//===--- CompilerInstance.cpp ---------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "clang/Frontend/CompilerInstance.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/MemoryBufferCache.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Version.h" #include "clang/Config/config.h" #include "clang/Frontend/ChainedDiagnosticConsumer.h" #include "clang/Frontend/FrontendAction.h" #include "clang/Frontend/FrontendActions.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/LogDiagnosticPrinter.h" #include "clang/Frontend/SerializedDiagnosticPrinter.h" #include "clang/Frontend/TextDiagnosticPrinter.h" #include "clang/Frontend/Utils.h" #include "clang/Frontend/VerifyDiagnosticConsumer.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/PTHManager.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/PreprocessorOptions.h" #include "clang/Sema/CodeCompleteConsumer.h" #include "clang/Sema/Sema.h" #include "clang/Serialization/ASTReader.h" #include "clang/Serialization/GlobalModuleIndex.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CrashRecoveryContext.h" #include "llvm/Support/Errc.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Host.h" #include "llvm/Support/LockFileManager.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/Program.h" #include "llvm/Support/Signals.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace clang; CompilerInstance::CompilerInstance( std::shared_ptr PCHContainerOps, MemoryBufferCache *SharedPCMCache) : ModuleLoader(/* BuildingModule = */ SharedPCMCache), Invocation(new CompilerInvocation()), PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache), ThePCHContainerOperations(std::move(PCHContainerOps)) { // Don't allow this to invalidate buffers in use by others. if (SharedPCMCache) getPCMCache().finalizeCurrentBuffers(); } CompilerInstance::~CompilerInstance() { assert(OutputFiles.empty() && "Still output files in flight?"); } void CompilerInstance::setInvocation( std::shared_ptr Value) { Invocation = std::move(Value); } bool CompilerInstance::shouldBuildGlobalModuleIndex() const { return (BuildGlobalModuleIndex || (ModuleManager && ModuleManager->isGlobalIndexUnavailable() && getFrontendOpts().GenerateGlobalModuleIndex)) && !ModuleBuildFailed; } void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { Diagnostics = Value; } void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } void CompilerInstance::setFileManager(FileManager *Value) { FileMgr = Value; if (Value) VirtualFileSystem = Value->getVirtualFileSystem(); else VirtualFileSystem.reset(); } void CompilerInstance::setSourceManager(SourceManager *Value) { SourceMgr = Value; } void CompilerInstance::setPreprocessor(std::shared_ptr Value) { PP = std::move(Value); } void CompilerInstance::setASTContext(ASTContext *Value) { Context = Value; if (Context && Consumer) getASTConsumer().Initialize(getASTContext()); } void CompilerInstance::setSema(Sema *S) { TheSema.reset(S); } void CompilerInstance::setASTConsumer(std::unique_ptr Value) { Consumer = std::move(Value); if (Context && Consumer) getASTConsumer().Initialize(getASTContext()); } void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { CompletionConsumer.reset(Value); } std::unique_ptr CompilerInstance::takeSema() { return std::move(TheSema); } IntrusiveRefCntPtr CompilerInstance::getModuleManager() const { return ModuleManager; } void CompilerInstance::setModuleManager(IntrusiveRefCntPtr Reader) { assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() && "Expected ASTReader to use the same PCM cache"); ModuleManager = std::move(Reader); } std::shared_ptr CompilerInstance::getModuleDepCollector() const { return ModuleDepCollector; } void CompilerInstance::setModuleDepCollector( std::shared_ptr Collector) { ModuleDepCollector = std::move(Collector); } static void collectHeaderMaps(const HeaderSearch &HS, std::shared_ptr MDC) { SmallVector HeaderMapFileNames; HS.getHeaderMapFileNames(HeaderMapFileNames); for (auto &Name : HeaderMapFileNames) MDC->addFile(Name); } static void collectIncludePCH(CompilerInstance &CI, std::shared_ptr MDC) { const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); if (PPOpts.ImplicitPCHInclude.empty()) return; StringRef PCHInclude = PPOpts.ImplicitPCHInclude; FileManager &FileMgr = CI.getFileManager(); const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude); if (!PCHDir) { MDC->addFile(PCHInclude); return; } std::error_code EC; SmallString<128> DirNative; llvm::sys::path::native(PCHDir->getName(), DirNative); vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem(); SimpleASTReaderListener Validator(CI.getPreprocessor()); for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; Dir != DirEnd && !EC; Dir.increment(EC)) { // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not // used here since we're not interested in validating the PCH at this time, // but only to check whether this is a file containing an AST. if (!ASTReader::readASTFileControlBlock( Dir->getName(), FileMgr, CI.getPCHContainerReader(), /*FindModuleFileExtensions=*/false, Validator, /*ValidateDiagnosticOptions=*/false)) MDC->addFile(Dir->getName()); } } static void collectVFSEntries(CompilerInstance &CI, std::shared_ptr MDC) { if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) return; // Collect all VFS found. SmallVector VFSEntries; for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { llvm::ErrorOr> Buffer = llvm::MemoryBuffer::getFile(VFSFile); if (!Buffer) return; vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr, VFSFile, VFSEntries); } for (auto &E : VFSEntries) MDC->addFile(E.VPath, E.RPath); } // Diagnostics static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, const CodeGenOptions *CodeGenOpts, DiagnosticsEngine &Diags) { std::error_code EC; std::unique_ptr StreamOwner; raw_ostream *OS = &llvm::errs(); if (DiagOpts->DiagnosticLogFile != "-") { // Create the output stream. auto FileOS = llvm::make_unique( DiagOpts->DiagnosticLogFile, EC, llvm::sys::fs::F_Append | llvm::sys::fs::F_Text); if (EC) { Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) << DiagOpts->DiagnosticLogFile << EC.message(); } else { FileOS->SetUnbuffered(); OS = FileOS.get(); StreamOwner = std::move(FileOS); } } // Chain in the diagnostic client which will log the diagnostics. auto Logger = llvm::make_unique(*OS, DiagOpts, std::move(StreamOwner)); if (CodeGenOpts) Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); assert(Diags.ownsClient()); Diags.setClient( new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); } static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, DiagnosticsEngine &Diags, StringRef OutputFile) { auto SerializedConsumer = clang::serialized_diags::create(OutputFile, DiagOpts); if (Diags.ownsClient()) { Diags.setClient(new ChainedDiagnosticConsumer( Diags.takeClient(), std::move(SerializedConsumer))); } else { Diags.setClient(new ChainedDiagnosticConsumer( Diags.getClient(), std::move(SerializedConsumer))); } } void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, bool ShouldOwnClient) { Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, ShouldOwnClient, &getCodeGenOpts()); } IntrusiveRefCntPtr CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, DiagnosticConsumer *Client, bool ShouldOwnClient, const CodeGenOptions *CodeGenOpts) { IntrusiveRefCntPtr DiagID(new DiagnosticIDs()); IntrusiveRefCntPtr Diags(new DiagnosticsEngine(DiagID, Opts)); // Create the diagnostic client for reporting errors or for // implementing -verify. if (Client) { Diags->setClient(Client, ShouldOwnClient); } else Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); // Chain in -verify checker, if requested. if (Opts->VerifyDiagnostics) Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); // Chain in -diagnostic-log-file dumper, if requested. if (!Opts->DiagnosticLogFile.empty()) SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); if (!Opts->DiagnosticSerializationFile.empty()) SetupSerializedDiagnostics(Opts, *Diags, Opts->DiagnosticSerializationFile); // Configure our handling of diagnostics. ProcessWarningOptions(*Diags, *Opts); return Diags; } // File Manager void CompilerInstance::createFileManager() { if (!hasVirtualFileSystem()) { // TODO: choose the virtual file system based on the CompilerInvocation. setVirtualFileSystem(vfs::getRealFileSystem()); } FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem); } // Source Manager void CompilerInstance::createSourceManager(FileManager &FileMgr) { SourceMgr = new SourceManager(getDiagnostics(), FileMgr); } // Initialize the remapping of files to alternative contents, e.g., // those specified through other files. static void InitializeFileRemapping(DiagnosticsEngine &Diags, SourceManager &SourceMgr, FileManager &FileMgr, const PreprocessorOptions &InitOpts) { // Remap files in the source manager (with buffers). for (const auto &RB : InitOpts.RemappedFileBuffers) { // Create the file entry for the file that we're mapping from. const FileEntry *FromFile = FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); if (!FromFile) { Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; if (!InitOpts.RetainRemappedFileBuffers) delete RB.second; continue; } // Override the contents of the "from" file with the contents of // the "to" file. SourceMgr.overrideFileContents(FromFile, RB.second, InitOpts.RetainRemappedFileBuffers); } // Remap files in the source manager (with other files). for (const auto &RF : InitOpts.RemappedFiles) { // Find the file that we're mapping to. const FileEntry *ToFile = FileMgr.getFile(RF.second); if (!ToFile) { Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; continue; } // Create the file entry for the file that we're mapping from. const FileEntry *FromFile = FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); if (!FromFile) { Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; continue; } // Override the contents of the "from" file with the contents of // the "to" file. SourceMgr.overrideFileContents(FromFile, ToFile); } SourceMgr.setOverridenFilesKeepOriginalName( InitOpts.RemappedFilesKeepOriginalName); } // Preprocessor void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { const PreprocessorOptions &PPOpts = getPreprocessorOpts(); // Create a PTH manager if we are using some form of a token cache. PTHManager *PTHMgr = nullptr; if (!PPOpts.TokenCache.empty()) PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics()); // Create the Preprocessor. HeaderSearch *HeaderInfo = new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), getDiagnostics(), getLangOpts(), &getTarget()); PP = std::make_shared( Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(), getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr, /*OwnsHeaderSearch=*/true, TUKind); PP->Initialize(getTarget(), getAuxTarget()); // Note that this is different then passing PTHMgr to Preprocessor's ctor. // That argument is used as the IdentifierInfoLookup argument to // IdentifierTable's ctor. if (PTHMgr) { PTHMgr->setPreprocessor(&*PP); PP->setPTHManager(PTHMgr); } if (PPOpts.DetailedRecord) PP->createPreprocessingRecord(); // Apply remappings to the source manager. InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), PP->getFileManager(), PPOpts); // Predefine macros and configure the preprocessor. InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), getFrontendOpts()); // Initialize the header search object. In CUDA compilations, we use the aux // triple (the host triple) to initialize our header search, since we need to // find the host headers in order to compile the CUDA code. const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && PP->getAuxTargetInfo()) HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), PP->getLangOpts(), *HeaderSearchTriple); PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath()); // Handle generating dependencies, if requested. const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); if (!DepOpts.OutputFile.empty()) TheDependencyFileGenerator.reset( DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts)); if (!DepOpts.DOTOutputFile.empty()) AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, getHeaderSearchOpts().Sysroot); // If we don't have a collector, but we are collecting module dependencies, // then we're the top level compiler instance and need to create one. if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { ModuleDepCollector = std::make_shared( DepOpts.ModuleDependencyOutputDir); } // If there is a module dep collector, register with other dep collectors // and also (a) collect header maps and (b) TODO: input vfs overlay files. if (ModuleDepCollector) { addDependencyCollector(ModuleDepCollector); collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); collectIncludePCH(*this, ModuleDepCollector); collectVFSEntries(*this, ModuleDepCollector); } for (auto &Listener : DependencyCollectors) Listener->attachToPreprocessor(*PP); // Handle generating header include information, if requested. if (DepOpts.ShowHeaderIncludes) AttachHeaderIncludeGen(*PP, DepOpts); if (!DepOpts.HeaderIncludeOutputFile.empty()) { StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; if (OutputPath == "-") OutputPath = ""; AttachHeaderIncludeGen(*PP, DepOpts, /*ShowAllHeaders=*/true, OutputPath, /*ShowDepth=*/false); } if (DepOpts.PrintShowIncludes) { AttachHeaderIncludeGen(*PP, DepOpts, /*ShowAllHeaders=*/true, /*OutputPath=*/"", /*ShowDepth=*/true, /*MSStyle=*/true); } } std::string CompilerInstance::getSpecificModuleCachePath() { // Set up the module path, including the hash for the // module-creation options. SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) llvm::sys::path::append(SpecificModuleCache, getInvocation().getModuleHash()); return SpecificModuleCache.str(); } // ASTContext void CompilerInstance::createASTContext() { Preprocessor &PP = getPreprocessor(); auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), PP.getIdentifierTable(), PP.getSelectorTable(), PP.getBuiltinInfo()); Context->InitBuiltinTypes(getTarget(), getAuxTarget()); setASTContext(Context); } // ExternalASTSource void CompilerInstance::createPCHExternalASTSource( StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, void *DeserializationListener, bool OwnDeserializationListener) { bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; ModuleManager = createPCHExternalASTSource( Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(), getPCHContainerReader(), getFrontendOpts().ModuleFileExtensions, TheDependencyFileGenerator.get(), DependencyCollectors, DeserializationListener, OwnDeserializationListener, Preamble, getFrontendOpts().UseGlobalModuleIndex); } IntrusiveRefCntPtr CompilerInstance::createPCHExternalASTSource( StringRef Path, StringRef Sysroot, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context, const PCHContainerReader &PCHContainerRdr, ArrayRef> Extensions, DependencyFileGenerator *DependencyFile, ArrayRef> DependencyCollectors, void *DeserializationListener, bool OwnDeserializationListener, bool Preamble, bool UseGlobalModuleIndex) { HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); IntrusiveRefCntPtr Reader(new ASTReader( PP, &Context, PCHContainerRdr, Extensions, Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation, AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex)); // We need the external source to be set up before we read the AST, because // eagerly-deserialized declarations may use it. Context.setExternalSource(Reader.get()); Reader->setDeserializationListener( static_cast(DeserializationListener), /*TakeOwnership=*/OwnDeserializationListener); if (DependencyFile) DependencyFile->AttachToASTReader(*Reader); for (auto &Listener : DependencyCollectors) Listener->attachToASTReader(*Reader); switch (Reader->ReadAST(Path, Preamble ? serialization::MK_Preamble : serialization::MK_PCH, SourceLocation(), ASTReader::ARR_None)) { case ASTReader::Success: // Set