//===--- Cuda.cpp - Cuda Tool and ToolChain Implementations -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Cuda.h" #include "InputInfo.h" #include "clang/Basic/Cuda.h" #include "clang/Basic/VirtualFileSystem.h" #include "clang/Driver/Compilation.h" #include "clang/Driver/Driver.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/Options.h" #include "llvm/Option/ArgList.h" #include "llvm/Support/Path.h" #include using namespace clang::driver; using namespace clang::driver::toolchains; using namespace clang::driver::tools; using namespace clang; using namespace llvm::opt; // Parses the contents of version.txt in an CUDA installation. It should // contain one line of the from e.g. "CUDA Version 7.5.2". static CudaVersion ParseCudaVersionFile(llvm::StringRef V) { if (!V.startswith("CUDA Version ")) return CudaVersion::UNKNOWN; V = V.substr(strlen("CUDA Version ")); int Major = -1, Minor = -1; auto First = V.split('.'); auto Second = First.second.split('.'); if (First.first.getAsInteger(10, Major) || Second.first.getAsInteger(10, Minor)) return CudaVersion::UNKNOWN; if (Major == 7 && Minor == 0) { // This doesn't appear to ever happen -- version.txt doesn't exist in the // CUDA 7 installs I've seen. But no harm in checking. return CudaVersion::CUDA_70; } if (Major == 7 && Minor == 5) return CudaVersion::CUDA_75; if (Major == 8 && Minor == 0) return CudaVersion::CUDA_80; return CudaVersion::UNKNOWN; } CudaInstallationDetector::CudaInstallationDetector( const Driver &D, const llvm::Triple &HostTriple, const llvm::opt::ArgList &Args) : D(D) { SmallVector CudaPathCandidates; // In decreasing order so we prefer newer versions to older versions. std::initializer_list Versions = {"8.0", "7.5", "7.0"}; if (Args.hasArg(clang::driver::options::OPT_cuda_path_EQ)) { CudaPathCandidates.push_back( Args.getLastArgValue(clang::driver::options::OPT_cuda_path_EQ)); } else if (HostTriple.isOSWindows()) { for (const char *Ver : Versions) CudaPathCandidates.push_back( D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" + Ver); } else { CudaPathCandidates.push_back(D.SysRoot + "/usr/local/cuda"); for (const char *Ver : Versions) CudaPathCandidates.push_back(D.SysRoot + "/usr/local/cuda-" + Ver); } for (const auto &CudaPath : CudaPathCandidates) { if (CudaPath.empty() || !D.getVFS().exists(CudaPath)) continue; InstallPath = CudaPath; BinPath = CudaPath + "/bin"; IncludePath = InstallPath + "/include"; LibDevicePath = InstallPath + "/nvvm/libdevice"; auto &FS = D.getVFS(); if (!(FS.exists(IncludePath) && FS.exists(BinPath) && FS.exists(LibDevicePath))) continue; // On Linux, we have both lib and lib64 directories, and we need to choose // based on our triple. On MacOS, we have only a lib directory. // // It's sufficient for our purposes to be flexible: If both lib and lib64 // exist, we choose whichever one matches our triple. Otherwise, if only // lib exists, we use it. if (HostTriple.isArch64Bit() && FS.exists(InstallPath + "/lib64")) LibPath = InstallPath + "/lib64"; else if (FS.exists(InstallPath + "/lib")) LibPath = InstallPath + "/lib"; else continue; llvm::ErrorOr> VersionFile = FS.getBufferForFile(InstallPath + "/version.txt"); if (!VersionFile) { // CUDA 7.0 doesn't have a version.txt, so guess that's our version if // version.txt isn't present. Version = CudaVersion::CUDA_70; } else { Version = ParseCudaVersionFile((*VersionFile)->getBuffer()); } std::error_code EC; for (llvm::sys::fs::directory_iterator LI(LibDevicePath, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef FilePath = LI->path(); StringRef FileName = llvm::sys::path::filename(FilePath); // Process all bitcode filenames that look like libdevice.compute_XX.YY.bc const StringRef LibDeviceName = "libdevice."; if (!