAsString(); Triple.setOSName(Str); return Triple.getTriple(); } void Generic_ELF::anchor() {} Tool *MachO::getTool(Action::ActionClass AC) const { switch (AC) { case Action::LipoJobClass: if (!Lipo) Lipo.reset(new tools::darwin::Lipo(*this)); return Lipo.get(); case Action::DsymutilJobClass: if (!Dsymutil) Dsymutil.reset(new tools::darwin::Dsymutil(*this)); return Dsymutil.get(); case Action::VerifyDebugInfoJobClass: if (!VerifyDebug) VerifyDebug.reset(new tools::darwin::VerifyDebug(*this)); return VerifyDebug.get(); default: return ToolChain::getTool(AC); } } Tool *MachO::buildLinker() const { return new tools::darwin::Linker(*this); } Tool *MachO::buildAssembler() const { return new tools::darwin::Assembler(*this); } DarwinClang::DarwinClang(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Darwin(D, Triple, Args) {} void DarwinClang::addClangWarningOptions(ArgStringList &CC1Args) const { // For modern targets, promote certain warnings to errors. if (isTargetWatchOSBased() || getTriple().isArch64Bit()) { // Always enable -Wdeprecated-objc-isa-usage and promote it // to an error. CC1Args.push_back("-Wdeprecated-objc-isa-usage"); CC1Args.push_back("-Werror=deprecated-objc-isa-usage"); // For iOS and watchOS, also error about implicit function declarations, // as that can impact calling conventions. if (!isTargetMacOS()) CC1Args.push_back("-Werror=implicit-function-declaration"); } } /// \brief Determine whether Objective-C automated reference counting is /// enabled. static bool isObjCAutoRefCount(const ArgList &Args) { return Args.hasFlag(options::OPT_fobjc_arc, options::OPT_fno_objc_arc, false); } void DarwinClang::AddLinkARCArgs(const ArgList &Args, ArgStringList &CmdArgs) const { // Avoid linking compatibility stubs on i386 mac. if (isTargetMacOS() && getArch() == llvm::Triple::x86) return; ObjCRuntime runtime = getDefaultObjCRuntime(/*nonfragile*/ true); if ((runtime.hasNativeARC() || !isObjCAutoRefCount(Args)) && runtime.hasSubscripting()) return; CmdArgs.push_back("-force_load"); SmallString<128> P(getDriver().ClangExecutable); llvm::sys::path::remove_filename(P); // 'clang' llvm::sys::path::remove_filename(P); // 'bin' llvm::sys::path::append(P, "lib", "arc", "libarclite_"); // Mash in the platform. if (isTargetWatchOSSimulator()) P += "watchsimulator"; else if (isTargetWatchOS()) P += "watchos"; else if (isTargetTvOSSimulator()) P += "appletvsimulator"; else if (isTargetTvOS()) P += "appletvos"; else if (isTargetIOSSimulator()) P += "iphonesimulator"; else if (isTargetIPhoneOS()) P += "iphoneos"; else P += "macosx"; P += ".a"; CmdArgs.push_back(Args.MakeArgString(P)); } unsigned DarwinClang::GetDefaultDwarfVersion() const { // Default to use DWARF 2 on OS X 10.10 / iOS 8 and lower. if ((isTargetMacOS() && isMacosxVersionLT(10, 11)) || (isTargetIOSBased() && isIPhoneOSVersionLT(9))) return 2; return 4; } void MachO::AddLinkRuntimeLib(const ArgList &Args, ArgStringList &CmdArgs, StringRef DarwinLibName, bool AlwaysLink, bool IsEmbedded, bool AddRPath) const { SmallString<128> Dir(getDriver().ResourceDir); llvm::sys::path::append(Dir, "lib", IsEmbedded ? "macho_embedded" : "darwin"); SmallString<128> P(Dir); llvm::sys::path::append(P, DarwinLibName); // For now, allow missing resource libraries to support developers who may // not have compiler-rt checked out or integrated into their build (unless // we explicitly force linking with this library). if (AlwaysLink || getVFS().exists(P)) CmdArgs.push_back(Args.MakeArgString(P)); // Adding the rpaths might negatively interact when other rpaths are involved, // so we should make sure we add the rpaths last, after all user-specified // rpaths. This is currently true from this place, but we need to be // careful if this function is ever called before user's rpaths are emitted. if (AddRPath) { assert(DarwinLibName.endswith(".dylib") && "must be a dynamic library"); // Add @executable_path to rpath to support having the dylib copied with // the executable. CmdArgs.push_back("-rpath"); CmdArgs.push_back("@executable_path"); // Add the path to the resource dir to rpath to support using the dylib // from the default location without copying. CmdArgs.push_back("-rpath"); CmdArgs.push_back(Args.MakeArgString(Dir)); } } StringRef Darwin::getPlatformFamily() const { switch (TargetPlatform) { case DarwinPlatformKind::MacOS: return "MacOSX"; case DarwinPlatformKind::IPhoneOS: case DarwinPlatformKind::IPhoneOSSimulator: return "iPhone"; case DarwinPlatformKind::TvOS: case DarwinPlatformKind::TvOSSimulator: return "AppleTV"; case DarwinPlatformKind::WatchOS: case DarwinPlatformKind::WatchOSSimulator: return "Watch"; } llvm_unreachable("Unsupported platform"); } StringRef Darwin::getSDKName(StringRef isysroot) { // Assume SDK has path: SOME_PATH/SDKs/PlatformXX.YY.sdk llvm::sys::path::const_iterator SDKDir; auto BeginSDK = llvm::sys::path::begin(isysroot); auto EndSDK = llvm::sys::path::end(isysroot); for (auto IT = BeginSDK; IT != EndSDK; ++IT) { StringRef SDK = *IT; if (SDK.endswith(".sdk")) return SDK.slice(0, SDK.size() - 4); } return ""; } StringRef Darwin::getOSLibraryNameSuffix() const { switch(TargetPlatform) { case DarwinPlatformKind::MacOS: return "osx"; case DarwinPlatformKind::IPhoneOS: return "ios"; case DarwinPlatformKind::IPhoneOSSimulator: return "iossim"; case DarwinPlatformKind::TvOS: return "tvos"; case DarwinPlatformKind::TvOSSimulator: return "tvossim"; case DarwinPlatformKind::WatchOS: return "watchos"; case DarwinPlatformKind::WatchOSSimulator: return "watchossim"; } llvm_unreachable("Unsupported platform"); } void Darwin::addProfileRTLibs(const ArgList &Args, ArgStringList &CmdArgs) const { if (!needsProfileRT(Args)) return; AddLinkRuntimeLib(Args, CmdArgs, (Twine("libclang_rt.profile_") + getOSLibraryNameSuffix() + ".a").str(), /*AlwaysLink*/ true); } void DarwinClang::AddLinkSanitizerLibArgs(const ArgList &Args, ArgStringList &CmdArgs, StringRef Sanitizer) const { AddLinkRuntimeLib( Args, CmdArgs, (Twine("libclang_rt.") + Sanitizer + "_" + getOSLibraryNameSuffix() + "_dynamic.dylib").str(), /*AlwaysLink*/ true, /*IsEmbedded*/ false, /*AddRPath*/ true); } ToolChain::RuntimeLibType DarwinClang::GetRuntimeLibType( const ArgList &Args) const { if (Arg* A = Args.getLastArg(options::OPT_rtlib_EQ)) { StringRef Value = A->getValue(); if (Value != "compiler-rt") getDriver().Diag(diag::err_drv_unsupported_rtlib_for_platform) << Value << "darwin"; } return ToolChain::RLT_CompilerRT; } void DarwinClang::AddLinkRuntimeLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { // Call once to ensure diagnostic is printed if wrong value was specified GetRuntimeLibType(Args); // Darwin doesn't support real static executables, don't link any runtime // libraries with -static. if (Args.hasArg(options::OPT_static) || Args.hasArg(options::OPT_fapple_kext) || Args.hasArg(options::OPT_mkernel)) return; // Reject -static-libgcc for now, we can deal with this when and if someone // cares. This is useful in situations where someone wants to statically link // something like libstdc++, and needs its runtime support routines. if (const Arg *A = Args.getLastArg(options::OPT_static_libgcc)) { getDriver().Diag(diag::err_drv_unsupported_opt) << A->getAsString(Args); return; } const SanitizerArgs &Sanitize = getSanitizerArgs(); if (Sanitize.needsAsanRt()) AddLinkSanitizerLibArgs(Args, CmdArgs, "asan"); if (Sanitize.needsUbsanRt()) AddLinkSanitizerLibArgs(Args, CmdArgs, "ubsan"); if (Sanitize.needsTsanRt()) AddLinkSanitizerLibArgs(Args, CmdArgs, "tsan"); if (Sanitize.needsStatsRt()) { StringRef OS = isTargetMacOS() ? "osx" : "iossim"; AddLinkRuntimeLib(Args, CmdArgs, (Twine("libclang_rt.stats_client_") + OS + ".a").str(), /*AlwaysLink=*/true); AddLinkSanitizerLibArgs(Args, CmdArgs, "stats"); } if (Sanitize.needsEsanRt()) AddLinkSanitizerLibArgs(Args, CmdArgs, "esan"); // Otherwise link libSystem, then the dynamic runtime library, and finally any // target specific static runtime library. CmdArgs.push_back("-lSystem"); // Select the dynamic runtime library and the target specific static library. if (isTargetWatchOSBased()) { // We currently always need a static runtime library for watchOS. AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.watchos.a"); } else if (isTargetTvOSBased()) { // We currently always need a static runtime library for tvOS. AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.tvos.a"); } else if (isTargetIOSBased()) { // If we are compiling as iOS / simulator, don't attempt to link libgcc_s.1, // it never went into the SDK. // Linking against libgcc_s.1 isn't needed for iOS 5.0+ if (isIPhoneOSVersionLT(5, 0) && !isTargetIOSSimulator() && getTriple().getArch() != llvm::Triple::aarch64) CmdArgs.push_back("-lgcc_s.1"); // We currently always need a static runtime library for iOS. AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.ios.a"); } else { assert(isTargetMacOS() && "unexpected non MacOS platform"); // The dynamic runtime library was merged with libSystem for 10.6 and // beyond; only 10.4 and 10.5 need an additional runtime library. if (isMacosxVersionLT(10, 5)) CmdArgs.push_back("-lgcc_s.10.4"); else if (isMacosxVersionLT(10, 6)) CmdArgs.push_back("-lgcc_s.10.5"); // Originally for OS X, we thought we would only need a static runtime // library when targeting 10.4, to provide versions of the static functions // which were omitted from 10.4.dylib. This led to the creation of the 10.4 // builtins library. // // Unfortunately, that turned out to not be true, because Darwin system // headers can still use eprintf on i386, and it is not exported from // libSystem. Therefore, we still must provide a runtime library just for // the tiny tiny handful of projects that *might* use that symbol. // // Then over time, we figured out it was useful to add more things to the // runtime so we created libclang_rt.osx.a to provide new functions when // deploying to old OS builds, and for a long time we had both eprintf and // osx builtin libraries. Which just seems excessive. So with PR 28855, we // are removing the eprintf library and expecting eprintf to be provided by // the OS X builtins library. if (isMacosxVersionLT(10, 5)) AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.10.4.a"); else AddLinkRuntimeLib(Args, CmdArgs, "libclang_rt.osx.a"); } } void Darwin::AddDeploymentTarget(DerivedArgList &Args) const { const OptTable &Opts = getDriver().getOpts(); // Support allowing the SDKROOT environment variable used by xcrun and other // Xcode tools to define the default sysroot, by making it the default for // isysroot. if (const Arg *A = Args.getLastArg(options::OPT_isysroot)) { // Warn if the path does not exist. if (!getVFS().exists(A->getValue())) getDriver().Diag(clang::diag::warn_missing_sysroot) << A->getValue(); } else { if (char *env = ::getenv("SDKROOT")) { // We only use this value as the default if it is an absolute path, // exists, and it is not the root path. if (llvm::sys::path::is_absolute(env) && getVFS().exists(env) && StringRef(env) != "/") { Args.append(Args.MakeSeparateArg( nullptr, Opts.getOption(options::OPT_isysroot), env)); } } } Arg *OSXVersion = Args.getLastArg(options::OPT_mmacosx_version_min_EQ); Arg *iOSVersion = Args.getLastArg(options::OPT_miphoneos_version_min_EQ); Arg *TvOSVersion = Args.getLastArg(options::OPT_mtvos_version_min_EQ); Arg *WatchOSVersion = Args.getLastArg(options::OPT_mwatchos_version_min_EQ); if (OSXVersion && (iOSVersion || TvOSVersion || WatchOSVersion)) { getDriver().Diag(diag::err_drv_argument_not_allowed_with) << OSXVersion->getAsString(Args) << (iOSVersion ? iOSVersion : TvOSVersion ? TvOSVersion : WatchOSVersion)->getAsString(Args); iOSVersion = TvOSVersion = WatchOSVersion = nullptr; } else if (iOSVersion && (TvOSVersion || WatchOSVersion)) { getDriver().Diag(diag::err_drv_argument_not_allowed_with) << iOSVersion->getAsString(Args) << (TvOSVersion ? TvOSVersion : WatchOSVersion)->getAsString(Args); TvOSVersion = WatchOSVersion = nullptr; } else if (TvOSVersion && WatchOSVersion) { getDriver().Diag(diag::err_drv_argument_not_allowed_with) << TvOSVersion->getAsString(Args) << WatchOSVersion->getAsString(Args); WatchOSVersion = nullptr; } else if (!OSXVersion && !iOSVersion && !TvOSVersion && !WatchOSVersion) { // If no deployment target was specified on the command line, check for // environment defines. std::string OSXTarget; std::string iOSTarget; std::string TvOSTarget; std::string WatchOSTarget; if (char *env = ::getenv("MACOSX_DEPLOYMENT_TARGET")) OSXTarget = env; if (char *env = ::getenv("IPHONEOS_DEPLOYMENT_TARGET")) iOSTarget = env; if (char *env = ::getenv("TVOS_DEPLOYMENT_TARGET")) TvOSTarget = env; if (char *env = ::getenv("WATCHOS_DEPLOYMENT_TARGET")) WatchOSTarget = env; // If there is no command-line argument to specify the Target version and // no environment variable defined, see if we can set the default based // on -isysroot. if (OSXTarget.empty() && iOSTarget.empty() && WatchOSTarget.empty() && TvOSTarget.empty() && Args.hasArg(options::OPT_isysroot)) { if (const Arg *A = Args.getLastArg(options::OPT_isysroot)) { StringRef isysroot = A->getValue(); StringRef SDK = getSDKName(isysroot); if (SDK.size() > 0) { // Slice the version number out. // Version number is between the first and the last number. size_t StartVer = SDK.find_first_of("0123456789"); size_t EndVer = SDK.find_last_of("0123456789"); if (StartVer != StringRef::npos && EndVer > StartVer) { StringRef Version = SDK.slice(StartVer, EndVer + 1); if (SDK.startswith("iPhoneOS") || SDK.startswith("iPhoneSimulator")) iOSTarget = Version; else if (SDK.startswith("MacOSX")) OSXTarget = Version; else if (SDK.startswith("WatchOS") || SDK.startswith("WatchSimulator")) WatchOSTarget = Version; else if (SDK.startswith("AppleTVOS") || SDK.startswith("AppleTVSimulator")) TvOSTarget = Version; } } } } // If no OSX or iOS target has been specified, try to guess platform // from arch name and compute the version from the triple. if (OSXTarget.empty() && iOSTarget.empty() && TvOSTarget.empty() && WatchOSTarget.empty()) { StringRef MachOArchName = getMachOArchName(Args); unsigned Major, Minor, Micro; if (MachOArchName == "armv7" || MachOArchName == "armv7s" || MachOArchName == "arm64") { getTriple().getiOSVersion(Major, Minor, Micro); llvm::raw_string_ostream(iOSTarget) << Major << '.' << Minor << '.' << Micro; } else if (MachOArchName == "armv7k") { getTriple().getWatchOSVersion(Major, Minor, Micro); llvm::raw_string_ostream(WatchOSTarget) << Major << '.' << Minor << '.' << Micro; } else if (MachOArchName != "armv6m" && MachOArchName != "armv7m" && MachOArchName != "armv7em") { if (!getTriple().getMacOSXVersion(Major, Minor, Micro)) { getDriver().Diag(diag::err_drv_invalid_darwin_version) << getTriple().getOSName(); } llvm::raw_string_ostream(OSXTarget) << Major << '.' << Minor << '.' << Micro; } } // Do not allow conflicts with the watchOS target. if (!WatchOSTarget.empty() && (!iOSTarget.empty() || !TvOSTarget.empty())) { getDriver().Diag(diag::err_drv_conflicting_deployment_targets) << "WATCHOS_DEPLOYMENT_TARGET" << (!iOSTarget.empty() ? "IPHONEOS_DEPLOYMENT_TARGET" : "TVOS_DEPLOYMENT_TARGET"); } // Do not allow conflicts with the tvOS target. if (!TvOSTarget.empty() && !iOSTarget.empty()) { getDriver().Diag(diag::err_drv_conflicting_deployment_targets) << "TVOS_DEPLOYMENT_TARGET" << "IPHONEOS_DEPLOYMENT_TARGET"; } // Allow conflicts among OSX and iOS for historical reasons, but choose the // default platform. if (!OSXTarget.empty() && (!iOSTarget.empty() || !WatchOSTarget.empty() || !TvOSTarget.empty())) { if (getTriple().getArch() == llvm::Triple::arm || getTriple().getArch() == llvm::Triple::aarch64 || getTriple().getArch() == llvm::Triple::thumb) OSXTarget = ""; else iOSTarget = WatchOSTarget = TvOSTarget = ""; } if (!OSXTarget.empty()) { const Option O = Opts.getOption(options::OPT_mmacosx_version_min_EQ); OSXVersion = Args.MakeJoinedArg(nullptr, O, OSXTarget); Args.append(OSXVersion); } else if (!iOSTarget.empty()) { const Option O = Opts.getOption(options::OPT_miphoneos_version_min_EQ); iOSVersion = Args.MakeJoinedArg(nullptr, O, iOSTarget); Args.append(iOSVersion); } else if (!TvOSTarget.empty()) { const Option O = Opts.getOption(options::OPT_mtvos_version_min_EQ); TvOSVersion = Args.MakeJoinedArg(nullptr, O, TvOSTarget); Args.append(TvOSVersion); } else if (!WatchOSTarget.empty()) { const Option O = Opts.getOption(options::OPT_mwatchos_version_min_EQ); WatchOSVersion = Args.MakeJoinedArg(nullptr, O, WatchOSTarget); Args.append(WatchOSVersion); } } DarwinPlatformKind Platform; if (OSXVersion) Platform = MacOS; else if (iOSVersion) Platform = IPhoneOS; else if (TvOSVersion) Platform = TvOS; else if (WatchOSVersion) Platform = WatchOS; else llvm_unreachable("Unable to infer Darwin variant"); // Set the tool chain target information. unsigned Major, Minor, Micro; bool HadExtra; if (Platform == MacOS) { assert((!iOSVersion && !TvOSVersion && !WatchOSVersion) && "Unknown target platform!"); if (!Driver::GetReleaseVersion(OSXVersion->getValue(), Major, Minor, Micro, HadExtra) || HadExtra || Major != 10 || Minor >= 100 || Micro >= 100) getDriver().Diag(diag::err_drv_invalid_version_number) << OSXVersion->getAsString(Args); } else if (Platform == IPhoneOS) { assert(iOSVersion && "Unknown target platform!"); if (!Driver::GetReleaseVersion(iOSVersion->getValue(), Major, Minor, Micro, HadExtra) || HadExtra || Major >= 100 || Minor >= 100 || Micro >= 100) getDriver().Diag(diag::err_drv_invalid_version_number) << iOSVersion->getAsString(Args); } else if (Platform == TvOS) { if (!Driver::GetReleaseVersion(TvOSVersion->getValue(), Major, Minor, Micro, HadExtra) || HadExtra || Major >= 100 || Minor >= 100 || Micro >= 100) getDriver().Diag(diag::err_drv_invalid_version_number) << TvOSVersion->getAsString(Args); } else if (Platform == WatchOS) { if (!Driver::GetReleaseVersion(WatchOSVersion->getValue(), Major, Minor, Micro, HadExtra) || HadExtra || Major >= 10 || Minor >= 100 || Micro >= 100) getDriver().Diag(diag::err_drv_invalid_version_number) << WatchOSVersion->getAsString(Args); } else llvm_unreachable("unknown kind of Darwin platform"); // Recognize iOS targets with an x86 architecture as the iOS simulator. if (iOSVersion && (getTriple().getArch() == llvm::Triple::x86 || getTriple().getArch() == llvm::Triple::x86_64)) Platform = IPhoneOSSimulator; if (TvOSVersion && (getTriple().getArch() == llvm::Triple::x86 || getTriple().getArch() == llvm::Triple::x86_64)) Platform = TvOSSimulator; if (WatchOSVersion && (getTriple().getArch() == llvm::Triple::x86 || getTriple().getArch() == llvm::Triple::x86_64)) Platform = WatchOSSimulator; setTarget(Platform, Major, Minor, Micro); if (const Arg *A = Args.getLastArg(options::OPT_isysroot)) { StringRef SDK = getSDKName(A->getValue()); if (SDK.size() > 0) { size_t StartVer = SDK.find_first_of("0123456789"); StringRef SDKName = SDK.slice(0, StartVer); if (!SDKName.startswith(getPlatformFamily())) getDriver().Diag(diag::warn_incompatible_sysroot) << SDKName << getPlatformFamily(); } } } void DarwinClang::AddCXXStdlibLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { CXXStdlibType Type = GetCXXStdlibType(Args); switch (Type) { case ToolChain::CST_Libcxx: CmdArgs.push_back("-lc++"); break; case ToolChain::CST_Libstdcxx: // Unfortunately, -lstdc++ doesn't always exist in the standard search path; // it was previously found in the gcc lib dir. However, for all the Darwin // platforms we care about it was -lstdc++.6, so we search for that // explicitly if we can't see an obvious -lstdc++ candidate. // Check in the sysroot first. if (const Arg *A = Args.getLastArg(options::OPT_isysroot)) { SmallString<128> P(A->getValue()); llvm::sys::path::append(P, "usr", "lib", "libstdc++.dylib"); if (!getVFS().exists(P)) { llvm::sys::path::remove_filename(P); llvm::sys::path::append(P, "libstdc++.6.dylib"); if (getVFS().exists(P)) { CmdArgs.push_back(Args.MakeArgString(P)); return; } } } // Otherwise, look in the root. // FIXME: This should be removed someday when we don't have to care about // 10.6 and earlier, where /usr/lib/libstdc++.dylib does not exist. if (!getVFS().exists("/usr/lib/libstdc++.dylib") && getVFS().exists("/usr/lib/libstdc++.6.dylib")) { CmdArgs.push_back("/usr/lib/libstdc++.6.dylib"); return; } // Otherwise, let the linker search. CmdArgs.push_back("-lstdc++"); break; } } void DarwinClang::AddCCKextLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { // For Darwin platforms, use the compiler-rt-based support library // instead of the gcc-provided one (which is also incidentally // only present in the gcc lib dir, which makes it hard to find). SmallString<128> P(getDriver().ResourceDir); llvm::sys::path::append(P, "lib", "darwin"); // Use the newer cc_kext for iOS ARM after 6.0. if (isTargetWatchOS()) { llvm::sys::path::append(P, "libclang_rt.cc_kext_watchos.a"); } else if (isTargetTvOS()) { llvm::sys::path::append(P, "libclang_rt.cc_kext_tvos.a"); } else if (isTargetIPhoneOS()) { llvm::sys::path::append(P, "libclang_rt.cc_kext_ios.a"); } else { llvm::sys::path::append(P, "libclang_rt.cc_kext.a"); } // For now, allow missing resource libraries to support developers who may // not have compiler-rt checked out or integrated into their build. if (getVFS().exists(P)) CmdArgs.push_back(Args.MakeArgString(P)); } DerivedArgList *MachO::TranslateArgs(const DerivedArgList &Args, StringRef BoundArch, Action::OffloadKind) const { DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs()); const OptTable &Opts = getDriver().getOpts(); // FIXME: We really want to get out of the tool chain level argument // translation business, as it makes the driver functionality much // more opaque. For now, we follow gcc closely solely for the // purpose of easily achieving feature parity & testability. Once we // have something that works, we should reevaluate each translation // and try to push it down into tool specific logic. for (Arg *A : Args) { if (A->getOption().matches(options::OPT_Xarch__)) { // Skip this argument unless the architecture matches either the toolchain // triple arch, or the arch being bound. llvm::Triple::ArchType XarchArch = tools::darwin::getArchTypeForMachOArchName(A->getValue(0)); if (!