the predefines buffer as suggested by the PCH reader. Typically, the // predefines buffer will be empty. PP.setPredefines(Reader->getSuggestedPredefines()); return Reader; case ASTReader::Failure: // Unrecoverable failure: don't even try to process the input file. break; case ASTReader::Missing: case ASTReader::OutOfDate: case ASTReader::VersionMismatch: case ASTReader::ConfigurationMismatch: case ASTReader::HadErrors: // No suitable PCH file could be found. Return an error. break; } Context.setExternalSource(nullptr); return nullptr; } // Code Completion static bool EnableCodeCompletion(Preprocessor &PP, StringRef Filename, unsigned Line, unsigned Column) { // Tell the source manager to chop off the given file at a specific // line and column. const FileEntry *Entry = PP.getFileManager().getFile(Filename); if (!Entry) { PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) << Filename; return true; } // Truncate the named file at the given line/column. PP.SetCodeCompletionPoint(Entry, Line, Column); return false; } void CompilerInstance::createCodeCompletionConsumer() { const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; if (!CompletionConsumer) { setCodeCompletionConsumer( createCodeCompletionConsumer(getPreprocessor(), Loc.FileName, Loc.Line, Loc.Column, getFrontendOpts().CodeCompleteOpts, llvm::outs())); if (!CompletionConsumer) return; } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, Loc.Line, Loc.Column)) { setCodeCompletionConsumer(nullptr); return; } if (CompletionConsumer->isOutputBinary() && llvm::sys::ChangeStdoutToBinary()) { getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary); setCodeCompletionConsumer(nullptr); } } void CompilerInstance::createFrontendTimer() { FrontendTimerGroup.reset( new llvm::TimerGroup("frontend", "Clang front-end time report")); FrontendTimer.reset( new llvm::Timer("frontend", "Clang front-end timer", *FrontendTimerGroup)); } CodeCompleteConsumer * CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, StringRef Filename, unsigned Line, unsigned Column, const CodeCompleteOptions &Opts, raw_ostream &OS) { if (EnableCodeCompletion(PP, Filename, Line, Column)) return nullptr; // Set up the creation routine for code-completion. return new PrintingCodeCompleteConsumer(Opts, OS); } void CompilerInstance::createSema(TranslationUnitKind TUKind, CodeCompleteConsumer *CompletionConsumer) { TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), TUKind, CompletionConsumer)); // Attach the external sema source if there is any. if (ExternalSemaSrc) { TheSema->addExternalSource(ExternalSemaSrc.get()); ExternalSemaSrc->InitializeSema(*TheSema); } } // Output Files void CompilerInstance::addOutputFile(OutputFile &&OutFile) { OutputFiles.push_back(std::move(OutFile)); } void CompilerInstance::clearOutputFiles(bool EraseFiles) { for (OutputFile &OF : OutputFiles) { if (!OF.TempFilename.empty()) { if (EraseFiles) { llvm::sys::fs::remove(OF.TempFilename); } else { SmallString<128> NewOutFile(OF.Filename); // If '-working-directory' was passed, the output filename should be // relative to that. FileMgr->FixupRelativePath(NewOutFile); if (std::error_code ec = llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { getDiagnostics().Report(diag::err_unable_to_rename_temp) << OF.TempFilename << OF.Filename << ec.message(); llvm::sys::fs::remove(OF.TempFilename); } } } else if (!OF.Filename.empty() && EraseFiles) llvm::sys::fs::remove(OF.Filename); } OutputFiles.clear(); if (DeleteBuiltModules) { for (auto &Module : BuiltModules) llvm::sys::fs::remove(Module.second); BuiltModules.clear(); } NonSeekStream.reset(); } std::unique_ptr CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile, StringRef Extension) { return createOutputFile(getFrontendOpts().OutputFile, Binary, /*RemoveFileOnSignal=*/true, InFile, Extension, /*UseTemporary=*/true); } std::unique_ptr CompilerInstance::createNullOutputFile() { return llvm::make_unique(); } std::unique_ptr CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, bool UseTemporary, bool CreateMissingDirectories) { std::string OutputPathName, TempPathName; std::error_code EC; std::unique_ptr OS = createOutputFile( OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); if (!OS) { getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath << EC.message(); return nullptr; } // Add the output file -- but don't try to remove "-", since this means we are // using stdin. addOutputFile( OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName)); return OS; } std::unique_ptr CompilerInstance::createOutputFile( StringRef OutputPath, std::error_code &Error, bool Binary, bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, bool UseTemporary, bool CreateMissingDirectories, std::string *ResultPathName, std::string *TempPathName) { assert((!CreateMissingDirectories || UseTemporary) && "CreateMissingDirectories is only allowed when using temporary files"); std::string OutFile, TempFile; if (!OutputPath.empty()) { OutFile = OutputPath; } else if (InFile == "-") { OutFile = "-"; } else if (!Extension.empty()) { SmallString<128> Path(InFile); llvm::sys::path::replace_extension(Path, Extension); OutFile = Path.str(); } else { OutFile = "-"; } std::unique_ptr OS; std::string OSFile; if (UseTemporary) { if (OutFile == "-") UseTemporary = false; else { llvm::sys::fs::file_status Status; llvm::sys::fs::status(OutputPath, Status); if (llvm::sys::fs::exists(Status)) { // Fail early if we can't write to the final destination. if (!llvm::sys::fs::can_write(OutputPath)) { Error = make_error_code(llvm::errc::operation_not_permitted); return nullptr; } // Don't use a temporary if the output is a special file. This handles // things like '-o /dev/null' if (!llvm::sys::fs::is_regular_file(Status)) UseTemporary = false; } } } if (UseTemporary) { // Create a temporary file. SmallString<128> TempPath; TempPath = OutFile; TempPath += "-%%%%%%%%"; int fd; std::error_code EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); if (CreateMissingDirectories && EC == llvm::errc::no_such_file_or_directory) { StringRef Parent = llvm::sys::path::parent_path(OutputPath); EC = llvm::sys::fs::create_directories(Parent); if (!EC) { EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); } } if (!EC) { OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); OSFile = TempFile = TempPath.str(); } // If we failed to create the temporary, fallback to writing to the file // directly. This handles the corner case where we cannot write to the // directory, but can write to the file. } if (!OS) { OSFile = OutFile; OS.reset(new llvm::raw_fd_ostream( OSFile, Error, (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text))); if (Error) return nullptr; } // Make sure the out stream file gets removed if we crash. if (RemoveFileOnSignal) llvm::sys::RemoveFileOnSignal(OSFile); if (ResultPathName) *ResultPathName = OutFile; if (TempPathName) *TempPathName = TempFile; if (!Binary || OS->supportsSeeking()) return std::move(OS); auto B = llvm::make_unique(*OS); assert(!NonSeekStream); NonSeekStream = std::move(OS); return std::move(B); } // Initialization Utilities bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ return InitializeSourceManager( Input, getDiagnostics(), getFileManager(), getSourceManager(), hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr, getDependencyOutputOpts(), getFrontendOpts()); } // static bool CompilerInstance::InitializeSourceManager( const FrontendInputFile &Input, DiagnosticsEngine &Diags, FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS, DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) { SrcMgr::CharacteristicKind Kind = Input.getKind().getFormat() == InputKind::ModuleMap ? Input.isSystem() ? SrcMgr::C_System_ModuleMap : SrcMgr::C_User_ModuleMap : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; if (Input.isBuffer()) { SourceMgr.setMainFileID(SourceMgr.createFileID( std::unique_ptr(Input.getBuffer()), Kind)); assert(SourceMgr.getMainFileID().isValid() && "Couldn't