(FileName.startswith(LibDeviceName) && FileName.endswith(".bc"))) continue; StringRef GpuArch = FileName.slice( LibDeviceName.size(), FileName.find('.', LibDeviceName.size())); LibDeviceMap[GpuArch] = FilePath.str(); // Insert map entries for specifc devices with this compute // capability. NVCC's choice of the libdevice library version is // rather peculiar and depends on the CUDA version. if (GpuArch == "compute_20") { LibDeviceMap["sm_20"] = FilePath; LibDeviceMap["sm_21"] = FilePath; LibDeviceMap["sm_32"] = FilePath; } else if (GpuArch == "compute_30") { LibDeviceMap["sm_30"] = FilePath; if (Version < CudaVersion::CUDA_80) { LibDeviceMap["sm_50"] = FilePath; LibDeviceMap["sm_52"] = FilePath; LibDeviceMap["sm_53"] = FilePath; } LibDeviceMap["sm_60"] = FilePath; LibDeviceMap["sm_61"] = FilePath; LibDeviceMap["sm_62"] = FilePath; } else if (GpuArch == "compute_35") { LibDeviceMap["sm_35"] = FilePath; LibDeviceMap["sm_37"] = FilePath; } else if (GpuArch == "compute_50") { if (Version >= CudaVersion::CUDA_80) { LibDeviceMap["sm_50"] = FilePath; LibDeviceMap["sm_52"] = FilePath; LibDeviceMap["sm_53"] = FilePath; } } } IsValid = true; break; } } void CudaInstallationDetector::AddCudaIncludeArgs( const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { // Add cuda_wrappers/* to our system include path. This lets us wrap // standard library headers. SmallString<128> P(D.ResourceDir); llvm::sys::path::append(P, "include"); llvm::sys::path::append(P, "cuda_wrappers"); CC1Args.push_back("-internal-isystem"); CC1Args.push_back(DriverArgs.MakeArgString(P)); } if (DriverArgs.hasArg(options::OPT_nocudainc)) return; if (!isValid()) { D.Diag(diag::err_drv_no_cuda_installation); return; } CC1Args.push_back("-internal-isystem"); CC1Args.push_back(DriverArgs.MakeArgString(getIncludePath())); CC1Args.push_back("-include"); CC1Args.push_back("__clang_cuda_runtime_wrapper.h"); } void CudaInstallationDetector::CheckCudaVersionSupportsArch( CudaArch Arch) const { if (Arch == CudaArch::UNKNOWN || Version == CudaVersion::UNKNOWN || ArchsWithVersionTooLowErrors.count(Arch) > 0) return; auto RequiredVersion = MinVersionForCudaArch(Arch); if (Version < RequiredVersion) { ArchsWithVersionTooLowErrors.insert(Arch); D.Diag(diag::err_drv_cuda_version_too_low) << InstallPath << CudaArchToString(Arch) << CudaVersionToString(Version) << CudaVersionToString(RequiredVersion); } } void CudaInstallationDetector::print(raw_ostream &OS) const { if (isValid()) OS << "Found CUDA installation: " << InstallPath << ", version " << CudaVersionToString(Version) << "\n"; } void NVPTX::Assembler::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const auto &TC = static_cast(getToolChain()); assert(TC.getTriple().isNVPTX() && "Wrong platform"); // Obtain architecture from the action. CudaArch gpu_arch = StringToCudaArch(JA.getOffloadingArch()); assert(gpu_arch != CudaArch::UNKNOWN && "Device action expected to have an architecture."); // Check that our installation's ptxas supports gpu_arch. if (!Args.hasArg(options::OPT_no_cuda_version_check)) { TC.CudaInstallation.CheckCudaVersionSupportsArch(gpu_arch); } ArgStringList CmdArgs; CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-m64" : "-m32"); if (Args.hasFlag(options::OPT_cuda_noopt_device_debug, options::OPT_no_cuda_noopt_device_debug, false)) { // ptxas does not accept -g option if optimization is enabled, so // we ignore the compiler's -O* options if we want debug info. CmdArgs.push_back("-g"); CmdArgs.push_back("--dont-merge-basicblocks"); CmdArgs.push_back("--return-at-end"); } else if (Arg *A = Args.getLastArg(options::OPT_O_Group)) { // Map the -O we received to -O{0,1,2,3}. // // TODO: Perhaps we should map host -O2 to ptxas -O3. -O3 is ptxas's // default, so it may correspond more closely to the spirit of clang -O2. // -O3 seems like the least-bad option when -Osomething is specified to // clang but it isn't handled below. StringRef OOpt = "3"; if (A->getOption().matches(options::OPT_O4) || A->getOption().matches(options::OPT_Ofast)) OOpt = "3"; else if (A->getOption().matches(options::OPT_O0)) OOpt = "0"; else if (A->getOption().matches(options::OPT_O)) { // -Os, -Oz, and -O(anything else) map to -O2, for lack of better options. OOpt = llvm::StringSwitch(A->getValue()) .Case("1", "1") .Case("2", "2") .Case("3", "3") .Case("s", "2") .Case("z", "2") .Default("2"); } CmdArgs.push_back(Args.MakeArgString(llvm::Twine("-O") + OOpt)); } else { // If no -O was passed, pass -O0 to ptxas -- no opt flag should correspond // to no optimizations, but ptxas's default is -O3. CmdArgs.push_back("-O0"); } CmdArgs.push_back("--gpu-name"); CmdArgs.push_back(Args.MakeArgString(CudaArchToString(gpu_arch))); CmdArgs.push_back("--output-file"); CmdArgs.push_back(Args.MakeArgString(Output.getFilename())); for (const auto& II : Inputs) CmdArgs.push_back(Args.MakeArgString(II.getFilename())); for (const auto& A : Args.getAllArgValues(options::OPT_Xcuda_ptxas)) CmdArgs.push_back(Args.MakeArgString(A)); const char *Exec; if (Arg *A = Args.getLastArg(options::OPT_ptxas_path_EQ)) Exec = A->getValue(); else Exec = Args.MakeArgString(TC.GetProgramPath("ptxas")); C.addCommand(llvm::make_unique(JA, *this, Exec, CmdArgs, Inputs)); } // All inputs to this linker must be from CudaDeviceActions, as we need to look // at the Inputs' Actions in order to figure out which GPU architecture they // correspond to. void NVPTX::Linker::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const auto &TC = static_cast(getToolChain()); assert(TC.getTriple().isNVPTX() && "Wrong platform"); ArgStringList CmdArgs; CmdArgs.push_back("--cuda"); CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-64" : "-32"); CmdArgs.push_back(Args.MakeArgString("--create")); CmdArgs.push_back(Args.MakeArgString(Output.getFilename())); for (const auto& II : Inputs) { auto *A = II.getAction(); assert(A->getInputs().size() == 1 && "Device offload action is expected to have a single input"); const char *gpu_arch_str = A->getOffloadingArch(); assert(gpu_arch_str && "Device action expected to have associated a GPU architecture!"); CudaArch gpu_arch = StringToCudaArch(gpu_arch_str); // We need to pass an Arch of the form "sm_XX" for cubin files and // "compute_XX" for ptx. const char *Arch = (II.getType() == types::TY_PP_Asm) ? CudaVirtualArchToString(VirtualArchForCudaArch(gpu_arch)) : gpu_arch_str; CmdArgs.push_back(Args.MakeArgString(llvm::Twine("--image=profile=") + Arch + ",file=" + II.getFilename())); } for (const auto& A : Args.getAllArgValues(options::OPT_Xcuda_fatbinary)) CmdArgs.push_back(Args.MakeArgString(A)); const char *Exec = Args.MakeArgString(TC.GetProgramPath("fatbinary")); C.addCommand(llvm::make_unique(JA, *this, Exec, CmdArgs, Inputs)); } /// CUDA toolchain. Our assembler is ptxas, and our "linker" is fatbinary, /// which isn't properly a linker but nonetheless performs the step of stitching /// together object files from the assembler into a single blob. CudaToolChain::CudaToolChain(const Driver &D, const llvm::Triple &Triple, const ToolChain &HostTC, const ArgList &Args) : ToolChain(D, Triple, Args), HostTC(HostTC), CudaInstallation(D, HostTC.getTriple(), Args) { if (CudaInstallation.isValid()) getProgramPaths().push_back(CudaInstallation.getBinPath()); } void CudaToolChain::addClangTargetOptions( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, Action::OffloadKind DeviceOffloadingKind) const { HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind); StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ); assert(!GpuArch.empty() && "Must have an explicit GPU arch."); assert((DeviceOffloadingKind == Action::OFK_OpenMP || DeviceOffloadingKind == Action::OFK_Cuda) && "Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs."); if (DeviceOffloadingKind == Action::OFK_Cuda) { CC1Args.push_back("-fcuda-is-device"); if (DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero, options::OPT_fno_cuda_flush_denormals_to_zero, false)) CC1Args.push_back("-fcuda-flush-denormals-to-zero"); if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals, options::OPT_fno_cuda_approx_transcendentals, false)) CC1Args.push_back("-fcuda-approx-transcendentals"); if (DriverArgs.hasArg(options::OPT_nocudalib)) return; } std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch); if (LibDeviceFile.empty()) { getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch; return; } CC1Args.push_back("-mlink-cuda-bitcode"); CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile)); // Libdevice in CUDA-7.0 requires PTX version that's more recent // than LLVM defaults to. Use PTX4.2 which is the PTX version that // came with