(XarchArch == getArch() || (!BoundArch.empty() && XarchArch == tools::darwin::getArchTypeForMachOArchName(BoundArch)))) continue; Arg *OriginalArg = A; unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(1)); unsigned Prev = Index; std::unique_ptr XarchArg(Opts.ParseOneArg(Args, Index)); // If the argument parsing failed or more than one argument was // consumed, the -Xarch_ argument's parameter tried to consume // extra arguments. Emit an error and ignore. // // We also want to disallow any options which would alter the // driver behavior; that isn't going to work in our model. We // use isDriverOption() as an approximation, although things // like -O4 are going to slip through. if (!XarchArg || Index > Prev + 1) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args) << A->getAsString(Args); continue; } else if (XarchArg->getOption().hasFlag(options::DriverOption)) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_isdriver) << A->getAsString(Args); continue; } XarchArg->setBaseArg(A); A = XarchArg.release(); DAL->AddSynthesizedArg(A); // Linker input arguments require custom handling. The problem is that we // have already constructed the phase actions, so we can not treat them as // "input arguments". if (A->getOption().hasFlag(options::LinkerInput)) { // Convert the argument into individual Zlinker_input_args. for (const char *Value : A->getValues()) { DAL->AddSeparateArg( OriginalArg, Opts.getOption(options::OPT_Zlinker_input), Value); } continue; } } // Sob. These is strictly gcc compatible for the time being. Apple // gcc translates options twice, which means that self-expanding // options add duplicates. switch ((options::ID)A->getOption().getID()) { default: DAL->append(A); break; case options::OPT_mkernel: case options::OPT_fapple_kext: DAL->append(A); DAL->AddFlagArg(A, Opts.getOption(options::OPT_static)); break; case options::OPT_dependency_file: DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue()); break; case options::OPT_gfull: DAL->AddFlagArg(A, Opts.getOption(options::OPT_g_Flag)); DAL->AddFlagArg( A, Opts.getOption(options::OPT_fno_eliminate_unused_debug_symbols)); break; case options::OPT_gused: DAL->AddFlagArg(A, Opts.getOption(options::OPT_g_Flag)); DAL->AddFlagArg( A, Opts.getOption(options::OPT_feliminate_unused_debug_symbols)); break; case options::OPT_shared: DAL->AddFlagArg(A, Opts.getOption(options::OPT_dynamiclib)); break; case options::OPT_fconstant_cfstrings: DAL->AddFlagArg(A, Opts.getOption(options::OPT_mconstant_cfstrings)); break; case options::OPT_fno_constant_cfstrings: DAL->AddFlagArg(A, Opts.getOption(options::OPT_mno_constant_cfstrings)); break; case options::OPT_Wnonportable_cfstrings: DAL->AddFlagArg(A, Opts.getOption(options::OPT_mwarn_nonportable_cfstrings)); break; case options::OPT_Wno_nonportable_cfstrings: DAL->AddFlagArg( A, Opts.getOption(options::OPT_mno_warn_nonportable_cfstrings)); break; case options::OPT_fpascal_strings: DAL->AddFlagArg(A, Opts.getOption(options::OPT_mpascal_strings)); break; case options::OPT_fno_pascal_strings: DAL->AddFlagArg(A, Opts.getOption(options::OPT_mno_pascal_strings)); break; } } if (getTriple().getArch() == llvm::Triple::x86 || getTriple().getArch() == llvm::Triple::x86_64) if (!Args.hasArgNoClaim(options::OPT_mtune_EQ)) DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_mtune_EQ), "core2"); // Add the arch options based on the particular spelling of -arch, to match // how the driver driver works. if (!BoundArch.empty()) { StringRef Name = BoundArch; const Option MCpu = Opts.getOption(options::OPT_mcpu_EQ); const Option MArch = Opts.getOption(options::OPT_march_EQ); // This code must be kept in sync with LLVM's getArchTypeForDarwinArch, // which defines the list of which architectures we accept. if (Name == "ppc") ; else if (Name == "ppc601") DAL->AddJoinedArg(nullptr, MCpu, "601"); else if (Name == "ppc603") DAL->AddJoinedArg(nullptr, MCpu, "603"); else if (Name == "ppc604") DAL->AddJoinedArg(nullptr, MCpu, "604"); else if (Name == "ppc604e") DAL->AddJoinedArg(nullptr, MCpu, "604e"); else if (Name == "ppc750") DAL->AddJoinedArg(nullptr, MCpu, "750"); else if (Name == "ppc7400") DAL->AddJoinedArg(nullptr, MCpu, "7400"); else if (Name == "ppc7450") DAL->AddJoinedArg(nullptr, MCpu, "7450"); else if (Name == "ppc970") DAL->AddJoinedArg(nullptr, MCpu, "970"); else if (Name == "ppc64" || Name == "ppc64le") DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_m64)); else if (Name == "i386") ; else if (Name == "i486") DAL->AddJoinedArg(nullptr, MArch, "i486"); else if (Name == "i586") DAL->AddJoinedArg(nullptr, MArch, "i586"); else if (Name == "i686") DAL->AddJoinedArg(nullptr, MArch, "i686"); else if (Name == "pentium") DAL->AddJoinedArg(nullptr, MArch, "pentium"); else if (Name == "pentium2") DAL->AddJoinedArg(nullptr, MArch, "pentium2"); else if (Name == "pentpro") DAL->AddJoinedArg(nullptr, MArch, "pentiumpro"); else if (Name == "pentIIm3") DAL->AddJoinedArg(nullptr, MArch, "pentium2"); else if (Name == "x86_64") DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_m64)); else if (Name == "x86_64h") { DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_m64)); DAL->AddJoinedArg(nullptr, MArch, "x86_64h"); } else if (Name == "arm") DAL->AddJoinedArg(nullptr, MArch, "armv4t"); else if (Name == "armv4t") DAL->AddJoinedArg(nullptr, MArch, "armv4t"); else if (Name == "armv5") DAL->AddJoinedArg(nullptr, MArch, "armv5tej"); else if (Name == "xscale") DAL->AddJoinedArg(nullptr, MArch, "xscale"); else if (Name == "armv6") DAL->AddJoinedArg(nullptr, MArch, "armv6k"); else if (Name == "armv6m") DAL->AddJoinedArg(nullptr, MArch, "armv6m"); else if (Name == "armv7") DAL->AddJoinedArg(nullptr, MArch, "armv7a"); else if (Name == "armv7em") DAL->AddJoinedArg(nullptr, MArch, "armv7em"); else if (Name == "armv7k") DAL->AddJoinedArg(nullptr, MArch, "armv7k"); else if (Name == "armv7m") DAL->AddJoinedArg(nullptr, MArch, "armv7m"); else if (Name == "armv7s") DAL->AddJoinedArg(nullptr, MArch, "armv7s"); } return DAL; } void MachO::AddLinkRuntimeLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { // Embedded targets are simple at the moment, not supporting sanitizers and // with different libraries for each member of the product { static, PIC } x // { hard-float, soft-float } llvm::SmallString<32> CompilerRT = StringRef("libclang_rt."); CompilerRT += (tools::arm::getARMFloatABI(*this, Args) == tools::arm::FloatABI::Hard) ? "hard" : "soft"; CompilerRT += Args.hasArg(options::OPT_fPIC) ? "_pic.a" : "_static.a"; AddLinkRuntimeLib(Args, CmdArgs, CompilerRT, false, true); } DerivedArgList * Darwin::TranslateArgs(const DerivedArgList &Args, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind) const { // First get the generic Apple args, before moving onto Darwin-specific ones. DerivedArgList *DAL = MachO::TranslateArgs(Args, BoundArch, DeviceOffloadKind); const OptTable &Opts = getDriver().getOpts(); // If no architecture is bound, none of the translations here are relevant. if (BoundArch.empty()) return DAL; // Add an explicit version min argument for the deployment target. We do this // after argument translation because -Xarch_ arguments may add a version min // argument. AddDeploymentTarget(*DAL); // For iOS 6, undo the translation to add -static for -mkernel/-fapple-kext. // FIXME: It would be far better to avoid inserting those -static arguments, // but we can't check the deployment target in the translation code until // it is set here. if (isTargetWatchOSBased() || (isTargetIOSBased() && !isIPhoneOSVersionLT(6, 0))) { for (ArgList::iterator it = DAL->begin(), ie = DAL->end(); it != ie; ) { Arg *A = *it; ++it; if (A->getOption().getID() != options::OPT_mkernel && A->getOption().getID() != options::OPT_fapple_kext) continue; assert(it != ie && "unexpected argument translation"); A = *it; assert(A->getOption().getID() == options::OPT_static && "missing expected -static argument"); it = DAL->getArgs().erase(it); } } if (!Args.getLastArg(options::OPT_stdlib_EQ) && GetCXXStdlibType(Args) == ToolChain::CST_Libcxx) DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_stdlib_EQ), "libc++"); // Validate the C++ standard library choice. CXXStdlibType Type = GetCXXStdlibType(*DAL); if (Type == ToolChain::CST_Libcxx) { // Check whether the target provides libc++. StringRef where; // Complain about targeting iOS < 5.0 in any way. if (isTargetIOSBased() && isIPhoneOSVersionLT(5, 0)) where = "iOS 5.0"; if (where != StringRef()) { getDriver().Diag(clang::diag::err_drv_invalid_libcxx_deployment) << where; } } auto Arch = tools::darwin::getArchTypeForMachOArchName(BoundArch); if ((Arch == llvm::Triple::arm || Arch == llvm::Triple::thumb)) { if (Args.hasFlag(options::OPT_fomit_frame_pointer, options::OPT_fno_omit_frame_pointer, false)) getDriver().Diag(clang::diag::warn_drv_unsupported_opt_for_target) << "-fomit-frame-pointer" << BoundArch; if (Args.hasFlag(options::OPT_momit_leaf_frame_pointer, options::OPT_mno_omit_leaf_frame_pointer, false)) getDriver().Diag(clang::diag::warn_drv_unsupported_opt_for_target) << "-momit-leaf-frame-pointer" << BoundArch; } return DAL; } bool MachO::IsUnwindTablesDefault() const { return getArch() == llvm::Triple::x86_64; } bool MachO::UseDwarfDebugFlags() const { if (const char *S = ::getenv("RC_DEBUG_OPTIONS")) return S[0] != '\0'; return false; } bool Darwin::UseSjLjExceptions(const ArgList &Args) const { // Darwin uses SjLj exceptions on ARM. if (getTriple().getArch() != llvm::Triple::arm && getTriple().getArch() != llvm::Triple::thumb) return false; // Only watchOS uses the new DWARF/Compact unwinding method. llvm::Triple Triple(ComputeLLVMTriple(Args)); return !Triple.isWatchABI(); } bool Darwin::SupportsEmbeddedBitcode() const { assert(TargetInitialized && "Target not initialized!"); if (isTargetIPhoneOS() && isIPhoneOSVersionLT(6, 0)) return false; return true; } bool MachO::isPICDefault() const { return true; } bool MachO::isPIEDefault() const { return false; } bool MachO::isPICDefaultForced() const { return (getArch() == llvm::Triple::x86_64 || getArch() == llvm::Triple::aarch64); } bool MachO::SupportsProfiling() const { // Profiling instrumentation is only supported on x86. return getArch() == llvm::Triple::x86 || getArch() == llvm::Triple::x86_64; } void Darwin::addMinVersionArgs(const ArgList &Args, ArgStringList &CmdArgs) const { VersionTuple TargetVersion = getTargetVersion(); if (isTargetWatchOS()) CmdArgs.push_back("-watchos_version_min"); else if (isTargetWatchOSSimulator()) CmdArgs.push_back("-watchos_simulator_version_min"); else if (isTargetTvOS()) CmdArgs.push_back("-tvos_version_min"); else if (isTargetTvOSSimulator()) CmdArgs.push_back("-tvos_simulator_version_min"); else if (isTargetIOSSimulator()) CmdArgs.push_back("-ios_simulator_version_min"); else if (isTargetIOSBased()) CmdArgs.push_back("-iphoneos_version_min"); else { assert(isTargetMacOS() && "unexpected target"); CmdArgs.push_back("-macosx_version_min"); } CmdArgs.push_back(Args.MakeArgString(TargetVersion.getAsString())); } void Darwin::addStartObjectFileArgs(const ArgList &Args, ArgStringList &CmdArgs) const { // Derived from startfile spec. if (Args.hasArg(options::OPT_dynamiclib)) { // Derived from darwin_dylib1 spec. if (isTargetWatchOSBased()) { ; // watchOS does not need dylib1.o. } else if (isTargetIOSSimulator()) { ; // iOS simulator does not need dylib1.o. } else if (isTargetIPhoneOS()) { if (isIPhoneOSVersionLT(3, 1)) CmdArgs.push_back("-ldylib1.o"); } else { if (isMacosxVersionLT(10, 5)) CmdArgs.push_back("-ldylib1.o"); else if (isMacosxVersionLT(10, 6)) CmdArgs.push_back("-ldylib1.10.5.o"); } } else { if (Args.hasArg(options::OPT_bundle)) { if (!Args.hasArg(options::OPT_static)) { // Derived from darwin_bundle1 spec. if (isTargetWatchOSBased()) { ; // watchOS does not need bundle1.o. } else if (isTargetIOSSimulator()) { ; // iOS simulator does not need bundle1.o. } else if (isTargetIPhoneOS()) { if (isIPhoneOSVersionLT(3, 1)) CmdArgs.push_back("-lbundle1.o"); } else { if (isMacosxVersionLT(10, 6)) CmdArgs.push_back("-lbundle1.o"); } } } else { if (Args.hasArg(options::OPT_pg) && SupportsProfiling()) { if (Args.hasArg(options::OPT_static) || Args.hasArg(options::OPT_object) || Args.hasArg(options::OPT_preload)) { CmdArgs.push_back("-lgcrt0.o"); } else { CmdArgs.push_back("-lgcrt1.o"); // darwin_crt2 spec is empty. } // By default on OS X 10.8 and later, we don't link with a crt1.o // file and the linker knows to use _main as the entry point. But, // when compiling with -pg, we need to link with the gcrt1.o file, // so pass the -no_new_main option to tell the linker to use the // "start" symbol as the entry point. if (isTargetMacOS() && !isMacosxVersionLT(10, 8)) CmdArgs.push_back("-no_new_main"); } else { if (Args.hasArg(options::OPT_static) || Args.hasArg(options::OPT_object) || Args.hasArg(options::OPT_preload)) { CmdArgs.push_back("-lcrt0.o"); } else { // Derived from darwin_crt1 spec. if (isTargetWatchOSBased()) { ; // watchOS does not need crt1.o. } else if (isTargetIOSSimulator()) { ; // iOS simulator does not need crt1.o. } else if (isTargetIPhoneOS()) { if (getArch() == llvm::Triple::aarch64) ; // iOS does not need any crt1 files for arm64 else if (isIPhoneOSVersionLT(3, 1)) CmdArgs.push_back("-lcrt1.o"); else if (isIPhoneOSVersionLT(6, 0)) CmdArgs.push_back("-lcrt1.3.1.o"); } else { if (isMacosxVersionLT(10, 5)) CmdArgs.push_back("-lcrt1.o"); else if (isMacosxVersionLT(10, 6)) CmdArgs.push_back("-lcrt1.10.5.o"); else if (isMacosxVersionLT(10, 8)) CmdArgs.push_back("-lcrt1.10.6.o"); // darwin_crt2 spec is empty. } } } } } if (!isTargetIPhoneOS() && Args.hasArg(options::OPT_shared_libgcc) && !isTargetWatchOS() && isMacosxVersionLT(10, 5)) { const char *Str = Args.MakeArgString(GetFilePath("crt3.o")); CmdArgs.push_back(Str); } } bool Darwin::SupportsObjCGC() const { return isTargetMacOS(); } void Darwin::CheckObjCARC() const { if (isTargetIOSBased() || isTargetWatchOSBased() || (isTargetMacOS() && !isMacosxVersionLT(10, 6))) return; getDriver().Diag(diag::err_arc_unsupported_on_toolchain); } SanitizerMask Darwin::getSupportedSanitizers() const { const bool IsX86_64 = getTriple().getArch() == llvm::Triple::x86_64; SanitizerMask Res = ToolChain::getSupportedSanitizers(); Res |= SanitizerKind::Address; if (isTargetMacOS()) { if (!isMacosxVersionLT(10, 9)) Res |= SanitizerKind::Vptr; Res |= SanitizerKind::SafeStack; if (IsX86_64) Res |= SanitizerKind::Thread; } else if (isTargetIOSSimulator() || isTargetTvOSSimulator()) { if (IsX86_64) Res |= SanitizerKind::Thread; } return Res; } void Darwin::printVerboseInfo(raw_ostream &OS) const { CudaInstallation.print(OS); } /// Generic_GCC - A tool chain using the 'gcc' command to perform /// all subcommands; this relies on gcc translating the majority of /// command line options. /// \brief Parse a GCCVersion object out of a string of text. /// /// This is the primary means of forming GCCVersion objects. /*static*/ Generic_GCC::GCCVersion Linux::GCCVersion::Parse(StringRef VersionText) { const GCCVersion BadVersion = {VersionText.str(), -1, -1, -1, "", "", ""}; std::pair First = VersionText.split('.'); std::pair Second = First.second.split('.'); GCCVersion GoodVersion = {VersionText.str(), -1, -1, -1, "", "", ""}; if (First.first.getAsInteger(10, GoodVersion.Major) || GoodVersion.Major < 0) return BadVersion; GoodVersion.MajorStr = First.first.str(); if (First.second.empty()) return GoodVersion; if (Second.first.getAsInteger(10, GoodVersion.Minor) || GoodVersion.Minor < 0) return BadVersion; GoodVersion.MinorStr = Second.first.str(); // First look for a number prefix and parse that if present. Otherwise just // stash the entire patch string in the suffix, and leave the number // unspecified. This covers versions strings such as: // 5 (handled above) // 4.4 // 4.4.0 // 4.4.x // 4.4.2-rc4 // 4.4.x-patched // And retains any patch number it finds. StringRef PatchText = GoodVersion.PatchSuffix = Second.second.str(); if (!PatchText.empty()) { if (size_t EndNumber = PatchText.find_first_not_of("0123456789")) { // Try to parse the number and any suffix. if (PatchText.slice(0, EndNumber).getAsInteger(10, GoodVersion.Patch) || GoodVersion.Patch < 0) return BadVersion; GoodVersion.PatchSuffix = PatchText.substr(EndNumber); } } return GoodVersion; } /// \brief Less-than for GCCVersion, implementing a Strict Weak Ordering. bool Generic_GCC::GCCVersion::isOlderThan(int RHSMajor, int RHSMinor, int RHSPatch, StringRef RHSPatchSuffix) const { if (Major != RHSMajor) return Major < RHSMajor; if (Minor != RHSMinor) return Minor < RHSMinor; if (Patch != RHSPatch) { // Note that versions without a specified patch sort higher than those with // a patch. if (RHSPatch == -1) return true; if (Patch == -1) return false; // Otherwise just sort on the patch itself. return Patch < RHSPatch; } if (PatchSuffix != RHSPatchSuffix) { // Sort empty suffixes higher. if (RHSPatchSuffix.empty()) return true; if (PatchSuffix.empty()) return false; // Provide a lexicographic sort to make this a total ordering. return PatchSuffix < RHSPatchSuffix; } // The versions are equal. return false; } static llvm::StringRef getGCCToolchainDir(const ArgList &Args) { const Arg *A = Args.getLastArg(options::OPT_gcc_toolchain); if (A) return A->getValue(); return GCC_INSTALL_PREFIX; } /// \brief Initialize a GCCInstallationDetector from the driver. /// /// This performs all of the autodetection and sets up the various paths. /// Once constructed, a GCCInstallationDetector is essentially immutable. /// /// FIXME: We shouldn't need an explicit TargetTriple parameter here, and /// should instead pull the target out of the driver. This is currently /// necessary because the driver doesn't store the final version of the target /// triple. void Generic_GCC::GCCInstallationDetector::init( const llvm::Triple &TargetTriple, const ArgList &Args, ArrayRef ExtraTripleAliases) { llvm::Triple BiarchVariantTriple = TargetTriple.isArch32Bit() ? TargetTriple.get64BitArchVariant() : TargetTriple.get32BitArchVariant(); // The library directories which may contain GCC installations. SmallVector CandidateLibDirs, CandidateBiarchLibDirs; // The compatible GCC triples for this particular architecture. SmallVector CandidateTripleAliases; SmallVector CandidateBiarchTripleAliases; CollectLibDirsAndTriples(TargetTriple, BiarchVariantTriple, CandidateLibDirs, CandidateTripleAliases, CandidateBiarchLibDirs, CandidateBiarchTripleAliases); // Compute the set of prefixes for our search. SmallVector Prefixes(D.PrefixDirs.begin(), D.PrefixDirs.end()); StringRef GCCToolchainDir = getGCCToolchainDir(Args); if (GCCToolchainDir != "") { if (GCCToolchainDir.back() == '/') GCCToolchainDir = GCCToolchainDir.drop_back(); // remove the / Prefixes.push_back(GCCToolchainDir); } else { // If we have a SysRoot, try that first. if (!D.SysRoot.empty()) { Prefixes.push_back(D.SysRoot); Prefixes.push_back(D.SysRoot + "/usr"); } // Then look for gcc installed alongside clang. Prefixes.push_back(D.InstalledDir + "/.."); // Then look for distribution supplied gcc installations. if (D.SysRoot.empty()) { // Look for RHEL devtoolsets. Prefixes.push_back("/opt/rh/devtoolset-4/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-3/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-2/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-1.1/root/usr"); Prefixes.push_back("/opt/rh/devtoolset-1.0/root/usr"); // And