establish MainFileID!"); return true; } StringRef InputFile = Input.getFile(); // Figure out where to get and map in the main file. if (InputFile != "-") { const FileEntry *File; if (Opts.FindPchSource.empty()) { File = FileMgr.getFile(InputFile, /*OpenFile=*/true); } else { // When building a pch file in clang-cl mode, the .h file is built as if // it was included by a cc file. Since the driver doesn't know about // all include search directories, the frontend must search the input // file through HeaderSearch here, as if it had been included by the // cc file at Opts.FindPchSource. const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource); if (!FindFile) { Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource; return false; } const DirectoryLookup *UnusedCurDir; SmallVector, 16> Includers; Includers.push_back(std::make_pair(FindFile, FindFile->getDir())); File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false, /*FromDir=*/nullptr, /*CurDir=*/UnusedCurDir, Includers, /*SearchPath=*/nullptr, /*RelativePath=*/nullptr, /*RequestingModule=*/nullptr, /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, /*SkipCache=*/true); // Also add the header to /showIncludes output. if (File) DepOpts.ShowIncludesPretendHeader = File->getName(); } if (!File) { Diags.Report(diag::err_fe_error_reading) << InputFile; return false; } // The natural SourceManager infrastructure can't currently handle named // pipes, but we would at least like to accept them for the main // file. Detect them here, read them with the volatile flag so FileMgr will // pick up the correct size, and simply override their contents as we do for // STDIN. if (File->isNamedPipe()) { auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true); if (MB) { // Create a new virtual file that will have the correct size. File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); SourceMgr.overrideFileContents(File, std::move(*MB)); } else { Diags.Report(diag::err_cannot_open_file) << InputFile << MB.getError().message(); return false; } } SourceMgr.setMainFileID( SourceMgr.createFileID(File, SourceLocation(), Kind)); } else { llvm::ErrorOr> SBOrErr = llvm::MemoryBuffer::getSTDIN(); if (std::error_code EC = SBOrErr.getError()) { Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); return false; } std::unique_ptr SB = std::move(SBOrErr.get()); const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), SB->getBufferSize(), 0); SourceMgr.setMainFileID( SourceMgr.createFileID(File, SourceLocation(), Kind)); SourceMgr.overrideFileContents(File, std::move(SB)); } assert(SourceMgr.getMainFileID().isValid() && "Couldn't establish MainFileID!"); return true; } // High-Level Operations bool CompilerInstance::ExecuteAction(FrontendAction &Act) { assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); // FIXME: Take this as an argument, once all the APIs we used have moved to // taking it as an input instead of hard-coding llvm::errs. raw_ostream &OS = llvm::errs(); // Create the target instance. setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), getInvocation().TargetOpts)); if (!hasTarget()) return false; // Create TargetInfo for the other side of CUDA and OpenMP compilation. if ((getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) && !getFrontendOpts().AuxTriple.empty()) { auto TO = std::make_shared(); TO->Triple = getFrontendOpts().AuxTriple; TO->HostTriple = getTarget().getTriple().str(); setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); } // Inform the target of the language options. // // FIXME: We shouldn't need to do this, the target should be immutable once // created. This complexity should be lifted elsewhere. getTarget().adjust(getLangOpts()); // Adjust target options based on codegen options. getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); // rewriter project will change target built-in bool type from its default. if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) getTarget().noSignedCharForObjCBool(); // Validate/process some options. if (getHeaderSearchOpts().Verbose) OS << "clang -cc1 version " CLANG_VERSION_STRING << " based upon " << BACKEND_PACKAGE_STRING << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; if (getFrontendOpts().ShowTimers) createFrontendTimer(); if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) llvm::EnableStatistics(false); for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { // Reset the ID tables if we are reusing the SourceManager and parsing // regular files. if (hasSourceManager() && !Act.isModelParsingAction()) getSourceManager().clearIDTables(); if (Act.BeginSourceFile(*this, FIF)) { Act.Execute(); Act.EndSourceFile(); } } // Notify the diagnostic client that all files were processed. getDiagnostics().getClient()->finish(); if (getDiagnosticOpts().ShowCarets) { // We can have multiple diagnostics sharing one diagnostic client. // Get the total number of warnings/errors from the client. unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); if (NumWarnings) OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); if (NumWarnings && NumErrors) OS << " and "; if (NumErrors) OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); if (NumWarnings || NumErrors) OS << " generated.\n"; } if (getFrontendOpts().ShowStats) { if (hasFileManager()) { getFileManager().PrintStats(); OS << '\n'; } llvm::PrintStatistics(OS); } StringRef StatsFile = getFrontendOpts().StatsFile; if (!StatsFile.empty()) { std::error_code EC; auto StatS = llvm::make_unique(StatsFile, EC, llvm::sys::fs::F_Text); if (EC) { getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) << StatsFile << EC.message(); } else { llvm::PrintStatisticsJSON(*StatS); } } return !getDiagnostics().getClient()->getNumErrors(); } /// \brief Determine the appropriate source input kind based on language /// options. static InputKind::Language getLanguageFromOptions(const LangOptions &LangOpts) { if (LangOpts.OpenCL) return InputKind::OpenCL; if (LangOpts.CUDA) return InputKind::CUDA; if (LangOpts.ObjC1) return LangOpts.CPlusPlus ? InputKind::ObjCXX : InputKind::ObjC; return LangOpts.CPlusPlus ? InputKind::CXX : InputKind::C; } /// \brief Compile a module file for the given module, using the options /// provided by the importing compiler instance. Returns true if the module /// was built without errors. static bool compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, StringRef ModuleName, FrontendInputFile Input, StringRef OriginalModuleMapFile, StringRef ModuleFileName, llvm::function_ref PreBuildStep = [](CompilerInstance &) {}, llvm::function_ref PostBuildStep = [](CompilerInstance &) {}) { // Construct a compiler invocation for creating this module. auto Invocation = std::make_shared(ImportingInstance.getInvocation()); PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); // For any options that aren't intended to affect how a module is built, // reset them to their default values. Invocation->getLangOpts()->resetNonModularOptions(); PPOpts.resetNonModularOptions(); // Remove any macro definitions that are explicitly ignored by the module. // They aren't supposed to affect how the module is built anyway. HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); PPOpts.Macros.erase( std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), [&HSOpts](const std::pair &def) { StringRef MacroDef = def.first; return HSOpts.ModulesIgnoreMacros.count( llvm::CachedHashString(MacroDef.split('=').first)) > 0; }), PPOpts.Macros.end()); // Note the name of the module we're building. Invocation->getLangOpts()->CurrentModule = ModuleName; // Make sure that the failed-module structure has been allocated in // the importing instance, and propagate the pointer to the newly-created // instance. PreprocessorOptions &ImportingPPOpts = ImportingInstance.getInvocation().getPreprocessorOpts(); if (!ImportingPPOpts.FailedModules) ImportingPPOpts.FailedModules = std::make_shared(); PPOpts.FailedModules = ImportingPPOpts.FailedModules; // If there is a module map file, build the module using the module map. // Set up the inputs/outputs so that we build the module from its umbrella // header. FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); FrontendOpts.OutputFile = ModuleFileName.str(); FrontendOpts.DisableFree = false; FrontendOpts.GenerateGlobalModuleIndex = false; FrontendOpts.BuildingImplicitModule = true; FrontendOpts.OriginalModuleMap = OriginalModuleMapFile; // Force implicitly-built modules to hash the content of the module file. HSOpts.ModulesHashContent = true; FrontendOpts.Inputs = {Input}; // Don't free the remapped file buffers; they are owned by our caller. PPOpts.RetainRemappedFileBuffers = true; Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; assert(ImportingInstance.getInvocation().getModuleHash() == Invocation->getModuleHash() && "Module hash mismatch!"); // Construct a compiler instance that will be used to actually create the // module. Since we're sharing a PCMCache, // CompilerInstance::CompilerInstance is responsible for finalizing the // buffers to prevent use-after-frees. CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), &ImportingInstance.getPreprocessor().getPCMCache()); auto &Inv = *Invocation; Instance.setInvocation(std::move(Invocation)); Instance.createDiagnostics(new ForwardingDiagnosticConsumer( ImportingInstance.getDiagnosticClient()), /*ShouldOwnClient=*/true); Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem()); // Note that this module is part of the module build stack, so that we // can detect cycles in the module graph. Instance.setFileManager(&ImportingInstance.getFileManager()); Instance.createSourceManager(Instance.getFileManager()); SourceManager &SourceMgr = Instance.getSourceManager(); SourceMgr.setModuleBuildStack( ImportingInstance.getSourceManager().getModuleBuildStack()); SourceMgr.pushModuleBuildStack(ModuleName, FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); // If we're collecting module dependencies, we need to share a collector // between all of the module CompilerInstances. Other than that, we don't // want to produce any dependency output from the module build. Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); Inv.getDependencyOutputOpts() = DependencyOutputOptions(); ImportingInstance.getDiagnostics().Report(ImportLoc, diag::remark_module_build) << ModuleName << ModuleFileName; PreBuildStep(Instance); // Execute the action to actually build the module in-place. Use a separate // thread so that we get a stack large enough. const unsigned ThreadStackSize = 8 << 20; llvm::CrashRecoveryContext CRC; CRC.RunSafelyOnThread( [&]() { GenerateModuleFromModuleMapAction Action; Instance.ExecuteAction(Action); }, ThreadStackSize); PostBuildStep(Instance); ImportingInstance.getDiagnostics().Report(ImportLoc, diag::remark_module_build_done) << ModuleName; // Delete the temporary module map file. // FIXME: Even though we're executing under crash protection, it would still // be nice to do this with RemoveFileOnSignal when we can. However, that // doesn't make sense for all clients, so clean this up manually. Instance.clearOutputFiles(/*EraseFiles=*/true); return !Instance.getDiagnostics().hasErrorOccurred(); } /// \brief Compile a module file for the given module, using the options /// provided by the importing compiler instance. Returns true if the module /// was built without errors. static bool compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, Module *Module, StringRef ModuleFileName) { InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()), InputKind::ModuleMap); // Get or create the module map that we'll use to build this module. ModuleMap &ModMap = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); bool Result; if (const FileEntry *ModuleMapFile = ModMap.getContainingModuleMapFile(Module)) { // Use the module map where this module resides. Result = compileModuleImpl( ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem), ModMap.getModuleMapFileForUniquing(Module)->getName(), ModuleFileName); } else { // FIXME: We only need to fake up an input file here as a way of // transporting the module's directory to the module map parser. We should // be able to do that more directly, and parse from a memory buffer without // inventing this file. SmallString<128> FakeModuleMapFile(Module->Directory->getName()); llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); std::string InferredModuleMapContent; llvm::raw_string_ostream OS(InferredModuleMapContent); Module->print(OS); OS.flush(); Result = compileModuleImpl( ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem), ModMap.getModuleMapFileForUniquing(Module)->getName(), ModuleFileName, [&](CompilerInstance &Instance) { std::unique_ptr ModuleMapBuffer = llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); ModuleMapFile = Instance.getFileManager().getVirtualFile( FakeModuleMapFile, InferredModuleMapContent.size(), 0); Instance.getSourceManager().overrideFileContents( ModuleMapFile, std::move(ModuleMapBuffer)); }); } // We've rebuilt a module. If we're allowed to generate or update the global // module index, record that fact in the importing compiler instance. if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { ImportingInstance.setBuildGlobalModuleIndex(true); } return Result; } static bool compileAndLoadModule(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, SourceLocation ModuleNameLoc, Module *Module, StringRef ModuleFileName) { DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); auto diagnoseBuildFailure = [&] { Diags.Report(ModuleNameLoc, diag::err_module_not_built) << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); }; // FIXME: have LockFileManager return an error_code so that we can // avoid the mkdir when the directory already exists. StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); llvm::sys::fs::create_directories(Dir); while (1) { unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; llvm::LockFileManager Locked(ModuleFileName); switch (Locked) { case llvm::LockFileManager::LFS_Error: // PCMCache takes care of correctness and locks are only necessary for // performance. Fallback to building the module in case of any lock // related errors. Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) << Module->Name << Locked.getErrorMessage(); // Clear out any potential leftover. Locked.unsafeRemoveLockFile(); // FALLTHROUGH case llvm::LockFileManager::LFS_Owned: // We're responsible for building the module ourselves. if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module, ModuleFileName)) { diagnoseBuildFailure(); return false; } break; case llvm::LockFileManager::LFS_Shared: // Someone else is responsible for building the module. Wait for them to // finish. switch (Locked.waitForUnlock()) { case llvm::LockFileManager::Res_Success: ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; break; case llvm::LockFileManager::Res_OwnerDied: continue; // try again to get the lock. case llvm::LockFileManager::Res_Timeout: // Since PCMCache takes care of correctness, we try waiting for another // process to complete the build so clang does not do it done twice. If // case of timeout, build it ourselves. Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) << Module->Name; // Clear the lock file so that future invokations can make progress. Locked.unsafeRemoveLockFile(); continue; } break; } // Try to read the module file, now that we've compiled it. ASTReader::ASTReadResult ReadResult = ImportingInstance.getModuleManager()->ReadAST( ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, ModuleLoadCapabilities); if (ReadResult == ASTReader::OutOfDate && Locked == llvm::LockFileManager::LFS_Shared) { // The module may be out of date in the presence of file system races, // or if one of its imports depends on header search paths that are not // consistent with this ImportingInstance. Try again... continue; } else if (ReadResult == ASTReader::Missing) { diagnoseBuildFailure(); } else if (ReadResult != ASTReader::Success && !Diags.hasErrorOccurred()) { // The ASTReader didn't diagnose the error, so conservatively report it. diagnoseBuildFailure(); } return ReadResult == ASTReader::Success; } } /// \brief Diagnose differences between the current definition of the given /// configuration macro and the definition provided on the command line. static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, Module *Mod, SourceLocation ImportLoc) { IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); SourceManager &SourceMgr = PP.getSourceManager(); // If this identifier has never had a macro definition, then it could // not have changed. if (!Id->hadMacroDefinition()) return; auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); // Find the macro definition from the command line. MacroInfo *CmdLineDefinition = nullptr; for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { // We only care about the predefines buffer. FileID FID = SourceMgr.getFileID(MD->getLocation()); if (FID.isInvalid() || FID != PP.getPredefinesFileID()) continue; if (auto *DMD = dyn_cast(MD)) CmdLineDefinition = DMD->getMacroInfo(); break; } auto *CurrentDefinition = PP.getMacroInfo(Id); if (CurrentDefinition == CmdLineDefinition) { // Macro matches. Nothing to do. } else if (!CurrentDefinition) { // This macro was defined on the command line, then #undef'd later. // Complain. PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) << true << ConfigMacro << Mod->getFullModuleName(); auto LatestDef = LatestLocalMD->getDefinition(); assert(LatestDef.isUndefined() && "predefined macro went away with no #undef?"); PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) << true; return; } else if (!CmdLineDefinition) { // There was no definition for this macro in the predefines buffer, // but there was a local definition. Complain. PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) << false << ConfigMacro << Mod->getFullModuleName(); PP.Diag(CurrentDefinition->getDefinitionLoc(), diag::note_module_def_undef_here) << false; } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, /*Syntactically=*/true)) { // The macro definitions differ. PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) << false << ConfigMacro << Mod->getFullModuleName(); PP.Diag(CurrentDefinition->getDefinitionLoc(), diag::note_module_def_undef_here) << false; } } /// \brief Write a new timestamp file with the given path. static void writeTimestampFile(StringRef TimestampFile) { std::error_code EC; llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None); } /// \brief Prune the module cache of modules that haven't been accessed in /// a long time. static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { struct stat StatBuf; llvm::SmallString<128> TimestampFile; TimestampFile = HSOpts.ModuleCachePath; assert(!TimestampFile.empty()); llvm::sys::path::append(TimestampFile, "modules.timestamp"); // Try to stat() the timestamp file. if (::stat(TimestampFile.c_str(), &StatBuf)) { // If the timestamp file wasn't there, create one now. if (errno == ENOENT) { writeTimestampFile(TimestampFile); } return; } // Check whether the time stamp is older than our pruning interval. // If not, do nothing. time_t TimeStampModTime = StatBuf.st_mtime; time_t CurrentTime = time(nullptr); if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) return; // Write a new timestamp file so that nobody else attempts to prune. // There is a benign race condition here, if two Clang instances happen to // notice at the same time that the timestamp is out-of-date. writeTimestampFile(TimestampFile); // Walk the entire module cache, looking for unused module files and module // indices. std::error_code EC; SmallString<128> ModuleCachePathNative; llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; Dir != DirEnd && !EC; Dir.increment(EC)) { // If we don't have a directory, there's nothing to look into. if (!llvm::sys::fs::is_directory(Dir->path())) continue; // Walk all of the files within this directory. for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; File != FileEnd && !EC; File.increment(EC)) { // We only care about module and global module index files. StringRef Extension = llvm::sys::path::extension(File->path()); if (Extension != ".pcm" && Extension != ".timestamp" && llvm::sys::path::filename(File->path()) != "modules.idx") continue; // Look at this file. If we can't stat it, there's nothing interesting // there. if (::stat(File->path().c_str(), &StatBuf)) continue; // If the file has been used recently enough, leave it there. time_t FileAccessTime = StatBuf.st_atime; if (CurrentTime - FileAccessTime <= time_t(HSOpts.ModuleCachePruneAfter)) { continue; } // Remove the file. llvm::sys::fs::remove(File->path()); // Remove the timestamp file. std::string TimpestampFilename = File->path() + ".timestamp"; llvm::sys::fs::remove(TimpestampFilename); } // If we removed all of the files in the directory, remove the directory // itself. if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == llvm::sys::fs::directory_iterator() && !EC) llvm::sys::fs::remove(Dir->path()); } } void CompilerInstance::createModuleManager() { if (!ModuleManager) { if (!hasASTContext()) createASTContext(); // If we're implicitly building modules but not currently recursively // building a module, check whether we need to prune the module cache. if (getSourceManager().getModuleBuildStack().empty() && !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && getHeaderSearchOpts().ModuleCachePruneInterval > 0 && getHeaderSearchOpts().ModuleCachePruneAfter > 0) { pruneModuleCache(getHeaderSearchOpts()); } HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); std::string Sysroot = HSOpts.Sysroot; const PreprocessorOptions &PPOpts = getPreprocessorOpts(); std::unique_ptr ReadTimer; if (FrontendTimerGroup) ReadTimer = llvm::make_unique("reading_modules", "Reading modules", *FrontendTimerGroup); ModuleManager = new ASTReader( getPreprocessor(), &getASTContext(), getPCHContainerReader(), getFrontendOpts().ModuleFileExtensions, Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation, /*AllowASTWithCompilerErrors=*/false, /*AllowConfigurationMismatch=*/false, HSOpts.ModulesValidateSystemHeaders, getFrontendOpts().UseGlobalModuleIndex, std::move(ReadTimer)); if (hasASTConsumer()) { ModuleManager->setDeserializationListener( getASTConsumer().GetASTDeserializationListener()); getASTContext().setASTMutationListener( getASTConsumer().GetASTMutationListener()); } getASTContext().setExternalSource(ModuleManager); if (hasSema()) ModuleManager->InitializeSema(getSema()); if (hasASTConsumer()) ModuleManager->StartTranslationUnit(&getASTConsumer()); if (TheDependencyFileGenerator) TheDependencyFileGenerator->AttachToASTReader(*ModuleManager); for (auto &Listener : DependencyCollectors) Listener->attachToASTReader(*ModuleManager); } } bool CompilerInstance::loadModuleFile(StringRef FileName) { llvm::Timer Timer; if (FrontendTimerGroup) Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), *FrontendTimerGroup); llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); // Helper to recursively read the module names for all modules we're adding. // We mark these as known and redirect any attempt to load that module to // the files we were handed. struct ReadModuleNames : ASTReaderListener { CompilerInstance &CI; llvm::SmallVector LoadedModules; ReadModuleNames(CompilerInstance &CI) : CI(CI) {} void ReadModuleName(StringRef ModuleName) override { LoadedModules.push_back( CI.getPreprocessor().getIdentifierInfo(ModuleName)); } void registerAll() { for (auto *II : LoadedModules) { CI.KnownModules[II] = CI.getPreprocessor() .getHeaderSearchInfo() .getModuleMap() .findModule(II->getName()); } LoadedModules.clear(); } void markAllUnavailable() { for (auto *II : LoadedModules) { if (Module *M = CI.getPreprocessor() .getHeaderSearchInfo() .getModuleMap() .findModule(II->getName())) { M->HasIncompatibleModuleFile = true; // Mark module as available if the only reason it was unavailable // was missing headers. SmallVector Stack; Stack.push_back(M); while (!Stack.empty()) { Module *Current = Stack.pop_back_val(); if (Current->IsMissingRequirement) continue; Current->IsAvailable = true; Stack.insert(Stack.end(), Current->submodule_begin(), Current->submodule_end()); } } } LoadedModules.clear(); } }; // If we don't already have an ASTReader, create one now. if (!ModuleManager) createModuleManager(); auto Listener = llvm::make_unique(*this); auto &ListenerRef = *Listener; ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager, std::move(Listener)); // Try to load the module file. switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule, SourceLocation(), ASTReader::ARR_ConfigurationMismatch)) { case ASTReader::Success: // We successfully loaded the module file; remember the set of provided // modules so that we don't try to load implicit modules for them. ListenerRef.registerAll(); return true; case ASTReader::ConfigurationMismatch: // Ignore unusable module files. getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) << FileName; // All modules provided by any files we tried and failed to load are now // unavailable; includes of those modules should now be handled textually. ListenerRef.markAllUnavailable(); return true; default: return false; } } ModuleLoadResult CompilerInstance::loadModule(SourceLocation ImportLoc, ModuleIdPath Path, Module::NameVisibilityKind Visibility, bool IsInclusionDirective) { // Determine what file we're searching from. StringRef ModuleName = Path[0].first->getName(); SourceLocation ModuleNameLoc = Path[0].second; // If we've already handled this import, just return the cached result. // This one-element cache is important to eliminate redundant diagnostics // when both the preprocessor and parser see the same import declaration. if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { // Make the named module visible. if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility, ImportLoc); return LastModuleImportResult; } clang::Module *Module = nullptr; // If we don't already have information on this module, load the module now. llvm::DenseMap::iterator Known = KnownModules.find(Path[0].first); if (Known != KnownModules.end()) { // Retrieve the cached top-level module. Module = Known->second; } else if (ModuleName == getLangOpts().CurrentModule) { // This is the module we're building. Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; } else { // Search for a module with the given name. Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); HeaderSearchOptions &HSOpts = PP->getHeaderSearchInfo().getHeaderSearchOpts(); std::string ModuleFileName; enum ModuleSource { ModuleNotFound, ModuleCache, PrebuiltModulePath, ModuleBuildPragma } Source = ModuleNotFound; // Check to see if the module has been built as part of this compilation // via a module build pragma. auto BuiltModuleIt = BuiltModules.find(ModuleName); if (BuiltModuleIt != BuiltModules.end()) { ModuleFileName = BuiltModuleIt->second; Source = ModuleBuildPragma; } // Try to load the module from the prebuilt module path. if (Source == ModuleNotFound && !HSOpts.PrebuiltModulePaths.empty()) { ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName( ModuleName, "", /*UsePrebuiltPath*/ true); if (!ModuleFileName.empty()) Source = PrebuiltModulePath; } // Try to load the module from the module cache. if (Source == ModuleNotFound && Module) { ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName(Module); Source = ModuleCache; } if (Source == ModuleNotFound) { // We can't find a module, error out here. getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); ModuleBuildFailed = true; return ModuleLoadResult(); } if (ModuleFileName.empty()) { if (Module && Module->HasIncompatibleModuleFile) { // We tried and failed to load a module file for this module. Fall // back to textual inclusion for its headers. return ModuleLoadResult::ConfigMismatch; } getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) << ModuleName; ModuleBuildFailed = true; return ModuleLoadResult(); } // If we don't already have an ASTReader, create one now. if (!ModuleManager) createModuleManager(); llvm::Timer Timer; if (FrontendTimerGroup) Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName, *FrontendTimerGroup); llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); // Try to load the module file. If we are not trying to load from the // module cache, we don't know how to rebuild modules. unsigned ARRFlags = Source == ModuleCache ? ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing : ASTReader::ARR_ConfigurationMismatch; switch (ModuleManager->ReadAST(ModuleFileName, Source == PrebuiltModulePath ? serialization::MK_PrebuiltModule : Source == ModuleBuildPragma ? serialization::MK_ExplicitModule : serialization::MK_ImplicitModule, ImportLoc, ARRFlags)) { case ASTReader::Success: { if (Source != ModuleCache && !Module) { Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); if (!Module || !Module->getASTFile() || FileMgr->getFile(ModuleFileName) != Module->getASTFile()) { // Error out if Module does not refer to the file in the prebuilt // module path. getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) << ModuleName; ModuleBuildFailed = true; KnownModules[Path[0].first] = nullptr; return ModuleLoadResult(); } } break; } case ASTReader::OutOfDate: case ASTReader::Missing: { if (Source != ModuleCache) { // We don't know the desired configuration for this module and don't // necessarily even have a module map. Since ReadAST already produces // diagnostics for these two cases, we simply error out here. ModuleBuildFailed = true; KnownModules[Path[0].first] = nullptr; return ModuleLoadResult(); } // The module file is missing or out-of-date. Build it. assert(Module && "missing module file"); // Check whether there is a cycle in the module graph. ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); for (; Pos != PosEnd; ++Pos) { if (Pos->first == ModuleName) break; } if (Pos != PosEnd) { SmallString<256> CyclePath; for (; Pos != PosEnd; ++Pos) { CyclePath += Pos->first; CyclePath += " -> "; } CyclePath += ModuleName; getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) << ModuleName << CyclePath; return ModuleLoadResult(); } // Check whether we have already attempted to build this module (but // failed). if (getPreprocessorOpts().FailedModules && getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); ModuleBuildFailed = true; return ModuleLoadResult(); } // Try to compile and then load the module. if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module, ModuleFileName)) { assert(getDiagnostics().hasErrorOccurred() && "undiagnosed error in compileAndLoadModule"); if (getPreprocessorOpts().FailedModules) getPreprocessorOpts().FailedModules->addFailed(ModuleName); KnownModules[Path[0].first] = nullptr; ModuleBuildFailed = true; return ModuleLoadResult(); } // Okay, we've rebuilt and now loaded the module. break; } case ASTReader::ConfigurationMismatch: if (Source == PrebuiltModulePath) // FIXME: We shouldn't be setting HadFatalFailure below if we only // produce a warning here! getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) << ModuleFileName; // Fall through to error out. LLVM_FALLTHROUGH; case ASTReader::VersionMismatch: case ASTReader::HadErrors: ModuleLoader::HadFatalFailure = true; // FIXME: The ASTReader will already have complained, but can we shoehorn // that diagnostic information into a more useful form? KnownModules[Path[0].first] = nullptr; return ModuleLoadResult(); case ASTReader::Failure: ModuleLoader::HadFatalFailure = true; // Already complained, but note now that we failed. KnownModules[Path[0].first] = nullptr; ModuleBuildFailed = true; return ModuleLoadResult(); } // Cache the result of this top-level module lookup for later. Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; } // If we never found the module, fail. if (!Module) return ModuleLoadResult(); // Verify that the rest of the module path actually corresponds to // a submodule. if (Path.size() > 1) { for (unsigned I = 1, N = Path.size(); I != N; ++I) { StringRef Name = Path[I].first->getName(); clang::Module *Sub = Module->findSubmodule(Name); if (!Sub) { // Attempt to perform typo correction to find a module name that works. SmallVector Best; unsigned BestEditDistance = (std::numeric_limits::max)(); for (clang::Module::submodule_iterator J = Module->submodule_begin(), JEnd = Module->submodule_end(); J != JEnd; ++J) { unsigned ED = Name.edit_distance((*J)->Name, /*AllowReplacements=*/true, BestEditDistance); if (ED <= BestEditDistance) { if (ED < BestEditDistance) { Best.clear(); BestEditDistance = ED; } Best.push_back((*J)->Name); } } // If there was a clear winner, user it. if (Best.size() == 1) { getDiagnostics().Report(Path[I].second, diag::err_no_submodule_suggest) << Path[I].first << Module->getFullModuleName() << Best[0] << SourceRange(Path[0].second, Path[I-1].second) << FixItHint::CreateReplacement(SourceRange(Path[I].second), Best[0]); Sub = Module->findSubmodule(Best[0]); } } if (!Sub) { // No submodule by this name. Complain, and don't look for further // submodules. getDiagnostics().Report(Path[I].second, diag::err_no_submodule) << Path[I].first << Module->getFullModuleName() << SourceRange(Path[0].second, Path[I-1].second); break; } Module = Sub; } } // Make the named module visible, if it's not already part of the module // we are parsing. if (ModuleName != getLangOpts().CurrentModule) { if (!Module->IsFromModuleFile) { // We have an umbrella header or directory that doesn't actually include // all of the headers within the directory it covers. Complain about // this missing submodule and recover by forgetting that we ever saw // this submodule. // FIXME: Should we detect this at module load time? It seems fairly // expensive (and rare). getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) << Module->getFullModuleName() << SourceRange(Path.front().second, Path.back().second); return ModuleLoadResult::MissingExpected; } // Check whether this module is available. if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(), getDiagnostics(), Module)) { getDiagnostics().Report(ImportLoc, diag::note_module_import_here) << SourceRange(Path.front().second, Path.back().second); LastModuleImportLoc = ImportLoc; LastModuleImportResult = ModuleLoadResult(); return ModuleLoadResult(); } ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc); } // Check for any configuration macros that have changed. clang::Module *TopModule = Module->getTopLevelModule(); for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], Module, ImportLoc); } LastModuleImportLoc = ImportLoc; LastModuleImportResult = ModuleLoadResult(Module); return LastModuleImportResult; } void CompilerInstance::loadModuleFromSource(SourceLocation ImportLoc, StringRef ModuleName, StringRef Source) { // Avoid creating filenames with special characters. SmallString<128> CleanModuleName(ModuleName); for (auto &C : CleanModuleName) if (!isAlphanumeric(C)) C = '_'; // FIXME: Using a randomized filename here means that our intermediate .pcm // output is nondeterministic (as .pcm files refer to each other by name). // Can this affect the output in any way? SmallString<128> ModuleFileName; if (std::error_code EC = llvm::sys::fs::createTemporaryFile( CleanModuleName, "pcm", ModuleFileName)) { getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output) << ModuleFileName << EC.message(); return; } std::string ModuleMapFileName = (CleanModuleName + ".map").str(); FrontendInputFile Input( ModuleMapFileName, InputKind(getLanguageFromOptions(*Invocation->getLangOpts()), InputKind::ModuleMap, /*Preprocessed*/true)); std::string NullTerminatedSource(Source.str()); auto PreBuildStep = [&](CompilerInstance &Other) { // Create a virtual file containing our desired source. // FIXME: We shouldn't need to do this. const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile( ModuleMapFileName, NullTerminatedSource.size(), 0); Other.getSourceManager().overrideFileContents( ModuleMapFile, llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str())); Other.BuiltModules = std::move(BuiltModules); Other.DeleteBuiltModules = false; }; auto PostBuildStep = [this](CompilerInstance &Other) { BuiltModules = std::move(Other.BuiltModules); }; // Build the module, inheriting any modules that we've built locally. if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(), ModuleFileName, PreBuildStep, PostBuildStep)) { BuiltModules[ModuleName] = ModuleFileName.str(); llvm::sys::RemoveFileOnSignal(ModuleFileName); } } void CompilerInstance::makeModuleVisible(Module *Mod, Module::NameVisibilityKind Visibility, SourceLocation ImportLoc) { if (!ModuleManager) createModuleManager(); if (!ModuleManager) return; ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc); } GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( SourceLocation TriggerLoc) { if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) return nullptr; if (!ModuleManager) createModuleManager(); // Can't do anything if we don't have the module manager. if (!ModuleManager) return nullptr; // Get an existing global index. This loads it if not already // loaded. ModuleManager->loadGlobalIndex(); GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex(); // If the global index doesn't exist, create it. if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && hasPreprocessor()) { llvm::sys::fs::create_directories( getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); GlobalModuleIndex::writeIndex( getFileManager(), getPCHContainerReader(), getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); ModuleManager->resetForReload(); ModuleManager->loadGlobalIndex(); GlobalIndex = ModuleManager->getGlobalIndex(); } // For finding modules needing to be imported for fixit messages, // we need to make the global index cover all modules, so we do that here. if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); bool RecreateIndex = false; for (ModuleMap::module_iterator I = MMap.module_begin(), E = MMap.module_end(); I != E; ++I) { Module *TheModule = I->second; const FileEntry *Entry = TheModule->getASTFile(); if (!Entry) { SmallVector, 2> Path; Path.push_back(std::make_pair( getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); std::reverse(Path.begin(), Path.end()); // Load a module as hidden. This also adds it to the global index. loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); RecreateIndex = true; } } if (RecreateIndex) { GlobalModuleIndex::writeIndex( getFileManager(), getPCHContainerReader(), getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); ModuleManager->resetForReload(); ModuleManager->loadGlobalIndex(); GlobalIndex = ModuleManager->getGlobalIndex(); } HaveFullGlobalModuleIndex = true; } return GlobalIndex; } // Check global module index for missing imports. bool CompilerInstance::lookupMissingImports(StringRef Name, SourceLocation TriggerLoc) { // Look for the symbol in non-imported modules, but only if an error // actually occurred. if (!buildingModule()) { // Load global module index, or retrieve a previously loaded one. GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( TriggerLoc); // Only if we have a global index. if (GlobalIndex) { GlobalModuleIndex::HitSet FoundModules; // Find the modules that reference the identifier. // Note that this only finds top-level modules. // We'll let diagnoseTypo find the actual declaration module. if (GlobalIndex->lookupIdentifier(Name, FoundModules)) return true; } } return false; } void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); } void CompilerInstance::setExternalSemaSource( IntrusiveRefCntPtr ESS) { ExternalSemaSrc = std::move(ESS); }