CUDA-7.0. CC1Args.push_back("-target-feature"); CC1Args.push_back("+ptx42"); } void CudaToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { // Check our CUDA version if we're going to include the CUDA headers. if (!DriverArgs.hasArg(options::OPT_nocudainc) && !DriverArgs.hasArg(options::OPT_no_cuda_version_check)) { StringRef Arch = DriverArgs.getLastArgValue(options::OPT_march_EQ); assert(!Arch.empty() && "Must have an explicit GPU arch."); CudaInstallation.CheckCudaVersionSupportsArch(StringToCudaArch(Arch)); } CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args); } llvm::opt::DerivedArgList * CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind) const { DerivedArgList *DAL = HostTC.TranslateArgs(Args, BoundArch, DeviceOffloadKind); if (!DAL) DAL = new DerivedArgList(Args.getBaseArgs()); const OptTable &Opts = getDriver().getOpts(); // For OpenMP device offloading, append derived arguments. Make sure // flags are not duplicated. // TODO: Append the compute capability. if (DeviceOffloadKind == Action::OFK_OpenMP) { for (Arg *A : Args){ bool IsDuplicate = false; for (Arg *DALArg : *DAL){ if (A == DALArg) { IsDuplicate = true; break; } } if (!IsDuplicate) DAL->append(A); } return DAL; } for (Arg *A : Args) { if (A->getOption().matches(options::OPT_Xarch__)) { // Skip this argument unless the architecture matches BoundArch if (BoundArch.empty() || A->getValue(0) != BoundArch) continue; unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(1)); unsigned Prev = Index; std::unique_ptr XarchArg(Opts.ParseOneArg(Args, Index)); // If the argument parsing failed or more than one argument was // consumed, the -Xarch_ argument's parameter tried to consume // extra arguments. Emit an error and ignore. // // We also want to disallow any options which would alter the // driver behavior; that isn't going to work in our model. We // use isDriverOption() as an approximation, although things // like -O4 are going to slip through. if (!XarchArg || Index > Prev + 1) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args) << A->getAsString(Args); continue; } else if (XarchArg->getOption().hasFlag(options::DriverOption)) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_isdriver) << A->getAsString(Args); continue; } XarchArg->setBaseArg(A); A = XarchArg.release(); DAL->AddSynthesizedArg(A); } DAL->append(A); } if (!BoundArch.empty()) { DAL->eraseArg(options::OPT_march_EQ); DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), BoundArch); } return DAL; } Tool *CudaToolChain::buildAssembler() const { return new tools::NVPTX::Assembler(*this); } Tool *CudaToolChain::buildLinker() const { return new tools::NVPTX::Linker(*this); } void CudaToolChain::addClangWarningOptions(ArgStringList &CC1Args) const { HostTC.addClangWarningOptions(CC1Args); } ToolChain::CXXStdlibType CudaToolChain::GetCXXStdlibType(const ArgList &Args) const { return HostTC.GetCXXStdlibType(Args); } void CudaToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { HostTC.AddClangSystemIncludeArgs(DriverArgs, CC1Args); } void CudaToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &Args, ArgStringList &CC1Args) const { HostTC.AddClangCXXStdlibIncludeArgs(Args, CC1Args); } void CudaToolChain::AddIAMCUIncludeArgs(const ArgList &Args, ArgStringList &CC1Args) const { HostTC.AddIAMCUIncludeArgs(Args, CC1Args); } SanitizerMask CudaToolChain::getSupportedSanitizers() const { // The CudaToolChain only supports sanitizers in the sense that it allows // sanitizer arguments on the command line if they are supported by the host // toolchain. The CudaToolChain will actually ignore any command line // arguments for any of these "supported" sanitizers. That means that no // sanitization of device code is actually supported at this time. // // This behavior is necessary because the host and device toolchains // invocations often share the command line, so the device toolchain must // tolerate flags meant only for the host toolchain. return HostTC.getSupportedSanitizers(); } VersionTuple CudaToolChain::computeMSVCVersion(const Driver *D, const ArgList &Args) const { return HostTC.computeMSVCVersion(D, Args); }