finally in /usr. Prefixes.push_back("/usr"); } } // Try to respect gcc-config on Gentoo. However, do that only // if --gcc-toolchain is not provided or equal to the Gentoo install // in /usr. This avoids accidentally enforcing the system GCC version // when using a custom toolchain. if (GCCToolchainDir == "" || GCCToolchainDir == D.SysRoot + "/usr") { for (StringRef CandidateTriple : ExtraTripleAliases) { if (ScanGentooGccConfig(TargetTriple, Args, CandidateTriple)) return; } for (StringRef CandidateTriple : CandidateTripleAliases) { if (ScanGentooGccConfig(TargetTriple, Args, CandidateTriple)) return; } for (StringRef CandidateTriple : CandidateBiarchTripleAliases) { if (ScanGentooGccConfig(TargetTriple, Args, CandidateTriple, true)) return; } } // Loop over the various components which exist and select the best GCC // installation available. GCC installs are ranked by version number. Version = GCCVersion::Parse("0.0.0"); for (const std::string &Prefix : Prefixes) { if (!D.getVFS().exists(Prefix)) continue; for (StringRef Suffix : CandidateLibDirs) { const std::string LibDir = Prefix + Suffix.str(); if (!D.getVFS().exists(LibDir)) continue; for (StringRef Candidate : ExtraTripleAliases) // Try these first. ScanLibDirForGCCTriple(TargetTriple, Args, LibDir, Candidate); for (StringRef Candidate : CandidateTripleAliases) ScanLibDirForGCCTriple(TargetTriple, Args, LibDir, Candidate); } for (StringRef Suffix : CandidateBiarchLibDirs) { const std::string LibDir = Prefix + Suffix.str(); if (!D.getVFS().exists(LibDir)) continue; for (StringRef Candidate : CandidateBiarchTripleAliases) ScanLibDirForGCCTriple(TargetTriple, Args, LibDir, Candidate, /*NeedsBiarchSuffix=*/ true); } } } void Generic_GCC::GCCInstallationDetector::print(raw_ostream &OS) const { for (const auto &InstallPath : CandidateGCCInstallPaths) OS << "Found candidate GCC installation: " << InstallPath << "\n"; if (!GCCInstallPath.empty()) OS << "Selected GCC installation: " << GCCInstallPath << "\n"; for (const auto &Multilib : Multilibs) OS << "Candidate multilib: " << Multilib << "\n"; if (Multilibs.size() != 0 || !SelectedMultilib.isDefault()) OS << "Selected multilib: " << SelectedMultilib << "\n"; } bool Generic_GCC::GCCInstallationDetector::getBiarchSibling(Multilib &M) const { if (BiarchSibling.hasValue()) { M = BiarchSibling.getValue(); return true; } return false; } /*static*/ void Generic_GCC::GCCInstallationDetector::CollectLibDirsAndTriples( const llvm::Triple &TargetTriple, const llvm::Triple &BiarchTriple, SmallVectorImpl &LibDirs, SmallVectorImpl &TripleAliases, SmallVectorImpl &BiarchLibDirs, SmallVectorImpl &BiarchTripleAliases) { // Declare a bunch of static data sets that we'll select between below. These // are specifically designed to always refer to string literals to avoid any // lifetime or initialization issues. static const char *const AArch64LibDirs[] = {"/lib64", "/lib"}; static const char *const AArch64Triples[] = { "aarch64-none-linux-gnu", "aarch64-linux-gnu", "aarch64-linux-android", "aarch64-redhat-linux", "aarch64-suse-linux"}; static const char *const AArch64beLibDirs[] = {"/lib"}; static const char *const AArch64beTriples[] = {"aarch64_be-none-linux-gnu", "aarch64_be-linux-gnu"}; static const char *const ARMLibDirs[] = {"/lib"}; static const char *const ARMTriples[] = {"arm-linux-gnueabi", "arm-linux-androideabi"}; static const char *const ARMHFTriples[] = {"arm-linux-gnueabihf", "armv7hl-redhat-linux-gnueabi"}; static const char *const ARMebLibDirs[] = {"/lib"}; static const char *const ARMebTriples[] = {"armeb-linux-gnueabi", "armeb-linux-androideabi"}; static const char *const ARMebHFTriples[] = { "armeb-linux-gnueabihf", "armebv7hl-redhat-linux-gnueabi"}; static const char *const X86_64LibDirs[] = {"/lib64", "/lib"}; static const char *const X86_64Triples[] = { "x86_64-linux-gnu", "x86_64-unknown-linux-gnu", "x86_64-pc-linux-gnu", "x86_64-redhat-linux6E", "x86_64-redhat-linux", "x86_64-suse-linux", "x86_64-manbo-linux-gnu", "x86_64-linux-gnu", "x86_64-slackware-linux", "x86_64-linux-android", "x86_64-unknown-linux"}; static const char *const X32LibDirs[] = {"/libx32"}; static const char *const X86LibDirs[] = {"/lib32", "/lib"}; static const char *const X86Triples[] = { "i686-linux-gnu", "i686-pc-linux-gnu", "i486-linux-gnu", "i386-linux-gnu", "i386-redhat-linux6E", "i686-redhat-linux", "i586-redhat-linux", "i386-redhat-linux", "i586-suse-linux", "i486-slackware-linux", "i686-montavista-linux", "i686-linux-android", "i586-linux-gnu"}; static const char *const MIPSLibDirs[] = {"/lib"}; static const char *const MIPSTriples[] = {"mips-linux-gnu", "mips-mti-linux", "mips-mti-linux-gnu", "mips-img-linux-gnu"}; static const char *const MIPSELLibDirs[] = {"/lib"}; static const char *const MIPSELTriples[] = {"mipsel-linux-gnu", "mips-img-linux-gnu"}; static const char *const MIPS64LibDirs[] = {"/lib64", "/lib"}; static const char *const MIPS64Triples[] = { "mips64-linux-gnu", "mips-mti-linux-gnu", "mips-img-linux-gnu", "mips64-linux-gnuabi64"}; static const char *const MIPS64ELLibDirs[] = {"/lib64", "/lib"}; static const char *const MIPS64ELTriples[] = { "mips64el-linux-gnu", "mips-mti-linux-gnu", "mips-img-linux-gnu", "mips64el-linux-gnuabi64"}; static const char *const MIPSELAndroidLibDirs[] = {"/lib", "/libr2", "/libr6"}; static const char *const MIPSELAndroidTriples[] = {"mipsel-linux-android"}; static const char *const MIPS64ELAndroidLibDirs[] = {"/lib64", "/lib", "/libr2", "/libr6"}; static const char *const MIPS64ELAndroidTriples[] = { "mips64el-linux-android"}; static const char *const PPCLibDirs[] = {"/lib32", "/lib"}; static const char *const PPCTriples[] = { "powerpc-linux-gnu", "powerpc-unknown-linux-gnu", "powerpc-linux-gnuspe", "powerpc-suse-linux", "powerpc-montavista-linuxspe"}; static const char *const PPC64LibDirs[] = {"/lib64", "/lib"}; static const char *const PPC64Triples[] = { "powerpc64-linux-gnu", "powerpc64-unknown-linux-gnu", "powerpc64-suse-linux", "ppc64-redhat-linux"}; static const char *const PPC64LELibDirs[] = {"/lib64", "/lib"}; static const char *const PPC64LETriples[] = { "powerpc64le-linux-gnu", "powerpc64le-unknown-linux-gnu", "powerpc64le-suse-linux", "ppc64le-redhat-linux"}; static const char *const SPARCv8LibDirs[] = {"/lib32", "/lib"}; static const char *const SPARCv8Triples[] = {"sparc-linux-gnu", "sparcv8-linux-gnu"}; static const char *const SPARCv9LibDirs[] = {"/lib64", "/lib"}; static const char *const SPARCv9Triples[] = {"sparc64-linux-gnu", "sparcv9-linux-gnu"}; static const char *const SystemZLibDirs[] = {"/lib64", "/lib"}; static const char *const SystemZTriples[] = { "s390x-linux-gnu", "s390x-unknown-linux-gnu", "s390x-ibm-linux-gnu", "s390x-suse-linux", "s390x-redhat-linux"}; // Solaris. static const char *const SolarisSPARCLibDirs[] = {"/gcc"}; static const char *const SolarisSPARCTriples[] = {"sparc-sun-solaris2.11", "i386-pc-solaris2.11"}; using std::begin; using std::end; if (TargetTriple.getOS() == llvm::Triple::Solaris) { LibDirs.append(begin(SolarisSPARCLibDirs), end(SolarisSPARCLibDirs)); TripleAliases.append(begin(SolarisSPARCTriples), end(SolarisSPARCTriples)); return; } switch (TargetTriple.getArch()) { case llvm::Triple::aarch64: LibDirs.append(begin(AArch64LibDirs), end(AArch64LibDirs)); TripleAliases.append(begin(AArch64Triples), end(AArch64Triples)); BiarchLibDirs.append(begin(AArch64LibDirs), end(AArch64LibDirs)); BiarchTripleAliases.append(begin(AArch64Triples), end(AArch64Triples)); break; case llvm::Triple::aarch64_be: LibDirs.append(begin(AArch64beLibDirs), end(AArch64beLibDirs)); TripleAliases.append(begin(AArch64beTriples), end(AArch64beTriples)); BiarchLibDirs.append(begin(AArch64beLibDirs), end(AArch64beLibDirs)); BiarchTripleAliases.append(begin(AArch64beTriples), end(AArch64beTriples)); break; case llvm::Triple::arm: case llvm::Triple::thumb: LibDirs.append(begin(ARMLibDirs), end(ARMLibDirs)); if (TargetTriple.getEnvironment() == llvm::Triple::GNUEABIHF) { TripleAliases.append(begin(ARMHFTriples), end(ARMHFTriples)); } else { TripleAliases.append(begin(ARMTriples), end(ARMTriples)); } break; case llvm::Triple::armeb: case llvm::Triple::thumbeb: LibDirs.append(begin(ARMebLibDirs), end(ARMebLibDirs)); if (TargetTriple.getEnvironment() == llvm::Triple::GNUEABIHF) { TripleAliases.append(begin(ARMebHFTriples), end(ARMebHFTriples)); } else { TripleAliases.append(begin(ARMebTriples), end(ARMebTriples)); } break; case llvm::Triple::x86_64: LibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs)); TripleAliases.append(begin(X86_64Triples), end(X86_64Triples)); // x32 is always available when x86_64 is available, so adding it as // secondary arch with x86_64 triples if (TargetTriple.getEnvironment() == llvm::Triple::GNUX32) { BiarchLibDirs.append(begin(X32LibDirs), end(X32LibDirs)); BiarchTripleAliases.append(begin(X86_64Triples), end(X86_64Triples)); } else { BiarchLibDirs.append(begin(X86LibDirs), end(X86LibDirs)); BiarchTripleAliases.append(begin(X86Triples), end(X86Triples)); } break; case llvm::Triple::x86: LibDirs.append(begin(X86LibDirs), end(X86LibDirs)); // MCU toolchain is 32 bit only and its triple alias is TargetTriple // itself, which will be appended below. if (!TargetTriple.isOSIAMCU()) { TripleAliases.append(begin(X86Triples), end(X86Triples)); BiarchLibDirs.append(begin(X86_64LibDirs), end(X86_64LibDirs)); BiarchTripleAliases.append(begin(X86_64Triples), end(X86_64Triples)); } break; case llvm::Triple::mips: LibDirs.append(begin(MIPSLibDirs), end(MIPSLibDirs)); TripleAliases.append(begin(MIPSTriples), end(MIPSTriples)); BiarchLibDirs.append(begin(MIPS64LibDirs), end(MIPS64LibDirs)); BiarchTripleAliases.append(begin(MIPS64Triples), end(MIPS64Triples)); break; case llvm::Triple::mipsel: if (TargetTriple.isAndroid()) { LibDirs.append(begin(MIPSELAndroidLibDirs), end(MIPSELAndroidLibDirs)); TripleAliases.append(begin(MIPSELAndroidTriples), end(MIPSELAndroidTriples)); BiarchLibDirs.append(begin(MIPS64ELAndroidLibDirs), end(MIPS64ELAndroidLibDirs)); BiarchTripleAliases.append(begin(MIPS64ELAndroidTriples), end(MIPS64ELAndroidTriples)); } else { LibDirs.append(begin(MIPSELLibDirs), end(MIPSELLibDirs)); TripleAliases.append(begin(MIPSELTriples), end(MIPSELTriples)); TripleAliases.append(begin(MIPSTriples), end(MIPSTriples)); BiarchLibDirs.append(begin(MIPS64ELLibDirs), end(MIPS64ELLibDirs)); BiarchTripleAliases.append(begin(MIPS64ELTriples), end(MIPS64ELTriples)); } break; case llvm::Triple::mips64: LibDirs.append(begin(MIPS64LibDirs), end(MIPS64LibDirs)); TripleAliases.append(begin(MIPS64Triples), end(MIPS64Triples)); BiarchLibDirs.append(begin(MIPSLibDirs), end(MIPSLibDirs)); BiarchTripleAliases.append(begin(MIPSTriples), end(MIPSTriples)); break; case llvm::Triple::mips64el: if (TargetTriple.isAndroid()) { LibDirs.append(begin(MIPS64ELAndroidLibDirs), end(MIPS64ELAndroidLibDirs)); TripleAliases.append(begin(MIPS64ELAndroidTriples), end(MIPS64ELAndroidTriples)); BiarchLibDirs.append(begin(MIPSELAndroidLibDirs), end(MIPSELAndroidLibDirs)); BiarchTripleAliases.append(begin(MIPSELAndroidTriples), end(MIPSELAndroidTriples)); } else { LibDirs.append(begin(MIPS64ELLibDirs), end(MIPS64ELLibDirs)); TripleAliases.append(begin(MIPS64ELTriples), end(MIPS64ELTriples)); BiarchLibDirs.append(begin(MIPSELLibDirs), end(MIPSELLibDirs)); BiarchTripleAliases.append(begin(MIPSELTriples), end(MIPSELTriples)); BiarchTripleAliases.append(begin(MIPSTriples), end(MIPSTriples)); } break; case llvm::Triple::ppc: LibDirs.append(begin(PPCLibDirs), end(PPCLibDirs)); TripleAliases.append(begin(PPCTriples), end(PPCTriples)); BiarchLibDirs.append(begin(PPC64LibDirs), end(PPC64LibDirs)); BiarchTripleAliases.append(begin(PPC64Triples), end(PPC64Triples)); break; case llvm::Triple::ppc64: LibDirs.append(begin(PPC64LibDirs), end(PPC64LibDirs)); TripleAliases.append(begin(PPC64Triples), end(PPC64Triples)); BiarchLibDirs.append(begin(PPCLibDirs), end(PPCLibDirs)); BiarchTripleAliases.append(begin(PPCTriples), end(PPCTriples)); break; case llvm::Triple::ppc64le: LibDirs.append(begin(PPC64LELibDirs), end(PPC64LELibDirs)); TripleAliases.append(begin(PPC64LETriples), end(PPC64LETriples)); break; case llvm::Triple::sparc: case llvm::Triple::sparcel: LibDirs.append(begin(SPARCv8LibDirs), end(SPARCv8LibDirs)); TripleAliases.append(begin(SPARCv8Triples), end(SPARCv8Triples)); BiarchLibDirs.append(begin(SPARCv9LibDirs), end(SPARCv9LibDirs)); BiarchTripleAliases.append(begin(SPARCv9Triples), end(SPARCv9Triples)); break; case llvm::Triple::sparcv9: LibDirs.append(begin(SPARCv9LibDirs), end(SPARCv9LibDirs)); TripleAliases.append(begin(SPARCv9Triples), end(SPARCv9Triples)); BiarchLibDirs.append(begin(SPARCv8LibDirs), end(SPARCv8LibDirs)); BiarchTripleAliases.append(begin(SPARCv8Triples), end(SPARCv8Triples)); break; case llvm::Triple::systemz: LibDirs.append(begin(SystemZLibDirs), end(SystemZLibDirs)); TripleAliases.append(begin(SystemZTriples), end(SystemZTriples)); break; default: // By default, just rely on the standard lib directories and the original // triple. break; } // Always append the drivers target triple to the end, in case it doesn't // match any of our aliases. TripleAliases.push_back(TargetTriple.str()); // Also include the multiarch variant if it's different. if (TargetTriple.str() != BiarchTriple.str()) BiarchTripleAliases.push_back(BiarchTriple.str()); } // Parses the contents of version.txt in an CUDA installation. It should // contain one line of the from e.g. "CUDA Version 7.5.2". static CudaVersion ParseCudaVersionFile(llvm::StringRef V) { if (!V.startswith("CUDA Version ")) return CudaVersion::UNKNOWN; V = V.substr(strlen("CUDA Version ")); int Major = -1, Minor = -1; auto First = V.split('.'); auto Second = First.second.split('.'); if (First.first.getAsInteger(10, Major) || Second.first.getAsInteger(10, Minor)) return CudaVersion::UNKNOWN; if (Major == 7 && Minor == 0) { // This doesn't appear to ever happen -- version.txt doesn't exist in the // CUDA 7 installs I've seen. But no harm in checking. return CudaVersion::CUDA_70; } if (Major == 7 && Minor == 5) return CudaVersion::CUDA_75; if (Major == 8 && Minor == 0) return CudaVersion::CUDA_80; return CudaVersion::UNKNOWN; } CudaInstallationDetector::CudaInstallationDetector( const Driver &D, const llvm::Triple &HostTriple, const llvm::opt::ArgList &Args) : D(D) { SmallVector CudaPathCandidates; // In decreasing order so we prefer newer versions to older versions. std::initializer_list Versions = {"8.0", "7.5", "7.0"}; if (Args.hasArg(options::OPT_cuda_path_EQ)) { CudaPathCandidates.push_back( Args.getLastArgValue(options::OPT_cuda_path_EQ)); } else if (HostTriple.isOSWindows()) { for (const char *Ver : Versions) CudaPathCandidates.push_back( D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" + Ver); } else { CudaPathCandidates.push_back(D.SysRoot + "/usr/local/cuda"); for (const char *Ver : Versions) CudaPathCandidates.push_back(D.SysRoot + "/usr/local/cuda-" + Ver); } for (const auto &CudaPath : CudaPathCandidates) { if (CudaPath.empty() || !D.getVFS().exists(CudaPath)) continue; InstallPath = CudaPath; BinPath = CudaPath + "/bin"; IncludePath = InstallPath + "/include"; LibDevicePath = InstallPath + "/nvvm/libdevice"; auto &FS = D.getVFS(); if (!(FS.exists(IncludePath) && FS.exists(BinPath) && FS.exists(LibDevicePath))) continue; // On Linux, we have both lib and lib64 directories, and we need to choose // based on our triple. On MacOS, we have only a lib directory. // // It's sufficient for our purposes to be flexible: If both lib and lib64 // exist, we choose whichever one matches our triple. Otherwise, if only // lib exists, we use it. if (HostTriple.isArch64Bit() && FS.exists(InstallPath + "/lib64")) LibPath = InstallPath + "/lib64"; else if (FS.exists(InstallPath + "/lib")) LibPath = InstallPath + "/lib"; else continue; llvm::ErrorOr> VersionFile = FS.getBufferForFile(InstallPath + "/version.txt"); if (!VersionFile) { // CUDA 7.0 doesn't have a version.txt, so guess that's our version if // version.txt isn't present. Version = CudaVersion::CUDA_70; } else { Version = ParseCudaVersionFile((*VersionFile)->getBuffer()); } std::error_code EC; for (llvm::sys::fs::directory_iterator LI(LibDevicePath, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef FilePath = LI->path(); StringRef FileName = llvm::sys::path::filename(FilePath); // Process all bitcode filenames that look like libdevice.compute_XX.YY.bc const StringRef LibDeviceName = "libdevice."; if (!(FileName.startswith(LibDeviceName) && FileName.endswith(".bc"))) continue; StringRef GpuArch = FileName.slice( LibDeviceName.size(), FileName.find('.', LibDeviceName.size())); LibDeviceMap[GpuArch] = FilePath.str(); // Insert map entries for specifc devices with this compute // capability. NVCC's choice of the libdevice library version is // rather peculiar and depends on the CUDA version. if (GpuArch == "compute_20") { LibDeviceMap["sm_20"] = FilePath; LibDeviceMap["sm_21"] = FilePath; LibDeviceMap["sm_32"] = FilePath; } else if (GpuArch == "compute_30") { LibDeviceMap["sm_30"] = FilePath; if (Version < CudaVersion::CUDA_80) { LibDeviceMap["sm_50"] = FilePath; LibDeviceMap["sm_52"] = FilePath; LibDeviceMap["sm_53"] = FilePath; } LibDeviceMap["sm_60"] = FilePath; LibDeviceMap["sm_61"] = FilePath; LibDeviceMap["sm_62"] = FilePath; } else if (GpuArch == "compute_35") { LibDeviceMap["sm_35"] = FilePath; LibDeviceMap["sm_37"] = FilePath; } else if (GpuArch == "compute_50") { if (Version >= CudaVersion::CUDA_80) { LibDeviceMap["sm_50"] = FilePath; LibDeviceMap["sm_52"] = FilePath; LibDeviceMap["sm_53"] = FilePath; } } } IsValid = true; break; } } void CudaInstallationDetector::AddCudaIncludeArgs( const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { // Add cuda_wrappers/* to our system include path. This lets us wrap // standard library headers. SmallString<128> P(D.ResourceDir); llvm::sys::path::append(P, "include"); llvm::sys::path::append(P, "cuda_wrappers"); CC1Args.push_back("-internal-isystem"); CC1Args.push_back(DriverArgs.MakeArgString(P)); } if (DriverArgs.hasArg(options::OPT_nocudainc)) return; if (!isValid()) { D.Diag(diag::err_drv_no_cuda_installation); return; } CC1Args.push_back("-internal-isystem"); CC1Args.push_back(DriverArgs.MakeArgString(getIncludePath())); CC1Args.push_back("-include"); CC1Args.push_back("__clang_cuda_runtime_wrapper.h"); } void CudaInstallationDetector::CheckCudaVersionSupportsArch( CudaArch Arch) const { if (Arch == CudaArch::UNKNOWN || Version == CudaVersion::UNKNOWN || ArchsWithVersionTooLowErrors.count(Arch) > 0) return; auto RequiredVersion = MinVersionForCudaArch(Arch); if (Version < RequiredVersion) { ArchsWithVersionTooLowErrors.insert(Arch); D.Diag(diag::err_drv_cuda_version_too_low) << InstallPath << CudaArchToString(Arch) << CudaVersionToString(Version) << CudaVersionToString(RequiredVersion); } } void CudaInstallationDetector::print(raw_ostream &OS) const { if (isValid()) OS << "Found CUDA installation: " << InstallPath << ", version " << CudaVersionToString(Version) << "\n"; } namespace { // Filter to remove Multilibs that don't exist as a suffix to Path class FilterNonExistent { StringRef Base, File; vfs::FileSystem &VFS; public: FilterNonExistent(StringRef Base, StringRef File, vfs::FileSystem &VFS) : Base(Base), File(File), VFS(VFS) {} bool operator()(const Multilib &M) { return !VFS.exists(Base + M.gccSuffix() + File); } }; } // end anonymous namespace static void addMultilibFlag(bool Enabled, const char *const Flag, std::vector &Flags) { if (Enabled) Flags.push_back(std::string("+") + Flag); else Flags.push_back(std::string("-") + Flag); } static bool isArmOrThumbArch(llvm::Triple::ArchType Arch) { return Arch == llvm::Triple::arm || Arch == llvm::Triple::thumb; } static bool isMipsArch(llvm::Triple::ArchType Arch) { return Arch == llvm::Triple::mips || Arch == llvm::Triple::mipsel || Arch == llvm::Triple::mips64 || Arch == llvm::Triple::mips64el; } static bool isMips32(llvm::Triple::ArchType Arch) { return Arch == llvm::Triple::mips || Arch == llvm::Triple::mipsel; } static bool isMips64(llvm::Triple::ArchType Arch) { return Arch == llvm::Triple::mips64 || Arch == llvm::Triple::mips64el; } static bool isMipsEL(llvm::Triple::ArchType Arch) { return Arch == llvm::Triple::mipsel || Arch == llvm::Triple::mips64el; } static bool isMips16(const ArgList &Args) { Arg *A = Args.getLastArg(options::OPT_mips16, options::OPT_mno_mips16); return A && A->getOption().matches(options::OPT_mips16); } static bool isMicroMips(const ArgList &Args) { Arg *A = Args.getLastArg(options::OPT_mmicromips, options::OPT_mno_micromips); return A && A->getOption().matches(options::OPT_mmicromips); } namespace { struct DetectedMultilibs { /// The set of multilibs that the detected installation supports. MultilibSet Multilibs; /// The primary multilib appropriate for the given flags. Multilib SelectedMultilib; /// On Biarch systems, this corresponds to the default multilib when /// targeting the non-default multilib. Otherwise, it is empty. llvm::Optional BiarchSibling; }; } // end anonymous namespace static Multilib makeMultilib(StringRef commonSuffix) { return Multilib(commonSuffix, commonSuffix, commonSuffix); } static bool findMipsCsMultilibs(const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { // Check for Code Sourcery toolchain multilibs MultilibSet CSMipsMultilibs; { auto MArchMips16 = makeMultilib("/mips16").flag("+m32").flag("+mips16"); auto MArchMicroMips = makeMultilib("/micromips").flag("+m32").flag("+mmicromips"); auto MArchDefault = makeMultilib("").flag("-mips16").flag("-mmicromips"); auto UCLibc = makeMultilib("/uclibc").flag("+muclibc"); auto SoftFloat = makeMultilib("/soft-float").flag("+msoft-float"); auto Nan2008 = makeMultilib("/nan2008").flag("+mnan=2008"); auto DefaultFloat = makeMultilib("").flag("-msoft-float").flag("-mnan=2008"); auto BigEndian = makeMultilib("").flag("+EB").flag("-EL"); auto LittleEndian = makeMultilib("/el").flag("+EL").flag("-EB"); // Note that this one's osSuffix is "" auto MAbi64 = makeMultilib("") .gccSuffix("/64") .includeSuffix("/64") .flag("+mabi=n64") .flag("-mabi=n32") .flag("-m32"); CSMipsMultilibs = MultilibSet() .Either(MArchMips16, MArchMicroMips, MArchDefault) .Maybe(UCLibc) .Either(SoftFloat, Nan2008, DefaultFloat) .FilterOut("/micromips/nan2008") .FilterOut("/mips16/nan2008") .Either(BigEndian, LittleEndian) .Maybe(MAbi64) .FilterOut("/mips16.*/64") .FilterOut("/micromips.*/64") .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { std::vector Dirs({"/include"}); if (StringRef(M.includeSuffix()).startswith("/uclibc")) Dirs.push_back( "/../../../../mips-linux-gnu/libc/uclibc/usr/include"); else Dirs.push_back("/../../../../mips-linux-gnu/libc/usr/include"); return Dirs; }); } MultilibSet DebianMipsMultilibs; { Multilib MAbiN32 = Multilib().gccSuffix("/n32").includeSuffix("/n32").flag("+mabi=n32"); Multilib M64 = Multilib() .gccSuffix("/64") .includeSuffix("/64") .flag("+m64") .flag("-m32") .flag("-mabi=n32"); Multilib M32 = Multilib().flag("-m64").flag("+m32").flag("-mabi=n32"); DebianMipsMultilibs = MultilibSet().Either(M32, M64, MAbiN32).FilterOut(NonExistent); } // Sort candidates. Toolchain that best meets the directories tree goes first. // Then select the first toolchains matches command line flags. MultilibSet *Candidates[] = {&CSMipsMultilibs, &DebianMipsMultilibs}; if (CSMipsMultilibs.size() < DebianMipsMultilibs.size()) std::iter_swap(Candidates, Candidates + 1); for (const MultilibSet *Candidate : Candidates) { if (Candidate->select(Flags, Result.SelectedMultilib)) { if (Candidate == &DebianMipsMultilibs) Result.BiarchSibling = Multilib(); Result.Multilibs = *Candidate; return true; } } return false; } static bool findMipsAndroidMultilibs(vfs::FileSystem &VFS, StringRef Path, const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { MultilibSet AndroidMipsMultilibs = MultilibSet() .Maybe(Multilib("/mips-r2").flag("+march=mips32r2")) .Maybe(Multilib("/mips-r6").flag("+march=mips32r6")) .FilterOut(NonExistent); MultilibSet AndroidMipselMultilibs = MultilibSet() .Either(Multilib().flag("+march=mips32"), Multilib("/mips-r2", "", "/mips-r2").flag("+march=mips32r2"), Multilib("/mips-r6", "", "/mips-r6").flag("+march=mips32r6")) .FilterOut(NonExistent); MultilibSet AndroidMips64elMultilibs = MultilibSet() .Either( Multilib().flag("+march=mips64r6"), Multilib("/32/mips-r1", "", "/mips-r1").flag("+march=mips32"), Multilib("/32/mips-r2", "", "/mips-r2").flag("+march=mips32r2"), Multilib("/32/mips-r6", "", "/mips-r6").flag("+march=mips32r6")) .FilterOut(NonExistent); MultilibSet *MS = &AndroidMipsMultilibs; if (VFS.exists(Path + "/mips-r6")) MS = &AndroidMipselMultilibs; else if (VFS.exists(Path + "/32")) MS = &AndroidMips64elMultilibs; if (MS->select(Flags, Result.SelectedMultilib)) { Result.Multilibs = *MS; return true; } return false; } static bool findMipsMuslMultilibs(const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { // Musl toolchain multilibs MultilibSet MuslMipsMultilibs; { auto MArchMipsR2 = makeMultilib("") .osSuffix("/mips-r2-hard-musl") .flag("+EB") .flag("-EL") .flag("+march=mips32r2"); auto MArchMipselR2 = makeMultilib("/mipsel-r2-hard-musl") .flag("-EB") .flag("+EL") .flag("+march=mips32r2"); MuslMipsMultilibs = MultilibSet().Either(MArchMipsR2, MArchMipselR2); // Specify the callback that computes the include directories. MuslMipsMultilibs.setIncludeDirsCallback([](const Multilib &M) { return std::vector( {"/../sysroot" + M.osSuffix() + "/usr/include"}); }); } if (MuslMipsMultilibs.select(Flags, Result.SelectedMultilib)) { Result.Multilibs = MuslMipsMultilibs; return true; } return false; } static bool findMipsMtiMultilibs(const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { // CodeScape MTI toolchain v1.2 and early. MultilibSet MtiMipsMultilibsV1; { auto MArchMips32 = makeMultilib("/mips32") .flag("+m32") .flag("-m64") .flag("-mmicromips") .flag("+march=mips32"); auto MArchMicroMips = makeMultilib("/micromips") .flag("+m32") .flag("-m64") .flag("+mmicromips"); auto MArchMips64r2 = makeMultilib("/mips64r2") .flag("-m32") .flag("+m64") .flag("+march=mips64r2"); auto MArchMips64 = makeMultilib("/mips64").flag("-m32").flag("+m64").flag( "-march=mips64r2"); auto MArchDefault = makeMultilib("") .flag("+m32") .flag("-m64") .flag("-mmicromips") .flag("+march=mips32r2"); auto Mips16 = makeMultilib("/mips16").flag("+mips16"); auto UCLibc = makeMultilib("/uclibc").flag("+muclibc"); auto MAbi64 = makeMultilib("/64").flag("+mabi=n64").flag("-mabi=n32").flag("-m32"); auto BigEndian = makeMultilib("").flag("+EB").flag("-EL"); auto LittleEndian = makeMultilib("/el").flag("+EL").flag("-EB"); auto SoftFloat = makeMultilib("/sof").flag("+msoft-float"); auto Nan2008 = makeMultilib("/nan2008").flag("+mnan=2008"); MtiMipsMultilibsV1 = MultilibSet() .Either(MArchMips32, MArchMicroMips, MArchMips64r2, MArchMips64, MArchDefault) .Maybe(UCLibc) .Maybe(Mips16) .FilterOut("/mips64/mips16") .FilterOut("/mips64r2/mips16") .FilterOut("/micromips/mips16") .Maybe(MAbi64) .FilterOut("/micromips/64") .FilterOut("/mips32/64") .FilterOut("^/64") .FilterOut("/mips16/64") .Either(BigEndian, LittleEndian) .Maybe(SoftFloat) .Maybe(Nan2008) .FilterOut(".*sof/nan2008") .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { std::vector Dirs({"/include"}); if (StringRef(M.includeSuffix()).startswith("/uclibc")) Dirs.push_back("/../../../../sysroot/uclibc/usr/include"); else Dirs.push_back("/../../../../sysroot/usr/include"); return Dirs; }); } // CodeScape IMG toolchain starting from v1.3. MultilibSet MtiMipsMultilibsV2; { auto BeHard = makeMultilib("/mips-r2-hard") .flag("+EB") .flag("-msoft-float") .flag("-mnan=2008") .flag("-muclibc"); auto BeSoft = makeMultilib("/mips-r2-soft") .flag("+EB") .flag("+msoft-float") .flag("-mnan=2008"); auto ElHard = makeMultilib("/mipsel-r2-hard") .flag("+EL") .flag("-msoft-float") .flag("-mnan=2008") .flag("-muclibc"); auto ElSoft = makeMultilib("/mipsel-r2-soft") .flag("+EL") .flag("+msoft-float") .flag("-mnan=2008") .flag("-mmicromips"); auto BeHardNan = makeMultilib("/mips-r2-hard-nan2008") .flag("+EB") .flag("-msoft-float") .flag("+mnan=2008") .flag("-muclibc"); auto ElHardNan = makeMultilib("/mipsel-r2-hard-nan2008") .flag("+EL") .flag("-msoft-float") .flag("+mnan=2008") .flag("-muclibc") .flag("-mmicromips"); auto BeHardNanUclibc = makeMultilib("/mips-r2-hard-nan2008-uclibc") .flag("+EB") .flag("-msoft-float") .flag("+mnan=2008") .flag("+muclibc"); auto ElHardNanUclibc = makeMultilib("/mipsel-r2-hard-nan2008-uclibc") .flag("+EL") .flag("-msoft-float") .flag("+mnan=2008") .flag("+muclibc"); auto BeHardUclibc = makeMultilib("/mips-r2-hard-uclibc") .flag("+EB") .flag("-msoft-float") .flag("-mnan=2008") .flag("+muclibc"); auto ElHardUclibc = makeMultilib("/mipsel-r2-hard-uclibc") .flag("+EL") .flag("-msoft-float") .flag("-mnan=2008") .flag("+muclibc"); auto ElMicroHardNan = makeMultilib("/micromipsel-r2-hard-nan2008") .flag("+EL") .flag("-msoft-float") .flag("+mnan=2008") .flag("+mmicromips"); auto ElMicroSoft = makeMultilib("/micromipsel-r2-soft") .flag("+EL") .flag("+msoft-float") .flag("-mnan=2008") .flag("+mmicromips"); auto O32 = makeMultilib("/lib").osSuffix("").flag("-mabi=n32").flag("-mabi=n64"); auto N32 = makeMultilib("/lib32").osSuffix("").flag("+mabi=n32").flag("-mabi=n64"); auto N64 = makeMultilib("/lib64").osSuffix("").flag("-mabi=n32").flag("+mabi=n64"); MtiMipsMultilibsV2 = MultilibSet() .Either({BeHard, BeSoft, ElHard, ElSoft, BeHardNan, ElHardNan, BeHardNanUclibc, ElHardNanUclibc, BeHardUclibc, ElHardUclibc, ElMicroHardNan, ElMicroSoft}) .Either(O32, N32, N64) .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { return std::vector({"/../../../../sysroot" + M.includeSuffix() + "/../usr/include"}); }) .setFilePathsCallback([](const Multilib &M) { return std::vector( {"/../../../../mips-mti-linux-gnu/lib" + M.gccSuffix()}); }); } for (auto Candidate : {&MtiMipsMultilibsV1, &MtiMipsMultilibsV2}) { if (Candidate->select(Flags, Result.SelectedMultilib)) { Result.Multilibs = *Candidate; return true; } } return false; } static bool findMipsImgMultilibs(const Multilib::flags_list &Flags, FilterNonExistent &NonExistent, DetectedMultilibs &Result) { // CodeScape IMG toolchain v1.2 and early. MultilibSet ImgMultilibsV1; { auto Mips64r6 = makeMultilib("/mips64r6").flag("+m64").flag("-m32"); auto LittleEndian = makeMultilib("/el").flag("+EL").flag("-EB"); auto MAbi64 = makeMultilib("/64").flag("+mabi=n64").flag("-mabi=n32").flag("-m32"); ImgMultilibsV1 = MultilibSet() .Maybe(Mips64r6) .Maybe(MAbi64) .Maybe(LittleEndian) .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { return std::vector( {"/include", "/../../../../sysroot/usr/include"}); }); } // CodeScape IMG toolchain starting from v1.3. MultilibSet ImgMultilibsV2; { auto BeHard = makeMultilib("/mips-r6-hard") .flag("+EB") .flag("-msoft-float") .flag("-mmicromips"); auto BeSoft = makeMultilib("/mips-r6-soft") .flag("+EB") .flag("+msoft-float") .flag("-mmicromips"); auto ElHard = makeMultilib("/mipsel-r6-hard") .flag("+EL") .flag("-msoft-float") .flag("-mmicromips"); auto ElSoft = makeMultilib("/mipsel-r6-soft") .flag("+EL") .flag("+msoft-float") .flag("-mmicromips"); auto BeMicroHard = makeMultilib("/micromips-r6-hard") .flag("+EB") .flag("-msoft-float") .flag("+mmicromips"); auto BeMicroSoft = makeMultilib("/micromips-r6-soft") .flag("+EB") .flag("+msoft-float") .flag("+mmicromips"); auto ElMicroHard = makeMultilib("/micromipsel-r6-hard") .flag("+EL") .flag("-msoft-float") .flag("+mmicromips"); auto ElMicroSoft = makeMultilib("/micromipsel-r6-soft") .flag("+EL") .flag("+msoft-float") .flag("+mmicromips"); auto O32 = makeMultilib("/lib").osSuffix("").flag("-mabi=n32").flag("-mabi=n64"); auto N32 = makeMultilib("/lib32").osSuffix("").flag("+mabi=n32").flag("-mabi=n64"); auto N64 = makeMultilib("/lib64").osSuffix("").flag("-mabi=n32").flag("+mabi=n64"); ImgMultilibsV2 = MultilibSet() .Either({BeHard, BeSoft, ElHard, ElSoft, BeMicroHard, BeMicroSoft, ElMicroHard, ElMicroSoft}) .Either(O32, N32, N64) .FilterOut(NonExistent) .setIncludeDirsCallback([](const Multilib &M) { return std::vector({"/../../../../sysroot" + M.includeSuffix() + "/../usr/include"}); }) .setFilePathsCallback([](const Multilib &M) { return std::vector( {"/../../../../mips-img-linux-gnu/lib" + M.gccSuffix()}); }); } for (auto Candidate : {&ImgMultilibsV1, &ImgMultilibsV2}) { if (Candidate->select(Flags, Result.SelectedMultilib)) { Result.Multilibs = *Candidate; return true; } } return false; } static bool findMIPSMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, DetectedMultilibs &Result) { FilterNonExistent NonExistent(Path, "/crtbegin.o", D.getVFS()); StringRef CPUName; StringRef ABIName; tools::mips::getMipsCPUAndABI(Args, TargetTriple, CPUName, ABIName); llvm::Triple::ArchType TargetArch = TargetTriple.getArch(); Multilib::flags_list Flags; addMultilibFlag(isMips32(TargetArch), "m32", Flags); addMultilibFlag(isMips64(TargetArch), "m64", Flags); addMultilibFlag(isMips16(Args), "mips16", Flags); addMultilibFlag(CPUName == "mips32", "march=mips32", Flags); addMultilibFlag(CPUName == "mips32r2" || CPUName == "mips32r3" || CPUName == "mips32r5" || CPUName == "p5600", "march=mips32r2", Flags); addMultilibFlag(CPUName == "mips32r6", "march=mips32r6", Flags); addMultilibFlag(CPUName == "mips64", "march=mips64", Flags); addMultilibFlag(CPUName == "mips64r2" || CPUName == "mips64r3" || CPUName == "mips64r5" || CPUName == "octeon", "march=mips64r2", Flags); addMultilibFlag(CPUName == "mips64r6", "march=mips64r6", Flags); addMultilibFlag(isMicroMips(Args), "mmicromips", Flags); addMultilibFlag(tools::mips::isUCLibc(Args), "muclibc", Flags); addMultilibFlag(tools::mips::isNaN2008(Args, TargetTriple), "mnan=2008", Flags); addMultilibFlag(ABIName == "n32", "mabi=n32", Flags); addMultilibFlag(ABIName == "n64", "mabi=n64", Flags); addMultilibFlag(isSoftFloatABI(Args), "msoft-float", Flags); addMultilibFlag(!isSoftFloatABI(Args), "mhard-float", Flags); addMultilibFlag(isMipsEL(TargetArch), "EL", Flags); addMultilibFlag(!isMipsEL(TargetArch), "EB", Flags); if (TargetTriple.isAndroid()) return findMipsAndroidMultilibs(D.getVFS(), Path, Flags, NonExistent, Result); if (TargetTriple.getVendor() == llvm::Triple::MipsTechnologies && TargetTriple.getOS() == llvm::Triple::Linux && TargetTriple.getEnvironment() == llvm::Triple::UnknownEnvironment) return findMipsMuslMultilibs(Flags, NonExistent, Result); if (TargetTriple.getVendor() == llvm::Triple::MipsTechnologies && TargetTriple.getOS() == llvm::Triple::Linux && TargetTriple.getEnvironment() == llvm::Triple::GNU) return findMipsMtiMultilibs(Flags, NonExistent, Result); if (TargetTriple.getVendor() == llvm::Triple::ImaginationTechnologies && TargetTriple.getOS() == llvm::Triple::Linux && TargetTriple.getEnvironment() == llvm::Triple::GNU) return findMipsImgMultilibs(Flags, NonExistent, Result); if (findMipsCsMultilibs(Flags, NonExistent, Result)) return true; // Fallback to the regular toolchain-tree structure. Multilib Default; Result.Multilibs.push_back(Default); Result.Multilibs.FilterOut(NonExistent); if (Result.Multilibs.select(Flags, Result.SelectedMultilib)) { Result.BiarchSibling = Multilib(); return true; } return false; } static void findAndroidArmMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, DetectedMultilibs &Result) { // Find multilibs with subdirectories like armv7-a, thumb, armv7-a/thumb. FilterNonExistent NonExistent(Path, "/crtbegin.o", D.getVFS()); Multilib ArmV7Multilib = makeMultilib("/armv7-a") .flag("+armv7") .flag("-thumb"); Multilib ThumbMultilib = makeMultilib("/thumb") .flag("-armv7") .flag("+thumb"); Multilib ArmV7ThumbMultilib = makeMultilib("/armv7-a/thumb") .flag("+armv7") .flag("+thumb"); Multilib DefaultMultilib = makeMultilib("") .flag("-armv7") .flag("-thumb"); MultilibSet AndroidArmMultilibs = MultilibSet() .Either(ThumbMultilib, ArmV7Multilib, ArmV7ThumbMultilib, DefaultMultilib) .FilterOut(NonExistent); Multilib::flags_list Flags; llvm::StringRef Arch = Args.getLastArgValue(options::OPT_march_EQ); bool IsArmArch = TargetTriple.getArch() == llvm::Triple::arm; bool IsThumbArch = TargetTriple.getArch() == llvm::Triple::thumb; bool IsV7SubArch = TargetTriple.getSubArch() == llvm::Triple::ARMSubArch_v7; bool IsThumbMode = IsThumbArch || Args.hasFlag(options::OPT_mthumb, options::OPT_mno_thumb, false) || (IsArmArch && llvm::ARM::parseArchISA(Arch) == llvm::ARM::IK_THUMB); bool IsArmV7Mode = (IsArmArch || IsThumbArch) && (llvm::ARM::parseArchVersion(Arch) == 7 || (IsArmArch && Arch == "" && IsV7SubArch)); addMultilibFlag(IsArmV7Mode, "armv7", Flags); addMultilibFlag(IsThumbMode, "thumb", Flags); if (AndroidArmMultilibs.select(Flags, Result.SelectedMultilib)) Result.Multilibs = AndroidArmMultilibs; } static bool findBiarchMultilibs(const Driver &D, const llvm::Triple &TargetTriple, StringRef Path, const ArgList &Args, bool NeedsBiarchSuffix, DetectedMultilibs &Result) { // Some versions of SUSE and Fedora on ppc64 put 32-bit libs // in what would normally be GCCInstallPath and put the 64-bit // libs in a subdirectory named 64. The simple logic we follow is that // *if* there is a subdirectory of the right name with crtbegin.o in it, // we use that. If not, and if not a biarch triple alias, we look for // crtbegin.o without the subdirectory. Multilib Default; Multilib Alt64 = Multilib() .gccSuffix("/64") .includeSuffix("/64") .flag("-m32") .flag("+m64") .flag("-mx32"); Multilib Alt32 = Multilib() .gccSuffix("/32") .includeSuffix("/32") .flag("+m32") .flag("-m64") .flag("-mx32"); Multilib Altx32 = Multilib() .gccSuffix("/x32") .includeSuffix("/x32") .flag("-m32") .flag("-m64") .flag("+mx32"); // GCC toolchain for IAMCU doesn't have crtbegin.o, so look for libgcc.a. FilterNonExistent NonExistent( Path, TargetTriple.isOSIAMCU() ? "/libgcc.a" : "/crtbegin.o", D.getVFS()); // Determine default multilib from: 32, 64, x32 // Also handle cases such as 64 on 32, 32 on 64, etc. enum { UNKNOWN, WANT32, WANT64, WANTX32 } Want = UNKNOWN; const bool IsX32 = TargetTriple.getEnvironment() == llvm::Triple::GNUX32; if (TargetTriple.isArch32Bit() && !NonExistent(Alt32)) Want = WANT64; else if (TargetTriple.isArch64Bit() && IsX32 && !NonExistent(Altx32)) Want = WANT64; else if (TargetTriple.isArch64Bit() && !IsX32 && !NonExistent(Alt64)) Want = WANT32; else { if (TargetTriple.isArch32Bit()) Want = NeedsBiarchSuffix ? WANT64 : WANT32; else if (IsX32) Want = NeedsBiarchSuffix ? WANT64 : WANTX32; else Want = NeedsBiarchSuffix ? WANT32 : WANT64; } if (Want == WANT32) Default.flag("+m32").flag("-m64").flag("-mx32"); else if (Want == WANT64) Default.flag("-m32").flag("+m64").flag("-mx32"); else if (Want == WANTX32) Default.flag("-m32").flag("-m64").flag("+mx32"); else return false; Result.Multilibs.push_back(Default); Result.Multilibs.push_back(Alt64); Result.Multilibs.push_back(Alt32); Result.Multilibs.push_back(Altx32); Result.Multilibs.FilterOut(NonExistent); Multilib::flags_list Flags; addMultilibFlag(TargetTriple.isArch64Bit() && !IsX32, "m64", Flags); addMultilibFlag(TargetTriple.isArch32Bit(), "m32", Flags); addMultilibFlag(TargetTriple.isArch64Bit() && IsX32, "mx32", Flags); if (!Result.Multilibs.select(Flags, Result.SelectedMultilib)) return false; if (Result.SelectedMultilib == Alt64 || Result.SelectedMultilib == Alt32 || Result.SelectedMultilib == Altx32) Result.BiarchSibling = Default; return true; } void Generic_GCC::GCCInstallationDetector::scanLibDirForGCCTripleSolaris( const llvm::Triple &TargetArch, const llvm::opt::ArgList &Args, const std::string &LibDir, StringRef CandidateTriple, bool NeedsBiarchSuffix) { // Solaris is a special case. The GCC installation is under // /usr/gcc/./lib/gcc//../, so we // need to iterate twice. std::error_code EC; for (vfs::directory_iterator LI = D.getVFS().dir_begin(LibDir, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef VersionText = llvm::sys::path::filename(LI->getName()); GCCVersion CandidateVersion = GCCVersion::Parse(VersionText); if (CandidateVersion.Major != -1) // Filter obviously bad entries. if (!CandidateGCCInstallPaths.insert(LI->getName()).second) continue; // Saw this path before; no need to look at it again. if (CandidateVersion.isOlderThan(4, 1, 1)) continue; if (CandidateVersion <= Version) continue; GCCInstallPath = LibDir + "/" + VersionText.str() + "/lib/gcc/" + CandidateTriple.str(); if (!D.getVFS().exists(GCCInstallPath)) continue; // If we make it here there has to be at least one GCC version, let's just // use the latest one. std::error_code EEC; for (vfs::directory_iterator LLI = D.getVFS().dir_begin(GCCInstallPath, EEC), LLE; !EEC && LLI != LLE; LLI = LLI.increment(EEC)) { StringRef SubVersionText = llvm::sys::path::filename(LLI->getName()); GCCVersion CandidateSubVersion = GCCVersion::Parse(SubVersionText); if (CandidateSubVersion > Version) Version = CandidateSubVersion; } GCCTriple.setTriple(CandidateTriple); GCCInstallPath += "/" + Version.Text; GCCParentLibPath = GCCInstallPath + "/../../../../"; IsValid = true; } } bool Generic_GCC::GCCInstallationDetector::ScanGCCForMultilibs( const llvm::Triple &TargetTriple, const ArgList &Args, StringRef Path, bool NeedsBiarchSuffix) { llvm::Triple::ArchType TargetArch = TargetTriple.getArch(); DetectedMultilibs Detected; // Android standalone toolchain could have multilibs for ARM and Thumb. // Debian mips multilibs behave more like the rest of the biarch ones, // so handle them there if (isArmOrThumbArch(TargetArch) && TargetTriple.isAndroid()) { // It should also work without multilibs in a simplified toolchain. findAndroidArmMultilibs(D, TargetTriple, Path, Args, Detected); } else if (isMipsArch(TargetArch)) { if (!findMIPSMultilibs(D, TargetTriple, Path, Args, Detected)) return false; } else if (!findBiarchMultilibs(D, TargetTriple, Path, Args, NeedsBiarchSuffix, Detected)) { return false; } Multilibs = Detected.Multilibs; SelectedMultilib = Detected.SelectedMultilib; BiarchSibling = Detected.BiarchSibling; return true; } void Generic_GCC::GCCInstallationDetector::ScanLibDirForGCCTriple( const llvm::Triple &TargetTriple, const ArgList &Args, const std::string &LibDir, StringRef CandidateTriple, bool NeedsBiarchSuffix) { llvm::Triple::ArchType TargetArch = TargetTriple.getArch(); // There are various different suffixes involving the triple we // check for. We also record what is necessary to walk from each back // up to the lib directory. Specifically, the number of "up" steps // in the second half of each row is 1 + the number of path separators // in the first half. const std::string LibAndInstallSuffixes[][2] = { {"/gcc/" + CandidateTriple.str(), "/../../.."}, // Debian puts cross-compilers in gcc-cross {"/gcc-cross/" + CandidateTriple.str(), "/../../.."}, {"/" + CandidateTriple.str() + "/gcc/" + CandidateTriple.str(), "/../../../.."}, // The Freescale PPC SDK has the gcc libraries in // /usr/lib//x.y.z so have a look there as well. {"/" + CandidateTriple.str(), "/../.."}, // Ubuntu has a strange mis-matched pair of triples that this happens to // match. // FIXME: It may be worthwhile to generalize this and look for a second // triple. {"/i386-linux-gnu/gcc/" + CandidateTriple.str(), "/../../../.."}}; if (TargetTriple.getOS() == llvm::Triple::Solaris) { scanLibDirForGCCTripleSolaris(TargetTriple, Args, LibDir, CandidateTriple, NeedsBiarchSuffix); return; } // Only look at the final, weird Ubuntu suffix for i386-linux-gnu. const unsigned NumLibSuffixes = (llvm::array_lengthof(LibAndInstallSuffixes) - (TargetArch != llvm::Triple::x86)); for (unsigned i = 0; i < NumLibSuffixes; ++i) { StringRef LibSuffix = LibAndInstallSuffixes[i][0]; std::error_code EC; for (vfs::directory_iterator LI = D.getVFS().dir_begin(LibDir + LibSuffix, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef VersionText = llvm::sys::path::filename(LI->getName()); GCCVersion CandidateVersion = GCCVersion::Parse(VersionText); if (CandidateVersion.Major != -1) // Filter obviously bad entries. if (!CandidateGCCInstallPaths.insert(LI->getName()).second) continue; // Saw this path before; no need to look at it again. if (CandidateVersion.isOlderThan(4, 1, 1)) continue; if (CandidateVersion <= Version) continue; if (!ScanGCCForMultilibs(TargetTriple, Args, LI->getName(), NeedsBiarchSuffix)) continue; Version = CandidateVersion; GCCTriple.setTriple(CandidateTriple); // FIXME: We hack together the directory name here instead of // using LI to ensure stable path separators across Windows and // Linux. GCCInstallPath = LibDir + LibAndInstallSuffixes[i][0] + "/" + VersionText.str(); GCCParentLibPath = GCCInstallPath + LibAndInstallSuffixes[i][1]; IsValid = true; } } } bool Generic_GCC::GCCInstallationDetector::ScanGentooGccConfig( const llvm::Triple &TargetTriple, const ArgList &Args, StringRef CandidateTriple, bool NeedsBiarchSuffix) { llvm::ErrorOr> File = D.getVFS().getBufferForFile(D.SysRoot + "/etc/env.d/gcc/config-" + CandidateTriple.str()); if (File) { SmallVector Lines; File.get()->getBuffer().split(Lines, "\n"); for (StringRef Line : Lines) { // CURRENT=triple-version if (Line.consume_front("CURRENT=")) { const std::pair ActiveVersion = Line.rsplit('-'); // Note: Strictly speaking, we should be reading // /etc/env.d/gcc/${CURRENT} now. However, the file doesn't // contain anything new or especially useful to us. const std::string GentooPath = D.SysRoot + "/usr/lib/gcc/" + ActiveVersion.first.str() + "/" + ActiveVersion.second.str(); if (D.getVFS().exists(GentooPath + "/crtbegin.o")) { if (!ScanGCCForMultilibs(TargetTriple, Args, GentooPath, NeedsBiarchSuffix)) return false; Version = GCCVersion::Parse(ActiveVersion.second); GCCInstallPath = GentooPath; GCCParentLibPath = GentooPath + "/../../.."; GCCTriple.setTriple(ActiveVersion.first); IsValid = true; return true; } } } } return false; } Generic_GCC::Generic_GCC(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : ToolChain(D, Triple, Args), GCCInstallation(D), CudaInstallation(D, Triple, Args) { getProgramPaths().push_back(getDriver().getInstalledDir()); if (getDriver().getInstalledDir() != getDriver().Dir) getProgramPaths().push_back(getDriver().Dir); } Generic_GCC::~Generic_GCC() {} Tool *Generic_GCC::getTool(Action::ActionClass AC) const { switch (AC) { case Action::PreprocessJobClass: if (!Preprocess) Preprocess.reset(new tools::gcc::Preprocessor(*this)); return Preprocess.get(); case Action::CompileJobClass: if (!Compile) Compile.reset(new tools::gcc::Compiler(*this)); return Compile.get(); default: return ToolChain::getTool(AC); } } Tool *Generic_GCC::buildAssembler() const { return new tools::gnutools::Assembler(*this); } Tool *Generic_GCC::buildLinker() const { return new tools::gcc::Linker(*this); } void Generic_GCC::printVerboseInfo(raw_ostream &OS) const { // Print the information about how we detected the GCC installation. GCCInstallation.print(OS); CudaInstallation.print(OS); } bool Generic_GCC::IsUnwindTablesDefault() const { return getArch() == llvm::Triple::x86_64; } bool Generic_GCC::isPICDefault() const { switch (getArch()) { case llvm::Triple::x86_64: return getTriple().isOSWindows(); case llvm::Triple::ppc64: case llvm::Triple::ppc64le: return !getTriple().isOSBinFormatMachO() && !getTriple().isMacOSX(); default: return false; } } bool Generic_GCC::isPIEDefault() const { return false; } bool Generic_GCC::isPICDefaultForced() const { return getArch() == llvm::Triple::x86_64 && getTriple().isOSWindows(); } bool Generic_GCC::IsIntegratedAssemblerDefault() const { switch (getTriple().getArch()) { case llvm::Triple::x86: case llvm::Triple::x86_64: case llvm::Triple::aarch64: case llvm::Triple::aarch64_be: case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::bpfel: case llvm::Triple::bpfeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: case llvm::Triple::ppc: case llvm::Triple::ppc64: case llvm::Triple::ppc64le: case llvm::Triple::systemz: case llvm::Triple::mips: case llvm::Triple::mipsel: return true; case llvm::Triple::mips64: case llvm::Triple::mips64el: // Enabled for Debian mips64/mips64el only. Other targets are unable to // distinguish N32 from N64. if (getTriple().getEnvironment() == llvm::Triple::GNUABI64) return true; return false; default: return false; } } void Generic_GCC::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (DriverArgs.hasArg(options::OPT_nostdlibinc) || DriverArgs.hasArg(options::OPT_nostdincxx)) return; switch (GetCXXStdlibType(DriverArgs)) { case ToolChain::CST_Libcxx: { std::string Path = findLibCxxIncludePath(); if (!Path.empty()) addSystemInclude(DriverArgs, CC1Args, Path); break; } case ToolChain::CST_Libstdcxx: addLibStdCxxIncludePaths(DriverArgs, CC1Args); break; } } std::string Generic_GCC::findLibCxxIncludePath() const { // FIXME: The Linux behavior would probaby be a better approach here. return getDriver().SysRoot + "/usr/include/c++/v1"; } void Generic_GCC::addLibStdCxxIncludePaths(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { // By default, we don't assume we know where libstdc++ might be installed. // FIXME: If we have a valid GCCInstallation, use it. } /// \brief Helper to add the variant paths of a libstdc++ installation. bool Generic_GCC::addLibStdCXXIncludePaths( Twine Base, Twine Suffix, StringRef GCCTriple, StringRef GCCMultiarchTriple, StringRef TargetMultiarchTriple, Twine IncludeSuffix, const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (!getVFS().exists(Base + Suffix)) return false; addSystemInclude(DriverArgs, CC1Args, Base + Suffix); // The vanilla GCC layout of libstdc++ headers uses a triple subdirectory. If // that path exists or we have neither a GCC nor target multiarch triple, use // this vanilla search path. if ((GCCMultiarchTriple.empty() && TargetMultiarchTriple.empty()) || getVFS().exists(Base + Suffix + "/" + GCCTriple + IncludeSuffix)) { addSystemInclude(DriverArgs, CC1Args, Base + Suffix + "/" + GCCTriple + IncludeSuffix); } else { // Otherwise try to use multiarch naming schemes which have normalized the // triples and put the triple before the suffix. // // GCC surprisingly uses *both* the GCC triple with a multilib suffix and // the target triple, so we support that here. addSystemInclude(DriverArgs, CC1Args, Base + "/" + GCCMultiarchTriple + Suffix + IncludeSuffix); addSystemInclude(DriverArgs, CC1Args, Base + "/" + TargetMultiarchTriple + Suffix); } addSystemInclude(DriverArgs, CC1Args, Base + Suffix + "/backward"); return true; } llvm::opt::DerivedArgList * Generic_GCC::TranslateArgs(const llvm::opt::DerivedArgList &Args, StringRef, Action::OffloadKind DeviceOffloadKind) const { // If this tool chain is used for an OpenMP offloading device we have to make // sure we always generate a shared library regardless of the commands the // user passed to the host. This is required because the runtime library // is required to load the device image dynamically at run time. if (DeviceOffloadKind == Action::OFK_OpenMP) { DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs()); const OptTable &Opts = getDriver().getOpts(); // Request the shared library. Given that these options are decided // implicitly, they do not refer to any base argument. DAL->AddFlagArg(/*BaseArg=*/nullptr, Opts.getOption(options::OPT_shared)); DAL->AddFlagArg(/*BaseArg=*/nullptr, Opts.getOption(options::OPT_fPIC)); // Filter all the arguments we don't care passing to the offloading // toolchain as they can mess up with the creation of a shared library. for (auto *A : Args) { switch ((options::ID)A->getOption().getID()) { default: DAL->append(A); break; case options::OPT_shared: case options::OPT_dynamic: case options::OPT_static: case options::OPT_fPIC: case options::OPT_fno_PIC: case options::OPT_fpic: case options::OPT_fno_pic: case options::OPT_fPIE: case options::OPT_fno_PIE: case options::OPT_fpie: case options::OPT_fno_pie: break; } } return DAL; } return nullptr; } void Generic_ELF::addClangTargetOptions(const ArgList &DriverArgs, ArgStringList &CC1Args) const { const Generic_GCC::GCCVersion &V = GCCInstallation.getVersion(); bool UseInitArrayDefault = getTriple().getArch() == llvm::Triple::aarch64 || getTriple().getArch() == llvm::Triple::aarch64_be || (getTriple().getOS() == llvm::Triple::Linux && (!V.isOlderThan(4, 7, 0) || getTriple().isAndroid())) || getTriple().getOS() == llvm::Triple::NaCl || (getTriple().getVendor() == llvm::Triple::MipsTechnologies && !getTriple().hasEnvironment()); if (DriverArgs.hasFlag(options::OPT_fuse_init_array, options::OPT_fno_use_init_array, UseInitArrayDefault)) CC1Args.push_back("-fuse-init-array"); } /// Mips Toolchain MipsLLVMToolChain::MipsLLVMToolChain(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Linux(D, Triple, Args) { // Select the correct multilib according to the given arguments. DetectedMultilibs Result; findMIPSMultilibs(D, Triple, "", Args, Result); Multilibs = Result.Multilibs; SelectedMultilib = Result.SelectedMultilib; // Find out the library suffix based on the ABI. LibSuffix = tools::mips::getMipsABILibSuffix(Args, Triple); getFilePaths().clear(); getFilePaths().push_back(computeSysRoot() + "/usr/lib" + LibSuffix); } void MipsLLVMToolChain::AddClangSystemIncludeArgs( const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (DriverArgs.hasArg(options::OPT_nostdinc)) return; const Driver &D = getDriver(); if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { SmallString<128> P(D.ResourceDir); llvm::sys::path::append(P, "include"); addSystemInclude(DriverArgs, CC1Args, P); } if (DriverArgs.hasArg(options::OPT_nostdlibinc)) return; const auto &Callback = Multilibs.includeDirsCallback(); if (Callback) { for (const auto &Path : Callback(SelectedMultilib)) addExternCSystemIncludeIfExists(DriverArgs, CC1Args, D.getInstalledDir() + Path); } } Tool *MipsLLVMToolChain::buildLinker() const { return new tools::gnutools::Linker(*this); } std::string MipsLLVMToolChain::computeSysRoot() const { if (!getDriver().SysRoot.empty()) return getDriver().SysRoot + SelectedMultilib.osSuffix(); const std::string InstalledDir(getDriver().getInstalledDir()); std::string SysRootPath = InstalledDir + "/../sysroot" + SelectedMultilib.osSuffix(); if (llvm::sys::fs::exists(SysRootPath)) return SysRootPath; return std::string(); } ToolChain::CXXStdlibType MipsLLVMToolChain::GetCXXStdlibType(const ArgList &Args) const { Arg *A = Args.getLastArg(options::OPT_stdlib_EQ); if (A) { StringRef Value = A->getValue(); if (Value != "libc++") getDriver().Diag(diag::err_drv_invalid_stdlib_name) << A->getAsString(Args); } return ToolChain::CST_Libcxx; } std::string MipsLLVMToolChain::findLibCxxIncludePath() const { if (const auto &Callback = Multilibs.includeDirsCallback()) { for (std::string Path : Callback(SelectedMultilib)) { Path = getDriver().getInstalledDir() + Path + "/c++/v1"; if (llvm::sys::fs::exists(Path)) { return Path; } } } return ""; } void MipsLLVMToolChain::AddCXXStdlibLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { assert((GetCXXStdlibType(Args) == ToolChain::CST_Libcxx) && "Only -lc++ (aka libxx) is suported in this toolchain."); CmdArgs.push_back("-lc++"); CmdArgs.push_back("-lc++abi"); CmdArgs.push_back("-lunwind"); } std::string MipsLLVMToolChain::getCompilerRT(const ArgList &Args, StringRef Component, bool Shared) const { SmallString<128> Path(getDriver().ResourceDir); llvm::sys::path::append(Path, SelectedMultilib.osSuffix(), "lib" + LibSuffix, getOS()); llvm::sys::path::append(Path, Twine("libclang_rt." + Component + "-" + "mips" + (Shared ? ".so" : ".a"))); return Path.str(); } /// Hexagon Toolchain std::string HexagonToolChain::getHexagonTargetDir( const std::string &InstalledDir, const SmallVectorImpl &PrefixDirs) const { std::string InstallRelDir; const Driver &D = getDriver(); // Locate the rest of the toolchain ... for (auto &I : PrefixDirs) if (D.getVFS().exists(I)) return I; if (getVFS().exists(InstallRelDir = InstalledDir + "/../target")) return InstallRelDir; return InstalledDir; } Optional HexagonToolChain::getSmallDataThreshold( const ArgList &Args) { StringRef Gn = ""; if (Arg *A = Args.getLastArg(options::OPT_G, options::OPT_G_EQ, options::OPT_msmall_data_threshold_EQ)) { Gn = A->getValue(); } else if (Args.getLastArg(options::OPT_shared, options::OPT_fpic, options::OPT_fPIC)) { Gn = "0"; } unsigned G; if (!Gn.getAsInteger(10, G)) return G; return None; } void HexagonToolChain::getHexagonLibraryPaths(const ArgList &Args, ToolChain::path_list &LibPaths) const { const Driver &D = getDriver(); //---------------------------------------------------------------------------- // -L Args //---------------------------------------------------------------------------- for (Arg *A : Args.filtered(options::OPT_L)) for (const char *Value : A->getValues()) LibPaths.push_back(Value); //---------------------------------------------------------------------------- // Other standard paths //---------------------------------------------------------------------------- std::vector RootDirs; std::copy(D.PrefixDirs.begin(), D.PrefixDirs.end(), std::back_inserter(RootDirs)); std::string TargetDir = getHexagonTargetDir(D.getInstalledDir(), D.PrefixDirs); if (std::find(RootDirs.begin(), RootDirs.end(), TargetDir) == RootDirs.end()) RootDirs.push_back(TargetDir); bool HasPIC = Args.hasArg(options::OPT_fpic, options::OPT_fPIC); // Assume G0 with -shared. bool HasG0 = Args.hasArg(options::OPT_shared); if (auto G = getSmallDataThreshold(Args)) HasG0 = G.getValue() == 0; const std::string CpuVer = GetTargetCPUVersion(Args).str(); for (auto &Dir : RootDirs) { std::string LibDir = Dir + "/hexagon/lib"; std::string LibDirCpu = LibDir + '/' + CpuVer; if (HasG0) { if (HasPIC) LibPaths.push_back(LibDirCpu + "/G0/pic"); LibPaths.push_back(LibDirCpu + "/G0"); } LibPaths.push_back(LibDirCpu); LibPaths.push_back(LibDir); } } HexagonToolChain::HexagonToolChain(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args) : Linux(D, Triple, Args) { const std::string TargetDir = getHexagonTargetDir(D.getInstalledDir(), D.PrefixDirs); // Note: Generic_GCC::Generic_GCC adds InstalledDir and getDriver().Dir to // program paths const std::string BinDir(TargetDir + "/bin"); if (D.getVFS().exists(BinDir)) getProgramPaths().push_back(BinDir); ToolChain::path_list &LibPaths = getFilePaths(); // Remove paths added by Linux toolchain. Currently Hexagon_TC really targets // 'elf' OS type, so the Linux paths are not appropriate. When we actually // support 'linux' we'll need to fix this up LibPaths.clear(); getHexagonLibraryPaths(Args, LibPaths); } HexagonToolChain::~HexagonToolChain() {} Tool *HexagonToolChain::buildAssembler() const { return new tools::hexagon::Assembler(*this); } Tool *HexagonToolChain::buildLinker() const { return new tools::hexagon::Linker(*this); } void HexagonToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (DriverArgs.hasArg(options::OPT_nostdinc) || DriverArgs.hasArg(options::OPT_nostdlibinc)) return; const Driver &D = getDriver(); std::string TargetDir = getHexagonTargetDir(D.getInstalledDir(), D.PrefixDirs); addExternCSystemInclude(DriverArgs, CC1Args, TargetDir + "/hexagon/include"); } void HexagonToolChain::addLibStdCxxIncludePaths( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { const Driver &D = getDriver(); std::string TargetDir = getHexagonTargetDir(D.InstalledDir, D.PrefixDirs); addLibStdCXXIncludePaths(TargetDir, "/hexagon/include/c++", "", "", "", "", DriverArgs, CC1Args); } ToolChain::CXXStdlibType HexagonToolChain::GetCXXStdlibType(const ArgList &Args) const { Arg *A = Args.getLastArg(options::OPT_stdlib_EQ); if (!A) return ToolChain::CST_Libstdcxx; StringRef Value = A->getValue(); if (Value != "libstdc++") getDriver().Diag(diag::err_drv_invalid_stdlib_name) << A->getAsString(Args); return ToolChain::CST_Libstdcxx; } // // Returns the default CPU for Hexagon. This is the default compilation target // if no Hexagon processor is selected at the command-line. // const StringRef HexagonToolChain::GetDefaultCPU() { return "hexagonv60"; } const StringRef HexagonToolChain::GetTargetCPUVersion(const ArgList &Args) { Arg *CpuArg = nullptr; if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ, options::OPT_march_EQ)) CpuArg = A; StringRef CPU = CpuArg ? CpuArg->getValue() : GetDefaultCPU(); if (CPU.startswith("hexagon")) return CPU.substr(sizeof("hexagon") - 1); return CPU; } // End Hexagon /// AMDGPU Toolchain AMDGPUToolChain::AMDGPUToolChain(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { } Tool *AMDGPUToolChain::buildLinker() const { return new tools::amdgpu::Linker(*this); } // End AMDGPU /// NaCl Toolchain NaClToolChain::NaClToolChain(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { // Remove paths added by Generic_GCC. NaCl Toolchain cannot use the // default paths, and must instead only use the paths provided // with this toolchain based on architecture. path_list &file_paths = getFilePaths(); path_list &prog_paths = getProgramPaths(); file_paths.clear(); prog_paths.clear(); // Path for library files (libc.a, ...) std::string FilePath(getDriver().Dir + "/../"); // Path for tools (clang, ld, etc..) std::string ProgPath(getDriver().Dir + "/../"); // Path for toolchain libraries (libgcc.a, ...) std::string ToolPath(getDriver().ResourceDir + "/lib/"); switch (Triple.getArch()) { case llvm::Triple::x86: file_paths.push_back(FilePath + "x86_64-nacl/lib32"); file_paths.push_back(FilePath + "i686-nacl/usr/lib"); prog_paths.push_back(ProgPath + "x86_64-nacl/bin"); file_paths.push_back(ToolPath + "i686-nacl"); break; case llvm::Triple::x86_64: file_paths.push_back(FilePath + "x86_64-nacl/lib"); file_paths.push_back(FilePath + "x86_64-nacl/usr/lib"); prog_paths.push_back(ProgPath + "x86_64-nacl/bin"); file_paths.push_back(ToolPath + "x86_64-nacl"); break; case llvm::Triple::arm: file_paths.push_back(FilePath + "arm-nacl/lib"); file_paths.push_back(FilePath + "arm-nacl/usr/lib"); prog_paths.push_back(ProgPath + "arm-nacl/bin"); file_paths.push_back(ToolPath + "arm-nacl"); break; case llvm::Triple::mipsel: file_paths.push_back(FilePath + "mipsel-nacl/lib"); file_paths.push_back(FilePath + "mipsel-nacl/usr/lib"); prog_paths.push_back(ProgPath + "bin"); file_paths.push_back(ToolPath + "mipsel-nacl"); break; default: break; } NaClArmMacrosPath = GetFilePath("nacl-arm-macros.s"); } void NaClToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { const Driver &D = getDriver(); if (DriverArgs.hasArg(options::OPT_nostdinc)) return; if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { SmallString<128> P(D.ResourceDir); llvm::sys::path::append(P, "include"); addSystemInclude(DriverArgs, CC1Args, P.str()); } if (DriverArgs.hasArg(options::OPT_nostdlibinc)) return; SmallString<128> P(D.Dir + "/../"); switch (getTriple().getArch()) { case llvm::Triple::x86: // x86 is special because multilib style uses x86_64-nacl/include for libc // headers but the SDK wants i686-nacl/usr/include. The other architectures // have the same substring. llvm::sys::path::append(P, "i686-nacl/usr/include"); addSystemInclude(DriverArgs, CC1Args, P.str()); llvm::sys::path::remove_filename(P); llvm::sys::path::remove_filename(P); llvm::sys::path::remove_filename(P); llvm::sys::path::append(P, "x86_64-nacl/include"); addSystemInclude(DriverArgs, CC1Args, P.str()); return; case llvm::Triple::arm: llvm::sys::path::append(P, "arm-nacl/usr/include"); break; case llvm::Triple::x86_64: llvm::sys::path::append(P, "x86_64-nacl/usr/include"); break; case llvm::Triple::mipsel: llvm::sys::path::append(P, "mipsel-nacl/usr/include"); break; default: return; } addSystemInclude(DriverArgs, CC1Args, P.str()); llvm::sys::path::remove_filename(P); llvm::sys::path::remove_filename(P); llvm::sys::path::append(P, "include"); addSystemInclude(DriverArgs, CC1Args, P.str()); } void NaClToolChain::AddCXXStdlibLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { // Check for -stdlib= flags. We only support libc++ but this consumes the arg // if the value is libc++, and emits an error for other values. GetCXXStdlibType(Args); CmdArgs.push_back("-lc++"); } std::string NaClToolChain::findLibCxxIncludePath() const { const Driver &D = getDriver(); SmallString<128> P(D.Dir + "/../"); switch (getTriple().getArch()) { case llvm::Triple::arm: llvm::sys::path::append(P, "arm-nacl/include/c++/v1"); return P.str(); case llvm::Triple::x86: llvm::sys::path::append(P, "x86_64-nacl/include/c++/v1"); return P.str(); case llvm::Triple::x86_64: llvm::sys::path::append(P, "x86_64-nacl/include/c++/v1"); return P.str(); case llvm::Triple::mipsel: llvm::sys::path::append(P, "mipsel-nacl/include/c++/v1"); return P.str(); default: return ""; } } ToolChain::CXXStdlibType NaClToolChain::GetCXXStdlibType(const ArgList &Args) const { if (Arg *A = Args.getLastArg(options::OPT_stdlib_EQ)) { StringRef Value = A->getValue(); if (Value == "libc++") return ToolChain::CST_Libcxx; getDriver().Diag(diag::err_drv_invalid_stdlib_name) << A->getAsString(Args); } return ToolChain::CST_Libcxx; } std::string NaClToolChain::ComputeEffectiveClangTriple(const ArgList &Args, types::ID InputType) const { llvm::Triple TheTriple(ComputeLLVMTriple(Args, InputType)); if (TheTriple.getArch() == llvm::Triple::arm && TheTriple.getEnvironment() == llvm::Triple::UnknownEnvironment) TheTriple.setEnvironment(llvm::Triple::GNUEABIHF); return TheTriple.getTriple(); } Tool *NaClToolChain::buildLinker() const { return new tools::nacltools::Linker(*this); } Tool *NaClToolChain::buildAssembler() const { if (getTriple().getArch() == llvm::Triple::arm) return new tools::nacltools::AssemblerARM(*this); return new tools::gnutools::Assembler(*this); } // End NaCl /// TCEToolChain - A tool chain using the llvm bitcode tools to perform /// all subcommands. See http://tce.cs.tut.fi for our peculiar target. /// Currently does not support anything else but compilation. TCEToolChain::TCEToolChain(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : ToolChain(D, Triple, Args) { // Path mangling to find libexec std::string Path(getDriver().Dir); Path += "/../libexec"; getProgramPaths().push_back(Path); } TCEToolChain::~TCEToolChain() {} bool TCEToolChain::IsMathErrnoDefault() const { return true; } bool TCEToolChain::isPICDefault() const { return false; } bool TCEToolChain::isPIEDefault() const { return false; } bool TCEToolChain::isPICDefaultForced() const { return false; } TCELEToolChain::TCELEToolChain(const Driver &D, const llvm::Triple& Triple, const ArgList &Args) : TCEToolChain(D, Triple, Args) { } TCELEToolChain::~TCELEToolChain() {} // CloudABI - CloudABI tool chain which can call ld(1) directly. CloudABI::CloudABI(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { SmallString<128> P(getDriver().Dir); llvm::sys::path::append(P, "..", getTriple().str(), "lib"); getFilePaths().push_back(P.str()); } std::string CloudABI::findLibCxxIncludePath() const { SmallString<128> P(getDriver().Dir); llvm::sys::path::append(P, "..", getTriple().str(), "include/c++/v1"); return P.str(); } void CloudABI::AddCXXStdlibLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { CmdArgs.push_back("-lc++"); CmdArgs.push_back("-lc++abi"); CmdArgs.push_back("-lunwind"); } Tool *CloudABI::buildLinker() const { return new tools::cloudabi::Linker(*this); } bool CloudABI::isPIEDefault() const { // Only enable PIE on architectures that support PC-relative // addressing. PC-relative addressing is required, as the process // startup code must be able to relocate itself. switch (getTriple().getArch()) { case llvm::Triple::aarch64: case llvm::Triple::x86_64: return true; default: return false; } } SanitizerMask CloudABI::getSupportedSanitizers() const { SanitizerMask Res = ToolChain::getSupportedSanitizers(); Res |= SanitizerKind::SafeStack; return Res; } SanitizerMask CloudABI::getDefaultSanitizers() const { return SanitizerKind::SafeStack; } /// Haiku - Haiku tool chain which can call as(1) and ld(1) directly. Haiku::Haiku(const Driver &D, const llvm::Triple& Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { } std::string Haiku::findLibCxxIncludePath() const { return getDriver().SysRoot + "/system/develop/headers/c++/v1"; } void Haiku::addLibStdCxxIncludePaths(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { addLibStdCXXIncludePaths(getDriver().SysRoot, "/system/develop/headers/c++", getTriple().str(), "", "", "", DriverArgs, CC1Args); } /// OpenBSD - OpenBSD tool chain which can call as(1) and ld(1) directly. OpenBSD::OpenBSD(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { getFilePaths().push_back(getDriver().Dir + "/../lib"); getFilePaths().push_back("/usr/lib"); } Tool *OpenBSD::buildAssembler() const { return new tools::openbsd::Assembler(*this); } Tool *OpenBSD::buildLinker() const { return new tools::openbsd::Linker(*this); } /// Bitrig - Bitrig tool chain which can call as(1) and ld(1) directly. Bitrig::Bitrig(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { getFilePaths().push_back(getDriver().Dir + "/../lib"); getFilePaths().push_back("/usr/lib"); } Tool *Bitrig::buildAssembler() const { return new tools::bitrig::Assembler(*this); } Tool *Bitrig::buildLinker() const { return new tools::bitrig::Linker(*this); } ToolChain::CXXStdlibType Bitrig::GetDefaultCXXStdlibType() const { return ToolChain::CST_Libcxx; } void Bitrig::addLibStdCxxIncludePaths(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { std::string Triple = getTriple().str(); if (StringRef(Triple).startswith("amd64")) Triple = "x86_64" + Triple.substr(5); addLibStdCXXIncludePaths(getDriver().SysRoot, "/usr/include/c++/stdc++", Triple, "", "", "", DriverArgs, CC1Args); } void Bitrig::AddCXXStdlibLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { switch (GetCXXStdlibType(Args)) { case ToolChain::CST_Libcxx: CmdArgs.push_back("-lc++"); CmdArgs.push_back("-lc++abi"); CmdArgs.push_back("-lpthread"); break; case ToolChain::CST_Libstdcxx: CmdArgs.push_back("-lstdc++"); break; } } /// FreeBSD - FreeBSD tool chain which can call as(1) and ld(1) directly. FreeBSD::FreeBSD(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { // When targeting 32-bit platforms, look for '/usr/lib32/crt1.o' and fall // back to '/usr/lib' if it doesn't exist. if ((Triple.getArch() == llvm::Triple::x86 || Triple.getArch() == llvm::Triple::ppc) && D.getVFS().exists(getDriver().SysRoot + "/usr/lib32/crt1.o")) getFilePaths().push_back(getDriver().SysRoot + "/usr/lib32"); else getFilePaths().push_back(getDriver().SysRoot + "/usr/lib"); } ToolChain::CXXStdlibType FreeBSD::GetDefaultCXXStdlibType() const { if (getTriple().getOSMajorVersion() >= 10) return ToolChain::CST_Libcxx; return ToolChain::CST_Libstdcxx; } void FreeBSD::addLibStdCxxIncludePaths( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { addLibStdCXXIncludePaths(getDriver().SysRoot, "/usr/include/c++/4.2", "", "", "", "", DriverArgs, CC1Args); } void FreeBSD::AddCXXStdlibLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { CXXStdlibType Type = GetCXXStdlibType(Args); bool Profiling = Args.hasArg(options::OPT_pg); switch (Type) { case ToolChain::CST_Libcxx: CmdArgs.push_back(Profiling ? "-lc++_p" : "-lc++"); break; case ToolChain::CST_Libstdcxx: CmdArgs.push_back(Profiling ? "-lstdc++_p" : "-lstdc++"); break; } } Tool *FreeBSD::buildAssembler() const { return new tools::freebsd::Assembler(*this); } Tool *FreeBSD::buildLinker() const { return new tools::freebsd::Linker(*this); } bool FreeBSD::UseSjLjExceptions(const ArgList &Args) const { // FreeBSD uses SjLj exceptions on ARM oabi. switch (getTriple().getEnvironment()) { case llvm::Triple::GNUEABIHF: case llvm::Triple::GNUEABI: case llvm::Triple::EABI: return false; default: return (getTriple().getArch() == llvm::Triple::arm || getTriple().getArch() == llvm::Triple::thumb); } } bool FreeBSD::HasNativeLLVMSupport() const { return true; } bool FreeBSD::isPIEDefault() const { return getSanitizerArgs().requiresPIE(); } SanitizerMask FreeBSD::getSupportedSanitizers() const { const bool IsX86 = getTriple().getArch() == llvm::Triple::x86; const bool IsX86_64 = getTriple().getArch() == llvm::Triple::x86_64; const bool IsMIPS64 = getTriple().getArch() == llvm::Triple::mips64 || getTriple().getArch() == llvm::Triple::mips64el; SanitizerMask Res = ToolChain::getSupportedSanitizers(); Res |= SanitizerKind::Address; Res |= SanitizerKind::Vptr; if (IsX86_64 || IsMIPS64) { Res |= SanitizerKind::Leak; Res |= SanitizerKind::Thread; } if (IsX86 || IsX86_64) { Res |= SanitizerKind::SafeStack; } return Res; } /// NetBSD - NetBSD tool chain which can call as(1) and ld(1) directly. NetBSD::NetBSD(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { if (getDriver().UseStdLib) { // When targeting a 32-bit platform, try the special directory used on // 64-bit hosts, and only fall back to the main library directory if that // doesn't work. // FIXME: It'd be nicer to test if this directory exists, but I'm not sure // what all logic is needed to emulate the '=' prefix here. switch (Triple.getArch()) { case llvm::Triple::x86: getFilePaths().push_back("=/usr/lib/i386"); break; case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: switch (Triple.getEnvironment()) { case llvm::Triple::EABI: case llvm::Triple::GNUEABI: getFilePaths().push_back("=/usr/lib/eabi"); break; case llvm::Triple::EABIHF: case llvm::Triple::GNUEABIHF: getFilePaths().push_back("=/usr/lib/eabihf"); break; default: getFilePaths().push_back("=/usr/lib/oabi"); break; } break; case llvm::Triple::mips64: case llvm::Triple::mips64el: if (tools::mips::hasMipsAbiArg(Args, "o32")) getFilePaths().push_back("=/usr/lib/o32"); else if (tools::mips::hasMipsAbiArg(Args, "64")) getFilePaths().push_back("=/usr/lib/64"); break; case llvm::Triple::ppc: getFilePaths().push_back("=/usr/lib/powerpc"); break; case llvm::Triple::sparc: getFilePaths().push_back("=/usr/lib/sparc"); break; default: break; } getFilePaths().push_back("=/usr/lib"); } } Tool *NetBSD::buildAssembler() const { return new tools::netbsd::Assembler(*this); } Tool *NetBSD::buildLinker() const { return new tools::netbsd::Linker(*this); } ToolChain::CXXStdlibType NetBSD::GetDefaultCXXStdlibType() const { unsigned Major, Minor, Micro; getTriple().getOSVersion(Major, Minor, Micro); if (Major >= 7 || Major == 0) { switch (getArch()) { case llvm::Triple::aarch64: case llvm::Triple::aarch64_be: case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: case llvm::Triple::ppc: case llvm::Triple::ppc64: case llvm::Triple::ppc64le: case llvm::Triple::sparc: case llvm::Triple::sparcv9: case llvm::Triple::x86: case llvm::Triple::x86_64: return ToolChain::CST_Libcxx; default: break; } } return ToolChain::CST_Libstdcxx; } std::string NetBSD::findLibCxxIncludePath() const { return getDriver().SysRoot + "/usr/include/c++/"; } void NetBSD::addLibStdCxxIncludePaths(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { addLibStdCXXIncludePaths(getDriver().SysRoot, "/usr/include/g++", "", "", "", "", DriverArgs, CC1Args); } /// Minix - Minix tool chain which can call as(1) and ld(1) directly. Minix::Minix(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { getFilePaths().push_back(getDriver().Dir + "/../lib"); getFilePaths().push_back("/usr/lib"); } Tool *Minix::buildAssembler() const { return new tools::minix::Assembler(*this); } Tool *Minix::buildLinker() const { return new tools::minix::Linker(*this); } static void addPathIfExists(const Driver &D, const Twine &Path, ToolChain::path_list &Paths) { if (D.getVFS().exists(Path)) Paths.push_back(Path.str()); } /// Solaris - Solaris tool chain which can call as(1) and ld(1) directly. Solaris::Solaris(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_GCC(D, Triple, Args) { GCCInstallation.init(Triple, Args); path_list &Paths = getFilePaths(); if (GCCInstallation.isValid()) addPathIfExists(D, GCCInstallation.getInstallPath(), Paths); addPathIfExists(D, getDriver().getInstalledDir(), Paths); if (getDriver().getInstalledDir() != getDriver().Dir) addPathIfExists(D, getDriver().Dir, Paths); addPathIfExists(D, getDriver().SysRoot + getDriver().Dir + "/../lib", Paths); std::string LibPath = "/usr/lib/"; switch (Triple.getArch()) { case llvm::Triple::x86: case llvm::Triple::sparc: break; case llvm::Triple::x86_64: LibPath += "amd64/"; break; case llvm::Triple::sparcv9: LibPath += "sparcv9/"; break; default: llvm_unreachable("Unsupported architecture"); } addPathIfExists(D, getDriver().SysRoot + LibPath, Paths); } Tool *Solaris::buildAssembler() const { return new tools::solaris::Assembler(*this); } Tool *Solaris::buildLinker() const { return new tools::solaris::Linker(*this); } void Solaris::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (DriverArgs.hasArg(options::OPT_nostdlibinc) || DriverArgs.hasArg(options::OPT_nostdincxx)) return; // Include the support directory for things like xlocale and fudged system // headers. // FIXME: This is a weird mix of libc++ and libstdc++. We should also be // checking the value of -stdlib= here and adding the includes for libc++ // rather than libstdc++ if it's requested. addSystemInclude(DriverArgs, CC1Args, "/usr/include/c++/v1/support/solaris"); if (GCCInstallation.isValid()) { GCCVersion Version = GCCInstallation.getVersion(); addSystemInclude(DriverArgs, CC1Args, getDriver().SysRoot + "/usr/gcc/" + Version.MajorStr + "." + Version.MinorStr + "/include/c++/" + Version.Text); addSystemInclude(DriverArgs, CC1Args, getDriver().SysRoot + "/usr/gcc/" + Version.MajorStr + "." + Version.MinorStr + "/include/c++/" + Version.Text + "/" + GCCInstallation.getTriple().str()); } } /// \brief Get our best guess at the multiarch triple for a target. /// /// Debian-based systems are starting to use a multiarch setup where they use /// a target-triple directory in the library and header search paths. /// Unfortunately, this triple does not align with the vanilla target triple, /// so we provide a rough mapping here. static std::string getMultiarchTriple(const Driver &D, const llvm::Triple &TargetTriple, StringRef SysRoot) { llvm::Triple::EnvironmentType TargetEnvironment = TargetTriple.getEnvironment(); // For most architectures, just use whatever we have rather than trying to be // clever. switch (TargetTriple.getArch()) { default: break; // We use the existence of '/lib/' as a directory to detect some // common linux triples that don't quite match the Clang triple for both // 32-bit and 64-bit targets. Multiarch fixes its install triples to these // regardless of what the actual target triple is. case llvm::Triple::arm: case llvm::Triple::thumb: if (TargetEnvironment == llvm::Triple::GNUEABIHF) { if (D.getVFS().exists(SysRoot + "/lib/arm-linux-gnueabihf")) return "arm-linux-gnueabihf"; } else { if (D.getVFS().exists(SysRoot + "/lib/arm-linux-gnueabi")) return "arm-linux-gnueabi"; } break; case llvm::Triple::armeb: case llvm::Triple::thumbeb: if (TargetEnvironment == llvm::Triple::GNUEABIHF) { if (D.getVFS().exists(SysRoot + "/lib/armeb-linux-gnueabihf")) return "armeb-linux-gnueabihf"; } else { if (D.getVFS().exists(SysRoot + "/lib/armeb-linux-gnueabi")) return "armeb-linux-gnueabi"; } break; case llvm::Triple::x86: if (D.getVFS().exists(SysRoot + "/lib/i386-linux-gnu")) return "i386-linux-gnu"; break; case llvm::Triple::x86_64: // We don't want this for x32, otherwise it will match x86_64 libs if (TargetEnvironment != llvm::Triple::GNUX32 && D.getVFS().exists(SysRoot + "/lib/x86_64-linux-gnu")) return "x86_64-linux-gnu"; break; case llvm::Triple::aarch64: if (D.getVFS().exists(SysRoot + "/lib/aarch64-linux-gnu")) return "aarch64-linux-gnu"; break; case llvm::Triple::aarch64_be: if (D.getVFS().exists(SysRoot + "/lib/aarch64_be-linux-gnu")) return "aarch64_be-linux-gnu"; break; case llvm::Triple::mips: if (D.getVFS().exists(SysRoot + "/lib/mips-linux-gnu")) return "mips-linux-gnu"; break; case llvm::Triple::mipsel: if (D.getVFS().exists(SysRoot + "/lib/mipsel-linux-gnu")) return "mipsel-linux-gnu"; break; case llvm::Triple::mips64: if (D.getVFS().exists(SysRoot + "/lib/mips64-linux-gnu")) return "mips64-linux-gnu"; if (D.getVFS().exists(SysRoot + "/lib/mips64-linux-gnuabi64")) return "mips64-linux-gnuabi64"; break; case llvm::Triple::mips64el: if (D.getVFS().exists(SysRoot + "/lib/mips64el-linux-gnu")) return "mips64el-linux-gnu"; if (D.getVFS().exists(SysRoot + "/lib/mips64el-linux-gnuabi64")) return "mips64el-linux-gnuabi64"; break; case llvm::Triple::ppc: if (D.getVFS().exists(SysRoot + "/lib/powerpc-linux-gnuspe")) return "powerpc-linux-gnuspe"; if (D.getVFS().exists(SysRoot + "/lib/powerpc-linux-gnu")) return "powerpc-linux-gnu"; break; case llvm::Triple::ppc64: if (D.getVFS().exists(SysRoot + "/lib/powerpc64-linux-gnu")) return "powerpc64-linux-gnu"; break; case llvm::Triple::ppc64le: if (D.getVFS().exists(SysRoot + "/lib/powerpc64le-linux-gnu")) return "powerpc64le-linux-gnu"; break; case llvm::Triple::sparc: if (D.getVFS().exists(SysRoot + "/lib/sparc-linux-gnu")) return "sparc-linux-gnu"; break; case llvm::Triple::sparcv9: if (D.getVFS().exists(SysRoot + "/lib/sparc64-linux-gnu")) return "sparc64-linux-gnu"; break; case llvm::Triple::systemz: if (D.getVFS().exists(SysRoot + "/lib/s390x-linux-gnu")) return "s390x-linux-gnu"; break; } return TargetTriple.str(); } static StringRef getOSLibDir(const llvm::Triple &Triple, const ArgList &Args) { if (isMipsArch(Triple.getArch())) { if (Triple.isAndroid()) { StringRef CPUName; StringRef ABIName; tools::mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName); if (CPUName == "mips32r6") return "libr6"; if (CPUName == "mips32r2") return "libr2"; } // lib32 directory has a special meaning on MIPS targets. // It contains N32 ABI binaries. Use this folder if produce // code for N32 ABI only. if (tools::mips::hasMipsAbiArg(Args, "n32")) return "lib32"; return Triple.isArch32Bit() ? "lib" : "lib64"; } // It happens that only x86 and PPC use the 'lib32' variant of oslibdir, and // using that variant while targeting other architectures causes problems // because the libraries are laid out in shared system roots that can't cope // with a 'lib32' library search path being considered. So we only enable // them when we know we may need it. // // FIXME: This is a bit of a hack. We should really unify this code for // reasoning about oslibdir spellings with the lib dir spellings in the // GCCInstallationDetector, but that is a more significant refactoring. if (Triple.getArch() == llvm::Triple::x86 || Triple.getArch() == llvm::Triple::ppc) return "lib32"; if (Triple.getArch() == llvm::Triple::x86_64 && Triple.getEnvironment() == llvm::Triple::GNUX32) return "libx32"; return Triple.isArch32Bit() ? "lib" : "lib64"; } static void addMultilibsFilePaths(const Driver &D, const MultilibSet &Multilibs, const Multilib &Multilib, StringRef InstallPath, ToolChain::path_list &Paths) { if (const auto &PathsCallback = Multilibs.filePathsCallback()) for (const auto &Path : PathsCallback(Multilib)) addPathIfExists(D, InstallPath + Path, Paths); } Linux::Linux(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { GCCInstallation.init(Triple, Args); Multilibs = GCCInstallation.getMultilibs(); llvm::Triple::ArchType Arch = Triple.getArch(); std::string SysRoot = computeSysRoot(); // Cross-compiling binutils and GCC installations (vanilla and openSUSE at // least) put various tools in a triple-prefixed directory off of the parent // of the GCC installation. We use the GCC triple here to ensure that we end // up with tools that support the same amount of cross compiling as the // detected GCC installation. For example, if we find a GCC installation // targeting x86_64, but it is a bi-arch GCC installation, it can also be // used to target i386. // FIXME: This seems unlikely to be Linux-specific. ToolChain::path_list &PPaths = getProgramPaths(); PPaths.push_back(Twine(GCCInstallation.getParentLibPath() + "/../" + GCCInstallation.getTriple().str() + "/bin") .str()); Distro Distro(D.getVFS()); if (Distro.IsRedhat()) { // On RHEL, we want to add a bin directory that is relative to the detected // gcc install, because if we are using devtoolset gcc then we want to // use other tools from devtoolset (e.g. ld) instead of the standard system // tools. PPaths.push_back(Twine(GCCInstallation.getParentLibPath() + "/../bin").str()); } if (Distro.IsOpenSUSE() || Distro.IsUbuntu()) { ExtraOpts.push_back("-z"); ExtraOpts.push_back("relro"); } if (Arch == llvm::Triple::arm || Arch == llvm::Triple::thumb) ExtraOpts.push_back("-X"); const bool IsAndroid = Triple.isAndroid(); const bool IsMips = isMipsArch(Arch); if (IsMips && !SysRoot.empty()) ExtraOpts.push_back("--sysroot=" + SysRoot); // Do not use 'gnu' hash style for Mips targets because .gnu.hash // and the MIPS ABI require .dynsym to be sorted in different ways. // .gnu.hash needs symbols to be grouped by hash code whereas the MIPS // ABI requires a mapping between the GOT and the symbol table. // Android loader does not support .gnu.hash. if (!IsMips && !IsAndroid) { if (Distro.IsRedhat() || Distro.IsOpenSUSE() || (Distro.IsUbuntu() && Distro >= Distro::UbuntuMaverick)) ExtraOpts.push_back("--hash-style=gnu"); if (Distro.IsDebian() || Distro.IsOpenSUSE() || Distro == Distro::UbuntuLucid || Distro == Distro::UbuntuJaunty || Distro == Distro::UbuntuKarmic) ExtraOpts.push_back("--hash-style=both"); } if (Distro.IsRedhat() && Distro != Distro::RHEL5 && Distro != Distro::RHEL6) ExtraOpts.push_back("--no-add-needed"); #ifdef ENABLE_LINKER_BUILD_ID ExtraOpts.push_back("--build-id"); #endif if (Distro.IsOpenSUSE()) ExtraOpts.push_back("--enable-new-dtags"); // The selection of paths to try here is designed to match the patterns which // the GCC driver itself uses, as this is part of the GCC-compatible driver. // This was determined by running GCC in a fake filesystem, creating all // possible permutations of these directories, and seeing which ones it added // to the link paths. path_list &Paths = getFilePaths(); const std::string OSLibDir = getOSLibDir(Triple, Args); const std::string MultiarchTriple = getMultiarchTriple(D, Triple, SysRoot); // Add the multilib suffixed paths where they are available. if (GCCInstallation.isValid()) { const llvm::Triple &GCCTriple = GCCInstallation.getTriple(); const std::string &LibPath = GCCInstallation.getParentLibPath(); const Multilib &Multilib = GCCInstallation.getMultilib(); const MultilibSet &Multilibs = GCCInstallation.getMultilibs(); // Add toolchain / multilib specific file paths. addMultilibsFilePaths(D, Multilibs, Multilib, GCCInstallation.getInstallPath(), Paths); // Sourcery CodeBench MIPS toolchain holds some libraries under // a biarch-like suffix of the GCC installation. addPathIfExists(D, GCCInstallation.getInstallPath() + Multilib.gccSuffix(), Paths); // GCC cross compiling toolchains will install target libraries which ship // as part of the toolchain under // rather than as // any part of the GCC installation in // //gcc//. This decision is somewhat // debatable, but is the reality today. We need to search this tree even // when we have a sysroot somewhere else. It is the responsibility of // whomever is doing the cross build targeting a sysroot using a GCC // installation that is *not* within the system root to ensure two things: // // 1) Any DSOs that are linked in from this tree or from the install path // above must be present on the system root and found via an // appropriate rpath. // 2) There must not be libraries installed into // // unless they should be preferred over // those within the system root. // // Note that this matches the GCC behavior. See the below comment for where // Clang diverges from GCC's behavior. addPathIfExists(D, LibPath + "/../" + GCCTriple.str() + "/lib/../" + OSLibDir + Multilib.osSuffix(), Paths); // If the GCC installation we found is inside of the sysroot, we want to // prefer libraries installed in the parent prefix of the GCC installation. // It is important to *not* use these paths when the GCC installation is // outside of the system root as that can pick up unintended libraries. // This usually happens when there is an external cross compiler on the // host system, and a more minimal sysroot available that is the target of // the cross. Note that GCC does include some of these directories in some // configurations but this seems somewhere between questionable and simply // a bug. if (StringRef(LibPath).startswith(SysRoot)) { addPathIfExists(D, LibPath + "/" + MultiarchTriple, Paths); addPathIfExists(D, LibPath + "/../" + OSLibDir, Paths); } } // Similar to the logic for GCC above, if we currently running Clang inside // of the requested system root, add its parent library paths to // those searched. // FIXME: It's not clear whether we should use the driver's installed // directory ('Dir' below) or the ResourceDir. if (StringRef(D.Dir).startswith(SysRoot)) { addPathIfExists(D, D.Dir + "/../lib/" + MultiarchTriple, Paths); addPathIfExists(D, D.Dir + "/../" + OSLibDir, Paths); } addPathIfExists(D, SysRoot + "/lib/" + MultiarchTriple, Paths); addPathIfExists(D, SysRoot + "/lib/../" + OSLibDir, Paths); addPathIfExists(D, SysRoot + "/usr/lib/" + MultiarchTriple, Paths); addPathIfExists(D, SysRoot + "/usr/lib/../" + OSLibDir, Paths); // Try walking via the GCC triple path in case of biarch or multiarch GCC // installations with strange symlinks. if (GCCInstallation.isValid()) { addPathIfExists(D, SysRoot + "/usr/lib/" + GCCInstallation.getTriple().str() + "/../../" + OSLibDir, Paths); // Add the 'other' biarch variant path Multilib BiarchSibling; if (GCCInstallation.getBiarchSibling(BiarchSibling)) { addPathIfExists(D, GCCInstallation.getInstallPath() + BiarchSibling.gccSuffix(), Paths); } // See comments above on the multilib variant for details of why this is // included even from outside the sysroot. const std::string &LibPath = GCCInstallation.getParentLibPath(); const llvm::Triple &GCCTriple = GCCInstallation.getTriple(); const Multilib &Multilib = GCCInstallation.getMultilib(); addPathIfExists(D, LibPath + "/../" + GCCTriple.str() + "/lib" + Multilib.osSuffix(), Paths); // See comments above on the multilib variant for details of why this is // only included from within the sysroot. if (StringRef(LibPath).startswith(SysRoot)) addPathIfExists(D, LibPath, Paths); } // Similar to the logic for GCC above, if we are currently running Clang // inside of the requested system root, add its parent library path to those // searched. // FIXME: It's not clear whether we should use the driver's installed // directory ('Dir' below) or the ResourceDir. if (StringRef(D.Dir).startswith(SysRoot)) addPathIfExists(D, D.Dir + "/../lib", Paths); addPathIfExists(D, SysRoot + "/lib", Paths); addPathIfExists(D, SysRoot + "/usr/lib", Paths); } bool Linux::HasNativeLLVMSupport() const { return true; } Tool *Linux::buildLinker() const { return new tools::gnutools::Linker(*this); } Tool *Linux::buildAssembler() const { return new tools::gnutools::Assembler(*this); } std::string Linux::computeSysRoot() const { if (!getDriver().SysRoot.empty()) return getDriver().SysRoot; if (!GCCInstallation.isValid() || !isMipsArch(getTriple().getArch())) return std::string(); // Standalone MIPS toolchains use different names for sysroot folder // and put it into different places. Here we try to check some known // variants. const StringRef InstallDir = GCCInstallation.getInstallPath(); const StringRef TripleStr = GCCInstallation.getTriple().str(); const Multilib &Multilib = GCCInstallation.getMultilib(); std::string Path = (InstallDir + "/../../../../" + TripleStr + "/libc" + Multilib.osSuffix()) .str(); if (getVFS().exists(Path)) return Path; Path = (InstallDir + "/../../../../sysroot" + Multilib.osSuffix()).str(); if (getVFS().exists(Path)) return Path; return std::string(); } std::string Linux::getDynamicLinker(const ArgList &Args) const { const llvm::Triple::ArchType Arch = getArch(); const llvm::Triple &Triple = getTriple(); const Distro Distro(getDriver().getVFS()); if (Triple.isAndroid()) return Triple.isArch64Bit() ? "/system/bin/linker64" : "/system/bin/linker"; if (Triple.isMusl()) { std::string ArchName; bool IsArm = false; switch (Arch) { case llvm::Triple::arm: case llvm::Triple::thumb: ArchName = "arm"; IsArm = true; break; case llvm::Triple::armeb: case llvm::Triple::thumbeb: ArchName = "armeb"; IsArm = true; break; default: ArchName = Triple.getArchName().str(); } if (IsArm && (Triple.getEnvironment() == llvm::Triple::MuslEABIHF || tools::arm::getARMFloatABI(*this, Args) == tools::arm::FloatABI::Hard)) ArchName += "hf"; return "/lib/ld-musl-" + ArchName + ".so.1"; } std::string LibDir; std::string Loader; switch (Arch) { default: llvm_unreachable("unsupported architecture"); case llvm::Triple::aarch64: LibDir = "lib"; Loader = "ld-linux-aarch64.so.1"; break; case llvm::Triple::aarch64_be: LibDir = "lib"; Loader = "ld-linux-aarch64_be.so.1"; break; case llvm::Triple::arm: case llvm::Triple::thumb: case llvm::Triple::armeb: case llvm::Triple::thumbeb: { const bool HF = Triple.getEnvironment() == llvm::Triple::GNUEABIHF || tools::arm::getARMFloatABI(*this, Args) == tools::arm::FloatABI::Hard; LibDir = "lib"; Loader = HF ? "ld-linux-armhf.so.3" : "ld-linux.so.3"; break; } case llvm::Triple::mips: case llvm::Triple::mipsel: case llvm::Triple::mips64: case llvm::Triple::mips64el: { bool LE = (Triple.getArch() == llvm::Triple::mipsel) || (Triple.getArch() == llvm::Triple::mips64el); bool IsNaN2008 = tools::mips::isNaN2008(Args, Triple); LibDir = "lib" + tools::mips::getMipsABILibSuffix(Args, Triple); if (tools::mips::isUCLibc(Args)) Loader = IsNaN2008 ? "ld-uClibc-mipsn8.so.0" : "ld-uClibc.so.0"; else if (!Triple.hasEnvironment() && Triple.getVendor() == llvm::Triple::VendorType::MipsTechnologies) Loader = LE ? "ld-musl-mipsel.so.1" : "ld-musl-mips.so.1"; else Loader = IsNaN2008 ? "ld-linux-mipsn8.so.1" : "ld.so.1"; break; } case llvm::Triple::ppc: LibDir = "lib"; Loader = "ld.so.1"; break; case llvm::Triple::ppc64: LibDir = "lib64"; Loader = (tools::ppc::hasPPCAbiArg(Args, "elfv2")) ? "ld64.so.2" : "ld64.so.1"; break; case llvm::Triple::ppc64le: LibDir = "lib64"; Loader = (tools::ppc::hasPPCAbiArg(Args, "elfv1")) ? "ld64.so.1" : "ld64.so.2"; break; case llvm::Triple::sparc: case llvm::Triple::sparcel: LibDir = "lib"; Loader = "ld-linux.so.2"; break; case llvm::Triple::sparcv9: LibDir = "lib64"; Loader = "ld-linux.so.2"; break; case llvm::Triple::systemz: LibDir = "lib"; Loader = "ld64.so.1"; break; case llvm::Triple::x86: LibDir = "lib"; Loader = "ld-linux.so.2"; break; case llvm::Triple::x86_64: { bool X32 = Triple.getEnvironment() == llvm::Triple::GNUX32; LibDir = X32 ? "libx32" : "lib64"; Loader = X32 ? "ld-linux-x32.so.2" : "ld-linux-x86-64.so.2"; break; } } if (Distro == Distro::Exherbo && (Triple.getVendor() == llvm::Triple::UnknownVendor || Triple.getVendor() == llvm::Triple::PC)) return "/usr/" + Triple.str() + "/lib/" + Loader; return "/" + LibDir + "/" + Loader; } void Linux::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { const Driver &D = getDriver(); std::string SysRoot = computeSysRoot(); if (DriverArgs.hasArg(options::OPT_nostdinc)) return; if (!DriverArgs.hasArg(options::OPT_nostdlibinc)) addSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/local/include"); if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { SmallString<128> P(D.ResourceDir); llvm::sys::path::append(P, "include"); addSystemInclude(DriverArgs, CC1Args, P); } if (DriverArgs.hasArg(options::OPT_nostdlibinc)) return; // Check for configure-time C include directories. StringRef CIncludeDirs(C_INCLUDE_DIRS); if (CIncludeDirs != "") { SmallVector dirs; CIncludeDirs.split(dirs, ":"); for (StringRef dir : dirs) { StringRef Prefix = llvm::sys::path::is_absolute(dir) ? StringRef(SysRoot) : ""; addExternCSystemInclude(DriverArgs, CC1Args, Prefix + dir); } return; } // Lacking those, try to detect the correct set of system includes for the // target triple. // Add include directories specific to the selected multilib set and multilib. if (GCCInstallation.isValid()) { const auto &Callback = Multilibs.includeDirsCallback(); if (Callback) { for (const auto &Path : Callback(GCCInstallation.getMultilib())) addExternCSystemIncludeIfExists( DriverArgs, CC1Args, GCCInstallation.getInstallPath() + Path); } } // Implement generic Debian multiarch support. const StringRef X86_64MultiarchIncludeDirs[] = { "/usr/include/x86_64-linux-gnu", // FIXME: These are older forms of multiarch. It's not clear that they're // in use in any released version of Debian, so we should consider // removing them. "/usr/include/i686-linux-gnu/64", "/usr/include/i486-linux-gnu/64"}; const StringRef X86MultiarchIncludeDirs[] = { "/usr/include/i386-linux-gnu", // FIXME: These are older forms of multiarch. It's not clear that they're // in use in any released version of Debian, so we should consider // removing them. "/usr/include/x86_64-linux-gnu/32", "/usr/include/i686-linux-gnu", "/usr/include/i486-linux-gnu"}; const StringRef AArch64MultiarchIncludeDirs[] = { "/usr/include/aarch64-linux-gnu"}; const StringRef ARMMultiarchIncludeDirs[] = { "/usr/include/arm-linux-gnueabi"}; const StringRef ARMHFMultiarchIncludeDirs[] = { "/usr/include/arm-linux-gnueabihf"}; const StringRef ARMEBMultiarchIncludeDirs[] = { "/usr/include/armeb-linux-gnueabi"}; const StringRef ARMEBHFMultiarchIncludeDirs[] = { "/usr/include/armeb-linux-gnueabihf"}; const StringRef MIPSMultiarchIncludeDirs[] = {"/usr/include/mips-linux-gnu"}; const StringRef MIPSELMultiarchIncludeDirs[] = { "/usr/include/mipsel-linux-gnu"}; const StringRef MIPS64MultiarchIncludeDirs[] = { "/usr/include/mips64-linux-gnu", "/usr/include/mips64-linux-gnuabi64"}; const StringRef MIPS64ELMultiarchIncludeDirs[] = { "/usr/include/mips64el-linux-gnu", "/usr/include/mips64el-linux-gnuabi64"}; const StringRef PPCMultiarchIncludeDirs[] = { "/usr/include/powerpc-linux-gnu"}; const StringRef PPC64MultiarchIncludeDirs[] = { "/usr/include/powerpc64-linux-gnu"}; const StringRef PPC64LEMultiarchIncludeDirs[] = { "/usr/include/powerpc64le-linux-gnu"}; const StringRef SparcMultiarchIncludeDirs[] = { "/usr/include/sparc-linux-gnu"}; const StringRef Sparc64MultiarchIncludeDirs[] = { "/usr/include/sparc64-linux-gnu"}; const StringRef SYSTEMZMultiarchIncludeDirs[] = { "/usr/include/s390x-linux-gnu"}; ArrayRef MultiarchIncludeDirs; switch (getTriple().getArch()) { case llvm::Triple::x86_64: MultiarchIncludeDirs = X86_64MultiarchIncludeDirs; break; case llvm::Triple::x86: MultiarchIncludeDirs = X86MultiarchIncludeDirs; break; case llvm::Triple::aarch64: case llvm::Triple::aarch64_be: MultiarchIncludeDirs = AArch64MultiarchIncludeDirs; break; case llvm::Triple::arm: case llvm::Triple::thumb: if (getTriple().getEnvironment() == llvm::Triple::GNUEABIHF) MultiarchIncludeDirs = ARMHFMultiarchIncludeDirs; else MultiarchIncludeDirs = ARMMultiarchIncludeDirs; break; case llvm::Triple::armeb: case llvm::Triple::thumbeb: if (getTriple().getEnvironment() == llvm::Triple::GNUEABIHF) MultiarchIncludeDirs = ARMEBHFMultiarchIncludeDirs; else MultiarchIncludeDirs = ARMEBMultiarchIncludeDirs; break; case llvm::Triple::mips: MultiarchIncludeDirs = MIPSMultiarchIncludeDirs; break; case llvm::Triple::mipsel: MultiarchIncludeDirs = MIPSELMultiarchIncludeDirs; break; case llvm::Triple::mips64: MultiarchIncludeDirs = MIPS64MultiarchIncludeDirs; break; case llvm::Triple::mips64el: MultiarchIncludeDirs = MIPS64ELMultiarchIncludeDirs; break; case llvm::Triple::ppc: MultiarchIncludeDirs = PPCMultiarchIncludeDirs; break; case llvm::Triple::ppc64: MultiarchIncludeDirs = PPC64MultiarchIncludeDirs; break; case llvm::Triple::ppc64le: MultiarchIncludeDirs = PPC64LEMultiarchIncludeDirs; break; case llvm::Triple::sparc: MultiarchIncludeDirs = SparcMultiarchIncludeDirs; break; case llvm::Triple::sparcv9: MultiarchIncludeDirs = Sparc64MultiarchIncludeDirs; break; case llvm::Triple::systemz: MultiarchIncludeDirs = SYSTEMZMultiarchIncludeDirs; break; default: break; } for (StringRef Dir : MultiarchIncludeDirs) { if (D.getVFS().exists(SysRoot + Dir)) { addExternCSystemInclude(DriverArgs, CC1Args, SysRoot + Dir); break; } } if (getTriple().getOS() == llvm::Triple::RTEMS) return; // Add an include of '/include' directly. This isn't provided by default by // system GCCs, but is often used with cross-compiling GCCs, and harmless to // add even when Clang is acting as-if it were a system compiler. addExternCSystemInclude(DriverArgs, CC1Args, SysRoot + "/include"); addExternCSystemInclude(DriverArgs, CC1Args, SysRoot + "/usr/include"); } static std::string DetectLibcxxIncludePath(StringRef base) { std::error_code EC; int MaxVersion = 0; std::string MaxVersionString = ""; for (llvm::sys::fs::directory_iterator LI(base, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef VersionText = llvm::sys::path::filename(LI->path()); int Version; if (VersionText[0] == 'v' && !VersionText.slice(1, StringRef::npos).getAsInteger(10, Version)) { if (Version > MaxVersion) { MaxVersion = Version; MaxVersionString = VersionText; } } } return MaxVersion ? (base + "/" + MaxVersionString).str() : ""; } std::string Linux::findLibCxxIncludePath() const { const std::string LibCXXIncludePathCandidates[] = { DetectLibcxxIncludePath(getDriver().Dir + "/../include/c++"), // If this is a development, non-installed, clang, libcxx will // not be found at ../include/c++ but it likely to be found at // one of the following two locations: DetectLibcxxIncludePath(getDriver().SysRoot + "/usr/local/include/c++"), DetectLibcxxIncludePath(getDriver().SysRoot + "/usr/include/c++") }; for (const auto &IncludePath : LibCXXIncludePathCandidates) { if (IncludePath.empty() || !getVFS().exists(IncludePath)) continue; // Use the first candidate that exists. return IncludePath; } return ""; } void Linux::addLibStdCxxIncludePaths(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { // We need a detected GCC installation on Linux to provide libstdc++'s // headers. if (!GCCInstallation.isValid()) return; // By default, look for the C++ headers in an include directory adjacent to // the lib directory of the GCC installation. Note that this is expect to be // equivalent to '/usr/include/c++/X.Y' in almost all cases. StringRef LibDir = GCCInstallation.getParentLibPath(); StringRef InstallDir = GCCInstallation.getInstallPath(); StringRef TripleStr = GCCInstallation.getTriple().str(); const Multilib &Multilib = GCCInstallation.getMultilib(); const std::string GCCMultiarchTriple = getMultiarchTriple( getDriver(), GCCInstallation.getTriple(), getDriver().SysRoot); const std::string TargetMultiarchTriple = getMultiarchTriple(getDriver(), getTriple(), getDriver().SysRoot); const GCCVersion &Version = GCCInstallation.getVersion(); // The primary search for libstdc++ supports multiarch variants. if (addLibStdCXXIncludePaths(LibDir.str() + "/../include", "/c++/" + Version.Text, TripleStr, GCCMultiarchTriple, TargetMultiarchTriple, Multilib.includeSuffix(), DriverArgs, CC1Args)) return; // Otherwise, fall back on a bunch of options which don't use multiarch // layouts for simplicity. const std::string LibStdCXXIncludePathCandidates[] = { // Gentoo is weird and places its headers inside the GCC install, // so if the first attempt to find the headers fails, try these patterns. InstallDir.str() + "/include/g++-v" + Version.Text, InstallDir.str() + "/include/g++-v" + Version.MajorStr + "." + Version.MinorStr, InstallDir.str() + "/include/g++-v" + Version.MajorStr, // Android standalone toolchain has C++ headers in yet another place. LibDir.str() + "/../" + TripleStr.str() + "/include/c++/" + Version.Text, // Freescale SDK C++ headers are directly in /usr/include/c++, // without a subdirectory corresponding to the gcc version. LibDir.str() + "/../include/c++", }; for (const auto &IncludePath : LibStdCXXIncludePathCandidates) { if (addLibStdCXXIncludePaths(IncludePath, /*Suffix*/ "", TripleStr, /*GCCMultiarchTriple*/ "", /*TargetMultiarchTriple*/ "", Multilib.includeSuffix(), DriverArgs, CC1Args)) break; } } void Linux::AddCudaIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args); } void Linux::AddIAMCUIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (GCCInstallation.isValid()) { CC1Args.push_back("-isystem"); CC1Args.push_back(DriverArgs.MakeArgString( GCCInstallation.getParentLibPath() + "/../" + GCCInstallation.getTriple().str() + "/include")); } } bool Linux::isPIEDefault() const { return getSanitizerArgs().requiresPIE(); } SanitizerMask Linux::getSupportedSanitizers() const { const bool IsX86 = getTriple().getArch() == llvm::Triple::x86; const bool IsX86_64 = getTriple().getArch() == llvm::Triple::x86_64; const bool IsMIPS64 = getTriple().getArch() == llvm::Triple::mips64 || getTriple().getArch() == llvm::Triple::mips64el; const bool IsPowerPC64 = getTriple().getArch() == llvm::Triple::ppc64 || getTriple().getArch() == llvm::Triple::ppc64le; const bool IsAArch64 = getTriple().getArch() == llvm::Triple::aarch64 || getTriple().getArch() == llvm::Triple::aarch64_be; SanitizerMask Res = ToolChain::getSupportedSanitizers(); Res |= SanitizerKind::Address; Res |= SanitizerKind::KernelAddress; Res |= SanitizerKind::Vptr; Res |= SanitizerKind::SafeStack; if (IsX86_64 || IsMIPS64 || IsAArch64) Res |= SanitizerKind::DataFlow; if (IsX86_64 || IsMIPS64 || IsAArch64) Res |= SanitizerKind::Leak; if (IsX86_64 || IsMIPS64 || IsAArch64 || IsPowerPC64) Res |= SanitizerKind::Thread; if (IsX86_64 || IsMIPS64 || IsPowerPC64 || IsAArch64) Res |= SanitizerKind::Memory; if (IsX86_64 || IsMIPS64) Res |= SanitizerKind::Efficiency; if (IsX86 || IsX86_64) { Res |= SanitizerKind::Function; } return Res; } void Linux::addProfileRTLibs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const { if (!needsProfileRT(Args)) return; // Add linker option -u__llvm_runtime_variable to cause runtime // initialization module to be linked in. if (!Args.hasArg(options::OPT_coverage)) CmdArgs.push_back(Args.MakeArgString( Twine("-u", llvm::getInstrProfRuntimeHookVarName()))); ToolChain::addProfileRTLibs(Args, CmdArgs); } /// Fuchsia - Fuchsia tool chain which can call as(1) and ld(1) directly. Fuchsia::Fuchsia(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { getFilePaths().push_back(D.SysRoot + "/lib"); getFilePaths().push_back(D.ResourceDir + "/lib/fuchsia"); } Tool *Fuchsia::buildAssembler() const { return new tools::gnutools::Assembler(*this); } Tool *Fuchsia::buildLinker() const { return new tools::fuchsia::Linker(*this); } ToolChain::RuntimeLibType Fuchsia::GetRuntimeLibType( const ArgList &Args) const { if (Arg *A = Args.getLastArg(options::OPT_rtlib_EQ)) { StringRef Value = A->getValue(); if (Value != "compiler-rt") getDriver().Diag(diag::err_drv_invalid_rtlib_name) << A->getAsString(Args); } return ToolChain::RLT_CompilerRT; } ToolChain::CXXStdlibType Fuchsia::GetCXXStdlibType(const ArgList &Args) const { if (Arg *A = Args.getLastArg(options::OPT_stdlib_EQ)) { StringRef Value = A->getValue(); if (Value != "libc++") getDriver().Diag(diag::err_drv_invalid_stdlib_name) << A->getAsString(Args); } return ToolChain::CST_Libcxx; } void Fuchsia::addClangTargetOptions(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (DriverArgs.hasFlag(options::OPT_fuse_init_array, options::OPT_fno_use_init_array, true)) CC1Args.push_back("-fuse-init-array"); } void Fuchsia::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { const Driver &D = getDriver(); if (DriverArgs.hasArg(options::OPT_nostdinc)) return; if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { SmallString<128> P(D.ResourceDir); llvm::sys::path::append(P, "include"); addSystemInclude(DriverArgs, CC1Args, P); } if (DriverArgs.hasArg(options::OPT_nostdlibinc)) return; // Check for configure-time C include directories. StringRef CIncludeDirs(C_INCLUDE_DIRS); if (CIncludeDirs != "") { SmallVector dirs; CIncludeDirs.split(dirs, ":"); for (StringRef dir : dirs) { StringRef Prefix = llvm::sys::path::is_absolute(dir) ? StringRef(D.SysRoot) : ""; addExternCSystemInclude(DriverArgs, CC1Args, Prefix + dir); } return; } addExternCSystemInclude(DriverArgs, CC1Args, D.SysRoot + "/include"); } std::string Fuchsia::findLibCxxIncludePath() const { return getDriver().SysRoot + "/include/c++/v1"; } void Fuchsia::AddCXXStdlibLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { (void) GetCXXStdlibType(Args); CmdArgs.push_back("-lc++"); CmdArgs.push_back("-lc++abi"); CmdArgs.push_back("-lunwind"); } /// DragonFly - DragonFly tool chain which can call as(1) and ld(1) directly. DragonFly::DragonFly(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { // Path mangling to find libexec getProgramPaths().push_back(getDriver().getInstalledDir()); if (getDriver().getInstalledDir() != getDriver().Dir) getProgramPaths().push_back(getDriver().Dir); getFilePaths().push_back(getDriver().Dir + "/../lib"); getFilePaths().push_back("/usr/lib"); getFilePaths().push_back("/usr/lib/gcc50"); } Tool *DragonFly::buildAssembler() const { return new tools::dragonfly::Assembler(*this); } Tool *DragonFly::buildLinker() const { return new tools::dragonfly::Linker(*this); } /// CUDA toolchain. Our assembler is ptxas, and our "linker" is fatbinary, /// which isn't properly a linker but nonetheless performs the step of stitching /// together object files from the assembler into a single blob. CudaToolChain::CudaToolChain(const Driver &D, const llvm::Triple &Triple, const ToolChain &HostTC, const ArgList &Args) : ToolChain(D, Triple, Args), HostTC(HostTC), CudaInstallation(D, HostTC.getTriple(), Args) { if (CudaInstallation.isValid()) getProgramPaths().push_back(CudaInstallation.getBinPath()); } void CudaToolChain::addClangTargetOptions( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { HostTC.addClangTargetOptions(DriverArgs, CC1Args); CC1Args.push_back("-fcuda-is-device"); if (DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero, options::OPT_fno_cuda_flush_denormals_to_zero, false)) CC1Args.push_back("-fcuda-flush-denormals-to-zero"); if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals, options::OPT_fno_cuda_approx_transcendentals, false)) CC1Args.push_back("-fcuda-approx-transcendentals"); if (DriverArgs.hasArg(options::OPT_nocudalib)) return; StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ); assert(!GpuArch.empty() && "Must have an explicit GPU arch."); std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch); if (LibDeviceFile.empty()) { getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch; return; } CC1Args.push_back("-mlink-cuda-bitcode"); CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile)); // Libdevice in CUDA-7.0 requires PTX version that's more recent // than LLVM defaults to. Use PTX4.2 which is the PTX version that // came with CUDA-7.0. CC1Args.push_back("-target-feature"); CC1Args.push_back("+ptx42"); } void CudaToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { // Check our CUDA version if we're going to include the CUDA headers. if (!DriverArgs.hasArg(options::OPT_nocudainc) && !DriverArgs.hasArg(options::OPT_no_cuda_version_check)) { StringRef Arch = DriverArgs.getLastArgValue(options::OPT_march_EQ); assert(!Arch.empty() && "Must have an explicit GPU arch."); CudaInstallation.CheckCudaVersionSupportsArch(StringToCudaArch(Arch)); } CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args); } llvm::opt::DerivedArgList * CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind) const { DerivedArgList *DAL = HostTC.TranslateArgs(Args, BoundArch, DeviceOffloadKind); if (!DAL) DAL = new DerivedArgList(Args.getBaseArgs()); const OptTable &Opts = getDriver().getOpts(); for (Arg *A : Args) { if (A->getOption().matches(options::OPT_Xarch__)) { // Skip this argument unless the architecture matches BoundArch if (BoundArch.empty() || A->getValue(0) != BoundArch) continue; unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(1)); unsigned Prev = Index; std::unique_ptr XarchArg(Opts.ParseOneArg(Args, Index)); // If the argument parsing failed or more than one argument was // consumed, the -Xarch_ argument's parameter tried to consume // extra arguments. Emit an error and ignore. // // We also want to disallow any options which would alter the // driver behavior; that isn't going to work in our model. We // use isDriverOption() as an approximation, although things // like -O4 are going to slip through. if (!XarchArg || Index > Prev + 1) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args) << A->getAsString(Args); continue; } else if (XarchArg->getOption().hasFlag(options::DriverOption)) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_isdriver) << A->getAsString(Args); continue; } XarchArg->setBaseArg(A); A = XarchArg.release(); DAL->AddSynthesizedArg(A); } DAL->append(A); } if (!BoundArch.empty()) { DAL->eraseArg(options::OPT_march_EQ); DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), BoundArch); } return DAL; } Tool *CudaToolChain::buildAssembler() const { return new tools::NVPTX::Assembler(*this); } Tool *CudaToolChain::buildLinker() const { return new tools::NVPTX::Linker(*this); } void CudaToolChain::addClangWarningOptions(ArgStringList &CC1Args) const { HostTC.addClangWarningOptions(CC1Args); } ToolChain::CXXStdlibType CudaToolChain::GetCXXStdlibType(const ArgList &Args) const { return HostTC.GetCXXStdlibType(Args); } void CudaToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { HostTC.AddClangSystemIncludeArgs(DriverArgs, CC1Args); } void CudaToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &Args, ArgStringList &CC1Args) const { HostTC.AddClangCXXStdlibIncludeArgs(Args, CC1Args); } void CudaToolChain::AddIAMCUIncludeArgs(const ArgList &Args, ArgStringList &CC1Args) const { HostTC.AddIAMCUIncludeArgs(Args, CC1Args); } SanitizerMask CudaToolChain::getSupportedSanitizers() const { // The CudaToolChain only supports sanitizers in the sense that it allows // sanitizer arguments on the command line if they are supported by the host // toolchain. The CudaToolChain will actually ignore any command line // arguments for any of these "supported" sanitizers. That means that no // sanitization of device code is actually supported at this time. // // This behavior is necessary because the host and device toolchains // invocations often share the command line, so the device toolchain must // tolerate flags meant only for the host toolchain. return HostTC.getSupportedSanitizers(); } VersionTuple CudaToolChain::computeMSVCVersion(const Driver *D, const ArgList &Args) const { return HostTC.computeMSVCVersion(D, Args); } /// XCore tool chain XCoreToolChain::XCoreToolChain(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : ToolChain(D, Triple, Args) { // ProgramPaths are found via 'PATH' environment variable. } Tool *XCoreToolChain::buildAssembler() const { return new tools::XCore::Assembler(*this); } Tool *XCoreToolChain::buildLinker() const { return new tools::XCore::Linker(*this); } bool XCoreToolChain::isPICDefault() const { return false; } bool XCoreToolChain::isPIEDefault() const { return false; } bool XCoreToolChain::isPICDefaultForced() const { return false; } bool XCoreToolChain::SupportsProfiling() const { return false; } bool XCoreToolChain::hasBlocksRuntime() const { return false; } void XCoreToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (DriverArgs.hasArg(options::OPT_nostdinc) || DriverArgs.hasArg(options::OPT_nostdlibinc)) return; if (const char *cl_include_dir = getenv("XCC_C_INCLUDE_PATH")) { SmallVector Dirs; const char EnvPathSeparatorStr[] = {llvm::sys::EnvPathSeparator, '\0'}; StringRef(cl_include_dir).split(Dirs, StringRef(EnvPathSeparatorStr)); ArrayRef DirVec(Dirs); addSystemIncludes(DriverArgs, CC1Args, DirVec); } } void XCoreToolChain::addClangTargetOptions(const ArgList &DriverArgs, ArgStringList &CC1Args) const { CC1Args.push_back("-nostdsysteminc"); } void XCoreToolChain::AddClangCXXStdlibIncludeArgs( const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (DriverArgs.hasArg(options::OPT_nostdinc) || DriverArgs.hasArg(options::OPT_nostdlibinc) || DriverArgs.hasArg(options::OPT_nostdincxx)) return; if (const char *cl_include_dir = getenv("XCC_CPLUS_INCLUDE_PATH")) { SmallVector Dirs; const char EnvPathSeparatorStr[] = {llvm::sys::EnvPathSeparator, '\0'}; StringRef(cl_include_dir).split(Dirs, StringRef(EnvPathSeparatorStr)); ArrayRef DirVec(Dirs); addSystemIncludes(DriverArgs, CC1Args, DirVec); } } void XCoreToolChain::AddCXXStdlibLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { // We don't output any lib args. This is handled by xcc. } MyriadToolChain::MyriadToolChain(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { // If a target of 'sparc-myriad-elf' is specified to clang, it wants to use // 'sparc-myriad--elf' (note the unknown OS) as the canonical triple. // This won't work to find gcc. Instead we give the installation detector an // extra triple, which is preferable to further hacks of the logic that at // present is based solely on getArch(). In particular, it would be wrong to // choose the myriad installation when targeting a non-myriad sparc install. switch (Triple.getArch()) { default: D.Diag(diag::err_target_unsupported_arch) << Triple.getArchName() << "myriad"; case llvm::Triple::sparc: case llvm::Triple::sparcel: case llvm::Triple::shave: GCCInstallation.init(Triple, Args, {"sparc-myriad-elf"}); } if (GCCInstallation.isValid()) { // This directory contains crt{i,n,begin,end}.o as well as libgcc. // These files are tied to a particular version of gcc. SmallString<128> CompilerSupportDir(GCCInstallation.getInstallPath()); addPathIfExists(D, CompilerSupportDir, getFilePaths()); } // libstd++ and libc++ must both be found in this one place. addPathIfExists(D, D.Dir + "/../sparc-myriad-elf/lib", getFilePaths()); } MyriadToolChain::~MyriadToolChain() {} void MyriadToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (!DriverArgs.hasArg(options::OPT_nostdinc)) addSystemInclude(DriverArgs, CC1Args, getDriver().SysRoot + "/include"); } std::string MyriadToolChain::findLibCxxIncludePath() const { std::string Path(getDriver().getInstalledDir()); return Path + "/../include/c++/v1"; } void MyriadToolChain::addLibStdCxxIncludePaths( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { StringRef LibDir = GCCInstallation.getParentLibPath(); const GCCVersion &Version = GCCInstallation.getVersion(); StringRef TripleStr = GCCInstallation.getTriple().str(); const Multilib &Multilib = GCCInstallation.getMultilib(); addLibStdCXXIncludePaths( LibDir.str() + "/../" + TripleStr.str() + "/include/c++/" + Version.Text, "", TripleStr, "", "", Multilib.includeSuffix(), DriverArgs, CC1Args); } // MyriadToolChain handles several triples: // {shave,sparc{,el}}-myriad-{rtems,unknown}-elf Tool *MyriadToolChain::SelectTool(const JobAction &JA) const { // The inherited method works fine if not targeting the SHAVE. if (!isShaveCompilation(getTriple())) return ToolChain::SelectTool(JA); switch (JA.getKind()) { case Action::PreprocessJobClass: case Action::CompileJobClass: if (!Compiler) Compiler.reset(new tools::SHAVE::Compiler(*this)); return Compiler.get(); case Action::AssembleJobClass: if (!Assembler) Assembler.reset(new tools::SHAVE::Assembler(*this)); return Assembler.get(); default: return ToolChain::getTool(JA.getKind()); } } Tool *MyriadToolChain::buildLinker() const { return new tools::Myriad::Linker(*this); } SanitizerMask MyriadToolChain::getSupportedSanitizers() const { return SanitizerKind::Address; } WebAssembly::WebAssembly(const Driver &D, const llvm::Triple &Triple, const llvm::opt::ArgList &Args) : ToolChain(D, Triple, Args) { assert(Triple.isArch32Bit() != Triple.isArch64Bit()); getFilePaths().push_back( getDriver().SysRoot + "/lib" + (Triple.isArch32Bit() ? "32" : "64")); } bool WebAssembly::IsMathErrnoDefault() const { return false; } bool WebAssembly::IsObjCNonFragileABIDefault() const { return true; } bool WebAssembly::UseObjCMixedDispatch() const { return true; } bool WebAssembly::isPICDefault() const { return false; } bool WebAssembly::isPIEDefault() const { return false; } bool WebAssembly::isPICDefaultForced() const { return false; } bool WebAssembly::IsIntegratedAssemblerDefault() const { return true; } // TODO: Support Objective C stuff. bool WebAssembly::SupportsObjCGC() const { return false; } bool WebAssembly::hasBlocksRuntime() const { return false; } // TODO: Support profiling. bool WebAssembly::SupportsProfiling() const { return false; } bool WebAssembly::HasNativeLLVMSupport() const { return true; } void WebAssembly::addClangTargetOptions(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (DriverArgs.hasFlag(options::OPT_fuse_init_array, options::OPT_fno_use_init_array, true)) CC1Args.push_back("-fuse-init-array"); } ToolChain::RuntimeLibType WebAssembly::GetDefaultRuntimeLibType() const { return ToolChain::RLT_CompilerRT; } ToolChain::CXXStdlibType WebAssembly::GetCXXStdlibType(const ArgList &Args) const { return ToolChain::CST_Libcxx; } void WebAssembly::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (!DriverArgs.hasArg(options::OPT_nostdinc)) addSystemInclude(DriverArgs, CC1Args, getDriver().SysRoot + "/include"); } void WebAssembly::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (!DriverArgs.hasArg(options::OPT_nostdlibinc) && !DriverArgs.hasArg(options::OPT_nostdincxx)) addSystemInclude(DriverArgs, CC1Args, getDriver().SysRoot + "/include/c++/v1"); } Tool *WebAssembly::buildLinker() const { return new tools::wasm::Linker(*this); } PS4CPU::PS4CPU(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { if (Args.hasArg(options::OPT_static)) D.Diag(diag::err_drv_unsupported_opt_for_target) << "-static" << "PS4"; // Determine where to find the PS4 libraries. We use SCE_ORBIS_SDK_DIR // if it exists; otherwise use the driver's installation path, which // should be /host_tools/bin. SmallString<512> PS4SDKDir; if (const char *EnvValue = getenv("SCE_ORBIS_SDK_DIR")) { if (!llvm::sys::fs::exists(EnvValue)) getDriver().Diag(clang::diag::warn_drv_ps4_sdk_dir) << EnvValue; PS4SDKDir = EnvValue; } else { PS4SDKDir = getDriver().Dir; llvm::sys::path::append(PS4SDKDir, "/../../"); } // By default, the driver won't report a warning if it can't find // PS4's include or lib directories. This behavior could be changed if // -Weverything or -Winvalid-or-nonexistent-directory options are passed. // If -isysroot was passed, use that as the SDK base path. std::string PrefixDir; if (const Arg *A = Args.getLastArg(options::OPT_isysroot)) { PrefixDir = A->getValue(); if (!llvm::sys::fs::exists(PrefixDir)) getDriver().Diag(clang::diag::warn_missing_sysroot) << PrefixDir; } else PrefixDir = PS4SDKDir.str(); SmallString<512> PS4SDKIncludeDir(PrefixDir); llvm::sys::path::append(PS4SDKIncludeDir, "target/include"); if (!Args.hasArg(options::OPT_nostdinc) && !Args.hasArg(options::OPT_nostdlibinc) && !Args.hasArg(options::OPT_isysroot) && !Args.hasArg(options::OPT__sysroot_EQ) && !llvm::sys::fs::exists(PS4SDKIncludeDir)) { getDriver().Diag(clang::diag::warn_drv_unable_to_find_directory_expected) << "PS4 system headers" << PS4SDKIncludeDir; } SmallString<512> PS4SDKLibDir(PS4SDKDir); llvm::sys::path::append(PS4SDKLibDir, "target/lib"); if (!Args.hasArg(options::OPT_nostdlib) && !Args.hasArg(options::OPT_nodefaultlibs) && !Args.hasArg(options::OPT__sysroot_EQ) && !Args.hasArg(options::OPT_E) && !Args.hasArg(options::OPT_c) && !Args.hasArg(options::OPT_S) && !Args.hasArg(options::OPT_emit_ast) && !llvm::sys::fs::exists(PS4SDKLibDir)) { getDriver().Diag(clang::diag::warn_drv_unable_to_find_directory_expected) << "PS4 system libraries" << PS4SDKLibDir; return; } getFilePaths().push_back(PS4SDKLibDir.str()); } Tool *PS4CPU::buildAssembler() const { return new tools::PS4cpu::Assemble(*this); } Tool *PS4CPU::buildLinker() const { return new tools::PS4cpu::Link(*this); } bool PS4CPU::isPICDefault() const { return true; } bool PS4CPU::HasNativeLLVMSupport() const { return true; } SanitizerMask PS4CPU::getSupportedSanitizers() const { SanitizerMask Res = ToolChain::getSupportedSanitizers(); Res |= SanitizerKind::Address; Res |= SanitizerKind::Vptr; return Res; } Contiki::Contiki(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) {} SanitizerMask Contiki::getSupportedSanitizers() const { const bool IsX86 = getTriple().getArch() == llvm::Triple::x86; SanitizerMask Res = ToolChain::getSupportedSanitizers(); if (IsX86) Res |= SanitizerKind::SafeStack; return Res; } /// AVR Toolchain AVRToolChain::AVRToolChain(const Driver &D, const llvm::Triple &Triple, const ArgList &Args) : Generic_ELF(D, Triple, Args) { } Tool *AVRToolChain::buildLinker() const { return new tools::AVR::Linker(*this); } // End AVR